Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#curl -H "Accept: application/json" https://Og2-wstest.hf.space/
|
2 |
+
#curl -H "Accept: application/json" https://Og2-wstest.hf.space/hello/
|
3 |
+
#curl -X POST https://Og2-wstest.hf.space/muws2/ -H "Content-Type: application/json" -d "{\"text\": \"Ceci est un texte exemple.\"}"
|
4 |
+
#curl -X POST "https://Og2-wstest.hf.space/upload-video/" -H "Content-Type: multipart/form-data" -F "file=@E:\nosave\MyDocs\AndroidStudio\PythonProjects\SportHobbyStats\Foosball\VideoAnnotation\MoviNet2\train\Block_1-2.1/CNFT2Toulouse_Block_1729.avi"
|
5 |
+
|
6 |
+
|
7 |
+
from fastapi import FastAPI, File, Form, UploadFile, HTTPException
|
8 |
+
from pathlib import Path
|
9 |
+
import os
|
10 |
+
from pydantic import BaseModel
|
11 |
+
import json
|
12 |
+
|
13 |
+
app = FastAPI()
|
14 |
+
|
15 |
+
# Définir un modèle pour recevoir un texte
|
16 |
+
class TextInput(BaseModel):
|
17 |
+
text: str
|
18 |
+
|
19 |
+
@app.post("/muws2/")
|
20 |
+
def process_text(input_data: TextInput):
|
21 |
+
# Récupérer le texte depuis l'entrée
|
22 |
+
input_text = input_data.text
|
23 |
+
|
24 |
+
# Créer un dictionnaire JSON avec le texte en sortie
|
25 |
+
output = {
|
26 |
+
"text": input_text
|
27 |
+
}
|
28 |
+
|
29 |
+
return output
|
30 |
+
|
31 |
+
@app.get("/hello/")
|
32 |
+
def greet_hello():
|
33 |
+
return {"msg": "Hello World!"}
|
34 |
+
|
35 |
+
@app.get("/")
|
36 |
+
def greet_hello():
|
37 |
+
return {"msg": "Ok!"}
|
38 |
+
|
39 |
+
|
40 |
+
@app.post("/upload-video/")
|
41 |
+
async def upload_video(file: UploadFile = File(...)):
|
42 |
+
# Lire le contenu du fichier
|
43 |
+
content = await file.read()
|
44 |
+
# Vous pouvez sauvegarder la vidéo ou la traiter ici
|
45 |
+
with open(f"uploaded_{file.filename}", "wb") as f:
|
46 |
+
f.write(content)
|
47 |
+
|
48 |
+
return {"filename": file.filename, "content_type": file.content_type}
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
UPLOAD_DIR = "uploads"
|
53 |
+
os.makedirs(UPLOAD_DIR, exist_ok=True)
|
54 |
+
|
55 |
+
@app.post("/upload-dropzone/")
|
56 |
+
async def upload_file(
|
57 |
+
file: UploadFile = File(...),
|
58 |
+
chunkIndex: int = Form(...),
|
59 |
+
totalChunks: int = Form(...),
|
60 |
+
fileName: str = Form(...),
|
61 |
+
directory: str = Form(...),
|
62 |
+
):
|
63 |
+
try:
|
64 |
+
print(f"Received: chunkIndex={chunkIndex}, totalChunks={totalChunks}, fileName={fileName}, directory={directory}")
|
65 |
+
# Create the directory if it doesn't exist
|
66 |
+
target_dir = Path(UPLOAD_DIR) / directory
|
67 |
+
target_dir.mkdir(parents=True, exist_ok=True)
|
68 |
+
|
69 |
+
# Save the chunk
|
70 |
+
chunk_path = target_dir / f"{fileName}.part{chunkIndex}"
|
71 |
+
with open(chunk_path, "wb") as f:
|
72 |
+
f.write(await file.read())
|
73 |
+
|
74 |
+
# If it's the last chunk, reconstruct the file
|
75 |
+
if chunkIndex + 1 == totalChunks:
|
76 |
+
final_file_path = target_dir / fileName
|
77 |
+
with open(final_file_path, "wb") as final_file:
|
78 |
+
for i in range(totalChunks):
|
79 |
+
part_path = target_dir / f"{fileName}.part{i}"
|
80 |
+
with open(part_path, "rb") as part_file:
|
81 |
+
final_file.write(part_file.read())
|
82 |
+
os.remove(part_path) # Remove the chunk after merging
|
83 |
+
|
84 |
+
print(f"Final file path: {final_file_path}")
|
85 |
+
|
86 |
+
return {
|
87 |
+
"status": "success",
|
88 |
+
"message": "Chunk uploaded successfully.",
|
89 |
+
"file_path": str(final_file_path)
|
90 |
+
}
|
91 |
+
|
92 |
+
return {"status": "success", "message": "Chunk uploaded successfully."}
|
93 |
+
|
94 |
+
except Exception as e:
|
95 |
+
raise HTTPException(status_code=500, detail=f"Upload failed: {str(e)}")
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
import tensorflow as tf
|
100 |
+
import numpy as np
|
101 |
+
import cv2
|
102 |
+
import keras
|
103 |
+
from keras.saving import register_keras_serializable
|
104 |
+
from keras import layers
|
105 |
+
from huggingface_hub import hf_hub_download
|
106 |
+
from keras.applications.densenet import DenseNet121
|
107 |
+
#from tensorflow_docs.vis import embed
|
108 |
+
|
109 |
+
# Available backend options are: "jax", "torch", "tensorflow".
|
110 |
+
os.environ["KERAS_BACKEND"] = "tensorflow"
|
111 |
+
|
112 |
+
|
113 |
+
# Charger le modèle Keras
|
114 |
+
MAX_SEQ_LENGTH = 8
|
115 |
+
NUM_FEATURES = 1024
|
116 |
+
IMG_SIZE = 128
|
117 |
+
|
118 |
+
#center_crop_layer = layers.CenterCrop(IMG_SIZE, IMG_SIZE)
|
119 |
+
# Au lieu de CenterCrop
|
120 |
+
center_crop_layer = layers.Resizing(IMG_SIZE, IMG_SIZE)
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
def crop_center(frame):
|
125 |
+
cropped = center_crop_layer(frame[None, ...])
|
126 |
+
cropped = keras.ops.convert_to_numpy(cropped)
|
127 |
+
cropped = keras.ops.squeeze(cropped)
|
128 |
+
return cropped
|
129 |
+
|
130 |
+
|
131 |
+
# Following method is modified from this tutorial:
|
132 |
+
# https://www.tensorflow.org/hub/tutorials/action_recognition_with_tf_hub
|
133 |
+
def load_video(path, max_frames=0, offload_to_cpu=False):
|
134 |
+
cap = cv2.VideoCapture(path)
|
135 |
+
frames = []
|
136 |
+
try:
|
137 |
+
while True:
|
138 |
+
ret, frame = cap.read()
|
139 |
+
if not ret:
|
140 |
+
break
|
141 |
+
frame = frame[:, :, [2, 1, 0]]
|
142 |
+
frame = crop_center(frame)
|
143 |
+
if offload_to_cpu and keras.backend.backend() == "torch":
|
144 |
+
frame = frame.to("cpu")
|
145 |
+
frames.append(frame)
|
146 |
+
|
147 |
+
if len(frames) == max_frames:
|
148 |
+
break
|
149 |
+
finally:
|
150 |
+
cap.release()
|
151 |
+
if offload_to_cpu and keras.backend.backend() == "torch":
|
152 |
+
return np.array([frame.to("cpu").numpy() for frame in frames])
|
153 |
+
return np.array(frames)
|
154 |
+
|
155 |
+
def build_feature_extractor():
|
156 |
+
feature_extractor = DenseNet121(
|
157 |
+
weights="imagenet",
|
158 |
+
include_top=False,
|
159 |
+
pooling="avg",
|
160 |
+
input_shape=(IMG_SIZE, IMG_SIZE, 3),
|
161 |
+
)
|
162 |
+
preprocess_input = keras.applications.densenet.preprocess_input
|
163 |
+
|
164 |
+
inputs = keras.Input((IMG_SIZE, IMG_SIZE, 3))
|
165 |
+
preprocessed = preprocess_input(inputs)
|
166 |
+
|
167 |
+
outputs = feature_extractor(preprocessed)
|
168 |
+
return keras.Model(inputs, outputs, name="feature_extractor")
|
169 |
+
|
170 |
+
|
171 |
+
feature_extractor = build_feature_extractor()
|
172 |
+
|
173 |
+
|
174 |
+
@keras.saving.register_keras_serializable()
|
175 |
+
class PositionalEmbedding(layers.Layer):
|
176 |
+
def __init__(self, sequence_length, output_dim, **kwargs):
|
177 |
+
super().__init__(**kwargs)
|
178 |
+
self.position_embeddings = layers.Embedding(
|
179 |
+
input_dim=sequence_length, output_dim=output_dim
|
180 |
+
)
|
181 |
+
self.sequence_length = sequence_length
|
182 |
+
self.output_dim = output_dim
|
183 |
+
|
184 |
+
def build(self, input_shape):
|
185 |
+
self.position_embeddings.build(input_shape)
|
186 |
+
|
187 |
+
def call(self, inputs):
|
188 |
+
# The inputs are of shape: `(batch_size, frames, num_features)`
|
189 |
+
inputs = keras.ops.cast(inputs, self.compute_dtype)
|
190 |
+
length = keras.ops.shape(inputs)[1]
|
191 |
+
positions = keras.ops.arange(start=0, stop=length, step=1)
|
192 |
+
embedded_positions = self.position_embeddings(positions)
|
193 |
+
return inputs + embedded_positions
|
194 |
+
|
195 |
+
@keras.saving.register_keras_serializable()
|
196 |
+
class TransformerEncoder(layers.Layer):
|
197 |
+
def __init__(self, embed_dim, dense_dim, num_heads, **kwargs):
|
198 |
+
super().__init__(**kwargs)
|
199 |
+
self.embed_dim = embed_dim
|
200 |
+
self.dense_dim = dense_dim
|
201 |
+
self.num_heads = num_heads
|
202 |
+
self.attention = layers.MultiHeadAttention(
|
203 |
+
num_heads=num_heads, key_dim=embed_dim, dropout=0.3
|
204 |
+
)
|
205 |
+
self.dense_proj = keras.Sequential(
|
206 |
+
[
|
207 |
+
layers.Dense(dense_dim, activation=keras.activations.gelu),
|
208 |
+
layers.Dense(embed_dim),
|
209 |
+
]
|
210 |
+
)
|
211 |
+
self.layernorm_1 = layers.LayerNormalization()
|
212 |
+
self.layernorm_2 = layers.LayerNormalization()
|
213 |
+
|
214 |
+
def call(self, inputs, mask=None):
|
215 |
+
attention_output = self.attention(inputs, inputs, attention_mask=mask)
|
216 |
+
proj_input = self.layernorm_1(inputs + attention_output)
|
217 |
+
proj_output = self.dense_proj(proj_input)
|
218 |
+
return self.layernorm_2(proj_input + proj_output)
|
219 |
+
|
220 |
+
|
221 |
+
#model = keras.saving.load_model("hf://Og2/videoclassif")
|
222 |
+
model = keras.saving.load_model("hf://Og2/videoclassif", custom_objects={'PositionalEmbedding': PositionalEmbedding, 'TransformerEncoder': TransformerEncoder})
|
223 |
+
|
224 |
+
# Identifier le modèle Hugging Face et le fichier que vous voulez lire
|
225 |
+
model_repo = "Og2/videoclassif" # Remplacez par votre modèle spécifique
|
226 |
+
file_name = "labels.txt" # Le fichier que vous voulez télécharger
|
227 |
+
|
228 |
+
# Télécharger le fichier depuis Hugging Face Hub
|
229 |
+
labels_file_path = hf_hub_download(repo_id=model_repo, filename=file_name)
|
230 |
+
|
231 |
+
# Liste des classes du modèle
|
232 |
+
# Nom du fichier de classe
|
233 |
+
#input_file = "hf://Og2/videoclassif/labels.txt"
|
234 |
+
# Lecture du fichier et création de la liste
|
235 |
+
with open(labels_file_path, "r") as file:
|
236 |
+
class_labels = [line.strip() for line in file]
|
237 |
+
#print("Tableau recréé à partir du fichier :")
|
238 |
+
#print(class_labels)
|
239 |
+
|
240 |
+
|
241 |
+
# test on video from val dataset
|
242 |
+
def prepare_single_video(frames):
|
243 |
+
frame_features = np.zeros(shape=(1, MAX_SEQ_LENGTH, NUM_FEATURES), dtype="float32")
|
244 |
+
|
245 |
+
# Pad shorter videos.
|
246 |
+
if len(frames) < MAX_SEQ_LENGTH:
|
247 |
+
diff = MAX_SEQ_LENGTH - len(frames)
|
248 |
+
padding = np.zeros((diff, IMG_SIZE, IMG_SIZE, 3))
|
249 |
+
frames = np.concatenate(frames, padding)
|
250 |
+
|
251 |
+
frames = frames[None, ...]
|
252 |
+
|
253 |
+
# Extract features from the frames of the current video.
|
254 |
+
for i, batch in enumerate(frames):
|
255 |
+
video_length = batch.shape[0]
|
256 |
+
length = min(MAX_SEQ_LENGTH, video_length)
|
257 |
+
for j in range(length):
|
258 |
+
if np.mean(batch[j, :]) > 0.0:
|
259 |
+
frame_features[i, j, :] = feature_extractor.predict(batch[None, j, :])
|
260 |
+
else:
|
261 |
+
frame_features[i, j, :] = 0.0
|
262 |
+
|
263 |
+
return frame_features
|
264 |
+
|
265 |
+
|
266 |
+
async def predict_action(video):
|
267 |
+
print("##### predict_action started #####")
|
268 |
+
frames = load_video(video, offload_to_cpu=True)
|
269 |
+
frame_features = prepare_single_video(frames)
|
270 |
+
probabilities = model.predict(frame_features)[0]
|
271 |
+
# Obtenir le top 5
|
272 |
+
top_5_indices = np.argsort(probabilities)[::-1][:5]
|
273 |
+
results = {class_labels[i]: float(probabilities[i]) for i in top_5_indices}
|
274 |
+
#return results
|
275 |
+
|
276 |
+
# Sauvegarder le JSON dans un fichier temporaire
|
277 |
+
output_file = "result.json"
|
278 |
+
with open(output_file, "w") as f:
|
279 |
+
json.dump(results, f)
|
280 |
+
|
281 |
+
return results
|