Spaces:
Runtime error
Runtime error
File size: 18,106 Bytes
308f73c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 |
import gradio as gr
import pandas as pd
from src.display.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
FAQ_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
NUMERIC_INTERVALS,
TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, H4_TOKEN, IS_PUBLIC, QUEUE_REPO, REPO_ID, RESULTS_REPO
from PIL import Image
# from src.populate import get_evaluation_queue_df, get_leaderboard_df
# from src.submission.submit import add_new_eval
# from src.tools.collections import update_collections
# from src.tools.plots import (
# create_metric_plot_obj,
# create_plot_df,
# create_scores_df,
# )
from dummydatagen import dummy_data_for_plot, create_metric_plot_obj_1, dummydf
import copy
def restart_space():
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
def add_average_col(df):
always_here_cols = [
"Model", "Agent", "Opponent Model", "Opponent Agent"
]
desired_col = [i for i in list(df.columns) if i not in always_here_cols]
newdf = df[desired_col].mean(axis=1).round(3)
return newdf
gtbench_raw_data = dummydf()
gtbench_raw_data["Average"] = add_average_col(gtbench_raw_data)
column_to_move = "Average"
# Move the column to the desired index
gtbench_raw_data.insert(
4, column_to_move, gtbench_raw_data.pop(column_to_move))
models = list(set(gtbench_raw_data['Model']))
opponent_models = list(set(gtbench_raw_data['Opponent Model']))
agents = list(set(gtbench_raw_data['Agent']))
opponent_agents = list(set(gtbench_raw_data['Opponent Agent']))
# Searching and filtering
def update_table(
hidden_df: pd.DataFrame,
columns: list,
model1: list,
model2: list,
agent1: list,
agent2: list
):
filtered_df = select_columns(hidden_df, columns)
filtered_df = filter_model1(filtered_df, model1)
filtered_df = filter_model2(filtered_df, model2)
filtered_df = filter_agent1(filtered_df, agent1)
filtered_df = filter_agent2(filtered_df, agent2)
return filtered_df
# triggered only once at startup => read query parameter if it exists
def load_query(request: gr.Request):
query = request.query_params.get("query") or ""
return query, query # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
always_here_cols = [
"Model", "Agent", "Opponent Model", "Opponent Agent"
]
# We use COLS to maintain sorting
all_columns = games
if len(columns) == 0:
filtered_df = df[
always_here_cols +
[c for c in all_columns if c in df.columns]
]
filtered_df["Average"] = add_average_col(filtered_df)
column_to_move = "Average"
current_index = filtered_df.columns.get_loc(column_to_move)
# Move the column to the desired index
filtered_df.insert(4, column_to_move, filtered_df.pop(column_to_move))
return filtered_df
filtered_df = df[
always_here_cols +
[c for c in all_columns if c in df.columns and c in columns]
]
if "Average" in columns:
filtered_df["Average"] = add_average_col(filtered_df)
# Get the current index of the column
column_to_move = "Average"
current_index = filtered_df.columns.get_loc(column_to_move)
# Move the column to the desired index
filtered_df.insert(4, column_to_move, filtered_df.pop(column_to_move))
else:
if "Average" in filtered_df.columns:
# Remove the column
filtered_df = filtered_df.drop(columns=["Average"])
return filtered_df
def filter_model1(
df: pd.DataFrame, model_query: list
) -> pd.DataFrame:
# Show all models
if len(model_query) == 0:
return df
filtered_df = df
filtered_df = filtered_df[filtered_df["Model"].isin(
model_query)]
return filtered_df
def filter_model2(
df: pd.DataFrame, model_query: list
) -> pd.DataFrame:
# Show all models
if len(model_query) == 0:
return df
filtered_df = df
filtered_df = filtered_df[filtered_df["Opponent Model"].isin(
model_query)]
return filtered_df
def filter_agent1(
df: pd.DataFrame, agent_query: list
) -> pd.DataFrame:
# Show all models
if len(agent_query) == 0:
return df
filtered_df = df
filtered_df = filtered_df[filtered_df["Agent"].isin(
agent_query)]
return filtered_df
def filter_agent2(
df: pd.DataFrame, agent_query: list
) -> pd.DataFrame:
# Show all models
if len(agent_query) == 0:
return df
filtered_df = df
filtered_df = filtered_df[filtered_df["Opponent Agent"].isin(
agent_query)]
return filtered_df
# leaderboard_df = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], False, False)
class LLM_Model:
def __init__(self, t_value, model_value, average_value, arc_value, hellaSwag_value, mmlu_value) -> None:
self.t = t_value
self.model = model_value
self.average = average_value
self.arc = arc_value
self.hellaSwag = hellaSwag_value
self.mmlu = mmlu_value
games = ["Breakthrough", "Connect Four", "Blind Auction", "Kuhn Poker",
"Liar's Dice", "Negotiation", "Nim", "Pig", "Iterated Prisoner's Dilemma", "Tic-Tac-Toe"]
# models = ["gpt-35-turbo-1106", "gpt-4", "Llama-2-70b-chat-hf", "CodeLlama-34b-Instruct-hf",
# "CodeLlama-70b-Instruct-hf", "Mistral-7B-Instruct-v01", "Mistral-7B-OpenOrca"]
# agents = ["Prompt Agent", "CoT Agent", "SC-CoT Agent",
# "ToT Agent", "MCTS", "Random", "TitforTat"]
demo = gr.Blocks(css=custom_css)
def load_image(image_path):
image = Image.open(image_path)
return image
with demo:
with gr.Row():
gr.Image("./assets/logo.png", height="200px", width="200px", scale=0.1,
show_download_button=False, container=False)
gr.HTML(TITLE, elem_id="title")
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
GTBench", elem_id="llm-benchmark-tab-table", id=0):
with gr.Row():
with gr.Column():
with gr.Row():
shown_columns = gr.CheckboxGroup(
choices=[
'Average'
]+games,
label="Select columns to show",
elem_id="column-select",
interactive=True,
)
with gr.Column(min_width=320):
# with gr.Box(elem_id="box-filter"):
model1_column = gr.CheckboxGroup(
label="Model",
choices=models,
interactive=True,
elem_id="filter-columns-type",
)
agent1_column = gr.CheckboxGroup(
label="Agents",
choices=agents,
interactive=True,
elem_id="filter-columns-precision",
)
model2_column = gr.CheckboxGroup(
label="Opponent Model",
choices=opponent_models,
interactive=True,
elem_id="filter-columns-type",
)
agent2_column = gr.CheckboxGroup(
label="Opponent Agents",
choices=opponent_agents,
interactive=True,
elem_id="filter-columns-precision",
)
# filter_columns_size = gr.CheckboxGroup(
# label="Model sizes (in billions of parameters)",
# choices=[f'NUMERIC_INTERVALS{i}' for i in range(0, 5)],
# value=[f'NUMERIC_INTERVALS{i}' for i in range(0, 5)],
# interactive=True,
# elem_id="filter-columns-size",
# )
leaderboard_table = gr.components.Dataframe(
value=gtbench_raw_data,
elem_id="leaderboard-table",
interactive=False,
visible=True,
# column_widths=["2%", "33%"]
)
game_bench_df_for_search = gr.components.Dataframe(
value=gtbench_raw_data,
elem_id="leaderboard-table",
interactive=False,
visible=False,
# column_widths=["2%", "33%"]
)
# Dummy leaderboard for handling the case when the user uses backspace key
# hidden_leaderboard_table_for_search = gr.components.Dataframe(
# value=[],
# headers=COLS,
# datatype=TYPES,
# visible=False,
# )
# search_bar.submit(
# update_table,
# [
# # hidden_leaderboard_table_for_search,
# # shown_columns,
# # filter_columns_type,
# # filter_columns_precision,
# # filter_columns_size,
# # deleted_models_visibility,
# # flagged_models_visibility,
# # search_bar,
# ],
# leaderboard_table,
# )
# # Define a hidden component that will trigger a reload only if a query parameter has be set
# hidden_search_bar = gr.Textbox(value="", visible=False)
# hidden_search_bar.change(
# update_table,
# [
# hidden_leaderboard_table_for_search,
# shown_columns,
# filter_columns_type,
# filter_columns_precision,
# filter_columns_size,
# deleted_models_visibility,
# flagged_models_visibility,
# search_bar,
# ],
# leaderboard_table,
# )
# # Check query parameter once at startup and update search bar + hidden component
# demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar])
for selector in [shown_columns, model1_column, model2_column, agent1_column, agent2_column]:
selector.change(
update_table,
[
game_bench_df_for_search,
shown_columns,
model1_column,
model2_column,
agent1_column,
agent2_column
# filter_columns_precision,
# None, # filter_columns_size,
# None, # deleted_models_visibility,
# None, # flagged_models_visibility,
# None, # search_bar,
],
leaderboard_table,
queue=True,
)
# with gr.TabItem("π Metrics through time", elem_id="llm-benchmark-tab-table", id=4):
# with gr.Row():
# with gr.Column():
# chart = create_metric_plot_obj_1(
# dummy_data_for_plot(
# ["Metric1", "Metric2", 'Metric3']),
# ["Metric1", "Metric2", "Metric3"],
# title="Average of Top Scores and Human Baseline Over Time (from last update)",
# )
# gr.Plot(value=chart, min_width=500)
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
gr.Markdown(FAQ_TEXT, elem_classes="markdown-text")
'''
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT,
elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(
f"β
Finished Evaluations ({9})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=None,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"π Running Evaluation Queue ({5})",
open=False,
):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=None,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"β³ Pending Evaluation Queue ({7})",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=None,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Row():
gr.Markdown("# βοΈβ¨ Submit your Agent here!",
elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Agent name")
# revision_name_textbox = gr.Textbox(
# label="Revision commit", placeholder="main")
# private = gr.Checkbox(
# False, label="Private", visible=not IS_PUBLIC)
model_type = gr.Dropdown(
choices=[t.to_str(" : ")
for t in ModelType if t != ModelType.Unknown],
label="Agent type",
multiselect=False,
value=ModelType.FT.to_str(" : "),
interactive=True,
)
# with gr.Column():
# precision = gr.Dropdown(
# choices=[i.value.name for i in Precision if i !=
# Precision.Unknown],
# label="Precision",
# multiselect=False,
# value="float16",
# interactive=True,
# )
# weight_type = gr.Dropdown(
# choices=[i.value.name for i in WeightType],
# label="Weights type",
# multiselect=False,
# value="Original",
# interactive=True,
# )
# base_model_name_textbox = gr.Textbox(
# label="Base model (for delta or adapter weights)")
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
# submit_button.click(
# add_new_eval,
# [
# model_name_textbox,
# base_model_name_textbox,
# revision_name_textbox,
# precision,
# private,
# weight_type,
# model_type,
# ],
# submission_result,
# )
'''
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
# scheduler = BackgroundScheduler()
# scheduler.add_job(restart_space, "interval", seconds=1800)
# scheduler.start()
demo.launch()
# Both launches the space and its CI
# configure_space_ci(
# demo.queue(default_concurrency_limit=40),
# trusted_authors=[], # add manually trusted authors
# private="True", # ephemeral spaces will have same visibility as the main space. Otherwise, set to `True` or `False` explicitly.
# variables={}, # We overwrite HF_HOME as tmp CI spaces will have no cache
# secrets=["HF_TOKEN", "H4_TOKEN"], # which secret do I want to copy from the main space? Can be a `List[str]`."HF_TOKEN", "H4_TOKEN"
# hardware=None, # "cpu-basic" by default. Otherwise set to "auto" to have same hardware as the main space or any valid string value.
# storage=None, # no storage by default. Otherwise set to "auto" to have same storage as the main space or any valid string value.
# ).launch()
# notes: opponent model , opponent agent
# column is games
|