DamonDemon's picture
init
308f73c
raw
history blame
18.1 kB
import gradio as gr
import pandas as pd
from src.display.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
FAQ_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
NUMERIC_INTERVALS,
TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, H4_TOKEN, IS_PUBLIC, QUEUE_REPO, REPO_ID, RESULTS_REPO
from PIL import Image
# from src.populate import get_evaluation_queue_df, get_leaderboard_df
# from src.submission.submit import add_new_eval
# from src.tools.collections import update_collections
# from src.tools.plots import (
# create_metric_plot_obj,
# create_plot_df,
# create_scores_df,
# )
from dummydatagen import dummy_data_for_plot, create_metric_plot_obj_1, dummydf
import copy
def restart_space():
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
def add_average_col(df):
always_here_cols = [
"Model", "Agent", "Opponent Model", "Opponent Agent"
]
desired_col = [i for i in list(df.columns) if i not in always_here_cols]
newdf = df[desired_col].mean(axis=1).round(3)
return newdf
gtbench_raw_data = dummydf()
gtbench_raw_data["Average"] = add_average_col(gtbench_raw_data)
column_to_move = "Average"
# Move the column to the desired index
gtbench_raw_data.insert(
4, column_to_move, gtbench_raw_data.pop(column_to_move))
models = list(set(gtbench_raw_data['Model']))
opponent_models = list(set(gtbench_raw_data['Opponent Model']))
agents = list(set(gtbench_raw_data['Agent']))
opponent_agents = list(set(gtbench_raw_data['Opponent Agent']))
# Searching and filtering
def update_table(
hidden_df: pd.DataFrame,
columns: list,
model1: list,
model2: list,
agent1: list,
agent2: list
):
filtered_df = select_columns(hidden_df, columns)
filtered_df = filter_model1(filtered_df, model1)
filtered_df = filter_model2(filtered_df, model2)
filtered_df = filter_agent1(filtered_df, agent1)
filtered_df = filter_agent2(filtered_df, agent2)
return filtered_df
# triggered only once at startup => read query parameter if it exists
def load_query(request: gr.Request):
query = request.query_params.get("query") or ""
return query, query # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
always_here_cols = [
"Model", "Agent", "Opponent Model", "Opponent Agent"
]
# We use COLS to maintain sorting
all_columns = games
if len(columns) == 0:
filtered_df = df[
always_here_cols +
[c for c in all_columns if c in df.columns]
]
filtered_df["Average"] = add_average_col(filtered_df)
column_to_move = "Average"
current_index = filtered_df.columns.get_loc(column_to_move)
# Move the column to the desired index
filtered_df.insert(4, column_to_move, filtered_df.pop(column_to_move))
return filtered_df
filtered_df = df[
always_here_cols +
[c for c in all_columns if c in df.columns and c in columns]
]
if "Average" in columns:
filtered_df["Average"] = add_average_col(filtered_df)
# Get the current index of the column
column_to_move = "Average"
current_index = filtered_df.columns.get_loc(column_to_move)
# Move the column to the desired index
filtered_df.insert(4, column_to_move, filtered_df.pop(column_to_move))
else:
if "Average" in filtered_df.columns:
# Remove the column
filtered_df = filtered_df.drop(columns=["Average"])
return filtered_df
def filter_model1(
df: pd.DataFrame, model_query: list
) -> pd.DataFrame:
# Show all models
if len(model_query) == 0:
return df
filtered_df = df
filtered_df = filtered_df[filtered_df["Model"].isin(
model_query)]
return filtered_df
def filter_model2(
df: pd.DataFrame, model_query: list
) -> pd.DataFrame:
# Show all models
if len(model_query) == 0:
return df
filtered_df = df
filtered_df = filtered_df[filtered_df["Opponent Model"].isin(
model_query)]
return filtered_df
def filter_agent1(
df: pd.DataFrame, agent_query: list
) -> pd.DataFrame:
# Show all models
if len(agent_query) == 0:
return df
filtered_df = df
filtered_df = filtered_df[filtered_df["Agent"].isin(
agent_query)]
return filtered_df
def filter_agent2(
df: pd.DataFrame, agent_query: list
) -> pd.DataFrame:
# Show all models
if len(agent_query) == 0:
return df
filtered_df = df
filtered_df = filtered_df[filtered_df["Opponent Agent"].isin(
agent_query)]
return filtered_df
# leaderboard_df = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], False, False)
class LLM_Model:
def __init__(self, t_value, model_value, average_value, arc_value, hellaSwag_value, mmlu_value) -> None:
self.t = t_value
self.model = model_value
self.average = average_value
self.arc = arc_value
self.hellaSwag = hellaSwag_value
self.mmlu = mmlu_value
games = ["Breakthrough", "Connect Four", "Blind Auction", "Kuhn Poker",
"Liar's Dice", "Negotiation", "Nim", "Pig", "Iterated Prisoner's Dilemma", "Tic-Tac-Toe"]
# models = ["gpt-35-turbo-1106", "gpt-4", "Llama-2-70b-chat-hf", "CodeLlama-34b-Instruct-hf",
# "CodeLlama-70b-Instruct-hf", "Mistral-7B-Instruct-v01", "Mistral-7B-OpenOrca"]
# agents = ["Prompt Agent", "CoT Agent", "SC-CoT Agent",
# "ToT Agent", "MCTS", "Random", "TitforTat"]
demo = gr.Blocks(css=custom_css)
def load_image(image_path):
image = Image.open(image_path)
return image
with demo:
with gr.Row():
gr.Image("./assets/logo.png", height="200px", width="200px", scale=0.1,
show_download_button=False, container=False)
gr.HTML(TITLE, elem_id="title")
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("πŸ… GTBench", elem_id="llm-benchmark-tab-table", id=0):
with gr.Row():
with gr.Column():
with gr.Row():
shown_columns = gr.CheckboxGroup(
choices=[
'Average'
]+games,
label="Select columns to show",
elem_id="column-select",
interactive=True,
)
with gr.Column(min_width=320):
# with gr.Box(elem_id="box-filter"):
model1_column = gr.CheckboxGroup(
label="Model",
choices=models,
interactive=True,
elem_id="filter-columns-type",
)
agent1_column = gr.CheckboxGroup(
label="Agents",
choices=agents,
interactive=True,
elem_id="filter-columns-precision",
)
model2_column = gr.CheckboxGroup(
label="Opponent Model",
choices=opponent_models,
interactive=True,
elem_id="filter-columns-type",
)
agent2_column = gr.CheckboxGroup(
label="Opponent Agents",
choices=opponent_agents,
interactive=True,
elem_id="filter-columns-precision",
)
# filter_columns_size = gr.CheckboxGroup(
# label="Model sizes (in billions of parameters)",
# choices=[f'NUMERIC_INTERVALS{i}' for i in range(0, 5)],
# value=[f'NUMERIC_INTERVALS{i}' for i in range(0, 5)],
# interactive=True,
# elem_id="filter-columns-size",
# )
leaderboard_table = gr.components.Dataframe(
value=gtbench_raw_data,
elem_id="leaderboard-table",
interactive=False,
visible=True,
# column_widths=["2%", "33%"]
)
game_bench_df_for_search = gr.components.Dataframe(
value=gtbench_raw_data,
elem_id="leaderboard-table",
interactive=False,
visible=False,
# column_widths=["2%", "33%"]
)
# Dummy leaderboard for handling the case when the user uses backspace key
# hidden_leaderboard_table_for_search = gr.components.Dataframe(
# value=[],
# headers=COLS,
# datatype=TYPES,
# visible=False,
# )
# search_bar.submit(
# update_table,
# [
# # hidden_leaderboard_table_for_search,
# # shown_columns,
# # filter_columns_type,
# # filter_columns_precision,
# # filter_columns_size,
# # deleted_models_visibility,
# # flagged_models_visibility,
# # search_bar,
# ],
# leaderboard_table,
# )
# # Define a hidden component that will trigger a reload only if a query parameter has be set
# hidden_search_bar = gr.Textbox(value="", visible=False)
# hidden_search_bar.change(
# update_table,
# [
# hidden_leaderboard_table_for_search,
# shown_columns,
# filter_columns_type,
# filter_columns_precision,
# filter_columns_size,
# deleted_models_visibility,
# flagged_models_visibility,
# search_bar,
# ],
# leaderboard_table,
# )
# # Check query parameter once at startup and update search bar + hidden component
# demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar])
for selector in [shown_columns, model1_column, model2_column, agent1_column, agent2_column]:
selector.change(
update_table,
[
game_bench_df_for_search,
shown_columns,
model1_column,
model2_column,
agent1_column,
agent2_column
# filter_columns_precision,
# None, # filter_columns_size,
# None, # deleted_models_visibility,
# None, # flagged_models_visibility,
# None, # search_bar,
],
leaderboard_table,
queue=True,
)
# with gr.TabItem("πŸ“ˆ Metrics through time", elem_id="llm-benchmark-tab-table", id=4):
# with gr.Row():
# with gr.Column():
# chart = create_metric_plot_obj_1(
# dummy_data_for_plot(
# ["Metric1", "Metric2", 'Metric3']),
# ["Metric1", "Metric2", "Metric3"],
# title="Average of Top Scores and Human Baseline Over Time (from last update)",
# )
# gr.Plot(value=chart, min_width=500)
with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
gr.Markdown(FAQ_TEXT, elem_classes="markdown-text")
'''
with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT,
elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(
f"βœ… Finished Evaluations ({9})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=None,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"πŸ”„ Running Evaluation Queue ({5})",
open=False,
):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=None,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"⏳ Pending Evaluation Queue ({7})",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=None,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Row():
gr.Markdown("# βœ‰οΈβœ¨ Submit your Agent here!",
elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Agent name")
# revision_name_textbox = gr.Textbox(
# label="Revision commit", placeholder="main")
# private = gr.Checkbox(
# False, label="Private", visible=not IS_PUBLIC)
model_type = gr.Dropdown(
choices=[t.to_str(" : ")
for t in ModelType if t != ModelType.Unknown],
label="Agent type",
multiselect=False,
value=ModelType.FT.to_str(" : "),
interactive=True,
)
# with gr.Column():
# precision = gr.Dropdown(
# choices=[i.value.name for i in Precision if i !=
# Precision.Unknown],
# label="Precision",
# multiselect=False,
# value="float16",
# interactive=True,
# )
# weight_type = gr.Dropdown(
# choices=[i.value.name for i in WeightType],
# label="Weights type",
# multiselect=False,
# value="Original",
# interactive=True,
# )
# base_model_name_textbox = gr.Textbox(
# label="Base model (for delta or adapter weights)")
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
# submit_button.click(
# add_new_eval,
# [
# model_name_textbox,
# base_model_name_textbox,
# revision_name_textbox,
# precision,
# private,
# weight_type,
# model_type,
# ],
# submission_result,
# )
'''
with gr.Row():
with gr.Accordion("πŸ“™ Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
# scheduler = BackgroundScheduler()
# scheduler.add_job(restart_space, "interval", seconds=1800)
# scheduler.start()
demo.launch()
# Both launches the space and its CI
# configure_space_ci(
# demo.queue(default_concurrency_limit=40),
# trusted_authors=[], # add manually trusted authors
# private="True", # ephemeral spaces will have same visibility as the main space. Otherwise, set to `True` or `False` explicitly.
# variables={}, # We overwrite HF_HOME as tmp CI spaces will have no cache
# secrets=["HF_TOKEN", "H4_TOKEN"], # which secret do I want to copy from the main space? Can be a `List[str]`."HF_TOKEN", "H4_TOKEN"
# hardware=None, # "cpu-basic" by default. Otherwise set to "auto" to have same hardware as the main space or any valid string value.
# storage=None, # no storage by default. Otherwise set to "auto" to have same storage as the main space or any valid string value.
# ).launch()
# notes: opponent model , opponent agent
# column is games