File size: 18,106 Bytes
308f73c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
import gradio as gr
import pandas as pd
from src.display.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    FAQ_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    NUMERIC_INTERVALS,
    TYPES,
    AutoEvalColumn,
    ModelType,
    fields,
    WeightType,
    Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, H4_TOKEN, IS_PUBLIC, QUEUE_REPO, REPO_ID, RESULTS_REPO
from PIL import Image
# from src.populate import get_evaluation_queue_df, get_leaderboard_df
# from src.submission.submit import add_new_eval
# from src.tools.collections import update_collections
# from src.tools.plots import (
#     create_metric_plot_obj,
#     create_plot_df,
#     create_scores_df,
# )
from dummydatagen import dummy_data_for_plot, create_metric_plot_obj_1, dummydf
import copy


def restart_space():
    API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)


def add_average_col(df):

    always_here_cols = [
        "Model", "Agent", "Opponent Model", "Opponent Agent"
    ]
    desired_col = [i for i in list(df.columns) if i not in always_here_cols]
    newdf = df[desired_col].mean(axis=1).round(3)
    return newdf


gtbench_raw_data = dummydf()
gtbench_raw_data["Average"] = add_average_col(gtbench_raw_data)

column_to_move = "Average"
# Move the column to the desired index
gtbench_raw_data.insert(
    4, column_to_move, gtbench_raw_data.pop(column_to_move))

models = list(set(gtbench_raw_data['Model']))

opponent_models = list(set(gtbench_raw_data['Opponent Model']))


agents = list(set(gtbench_raw_data['Agent']))


opponent_agents = list(set(gtbench_raw_data['Opponent Agent']))

# Searching and filtering


def update_table(
    hidden_df: pd.DataFrame,
    columns: list,
    model1: list,
    model2: list,
    agent1: list,
    agent2: list
):

    filtered_df = select_columns(hidden_df, columns)

    filtered_df = filter_model1(filtered_df, model1)
    filtered_df = filter_model2(filtered_df, model2)
    filtered_df = filter_agent1(filtered_df, agent1)
    filtered_df = filter_agent2(filtered_df, agent2)

    return filtered_df

# triggered only once at startup => read query parameter if it exists


def load_query(request: gr.Request):
    query = request.query_params.get("query") or ""
    return query, query  # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed


def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
    return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]


def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
    always_here_cols = [
        "Model", "Agent", "Opponent Model", "Opponent Agent"
    ]
    # We use COLS to maintain sorting
    all_columns = games

    if len(columns) == 0:
        filtered_df = df[
            always_here_cols +
            [c for c in all_columns if c in df.columns]
        ]
        filtered_df["Average"] = add_average_col(filtered_df)
        column_to_move = "Average"
        current_index = filtered_df.columns.get_loc(column_to_move)

        # Move the column to the desired index
        filtered_df.insert(4, column_to_move, filtered_df.pop(column_to_move))
        return filtered_df

    filtered_df = df[
        always_here_cols +
        [c for c in all_columns if c in df.columns and c in columns]
    ]
    if "Average" in columns:
        filtered_df["Average"] = add_average_col(filtered_df)
        # Get the current index of the column
        column_to_move = "Average"
        current_index = filtered_df.columns.get_loc(column_to_move)

        # Move the column to the desired index
        filtered_df.insert(4, column_to_move, filtered_df.pop(column_to_move))
    else:
        if "Average" in filtered_df.columns:
            # Remove the column
            filtered_df = filtered_df.drop(columns=["Average"])

    return filtered_df


def filter_model1(
    df: pd.DataFrame, model_query: list
) -> pd.DataFrame:
    # Show all models
    if len(model_query) == 0:
        return df
    filtered_df = df

    filtered_df = filtered_df[filtered_df["Model"].isin(
        model_query)]
    return filtered_df


def filter_model2(
    df: pd.DataFrame, model_query: list
) -> pd.DataFrame:
    # Show all models
    if len(model_query) == 0:
        return df
    filtered_df = df

    filtered_df = filtered_df[filtered_df["Opponent Model"].isin(
        model_query)]
    return filtered_df


def filter_agent1(
    df: pd.DataFrame, agent_query: list
) -> pd.DataFrame:
    # Show all models
    if len(agent_query) == 0:
        return df
    filtered_df = df

    filtered_df = filtered_df[filtered_df["Agent"].isin(
        agent_query)]
    return filtered_df


def filter_agent2(
    df: pd.DataFrame, agent_query: list
) -> pd.DataFrame:
    # Show all models
    if len(agent_query) == 0:
        return df
    filtered_df = df

    filtered_df = filtered_df[filtered_df["Opponent Agent"].isin(
        agent_query)]
    return filtered_df


# leaderboard_df = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], False, False)


class LLM_Model:
    def __init__(self, t_value, model_value, average_value, arc_value, hellaSwag_value, mmlu_value) -> None:
        self.t = t_value
        self.model = model_value
        self.average = average_value
        self.arc = arc_value
        self.hellaSwag = hellaSwag_value
        self.mmlu = mmlu_value


games = ["Breakthrough", "Connect Four", "Blind Auction", "Kuhn Poker",
         "Liar's Dice", "Negotiation", "Nim", "Pig", "Iterated Prisoner's Dilemma", "Tic-Tac-Toe"]

# models = ["gpt-35-turbo-1106", "gpt-4", "Llama-2-70b-chat-hf", "CodeLlama-34b-Instruct-hf",
#           "CodeLlama-70b-Instruct-hf", "Mistral-7B-Instruct-v01", "Mistral-7B-OpenOrca"]

# agents = ["Prompt Agent", "CoT Agent", "SC-CoT Agent",
#           "ToT Agent", "MCTS", "Random", "TitforTat"]

demo = gr.Blocks(css=custom_css)


def load_image(image_path):
    image = Image.open(image_path)
    return image


with demo:
    with gr.Row():
        gr.Image("./assets/logo.png", height="200px", width="200px", scale=0.1,
                 show_download_button=False, container=False)
        gr.HTML(TITLE, elem_id="title")

    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… GTBench", elem_id="llm-benchmark-tab-table", id=0):
            with gr.Row():
                with gr.Column():
                    with gr.Row():

                        shown_columns = gr.CheckboxGroup(
                            choices=[
                                'Average'
                            ]+games,
                            label="Select columns to show",
                            elem_id="column-select",
                            interactive=True,
                        )
                with gr.Column(min_width=320):
                    # with gr.Box(elem_id="box-filter"):
                    model1_column = gr.CheckboxGroup(
                        label="Model",
                        choices=models,
                        interactive=True,
                        elem_id="filter-columns-type",
                    )

                    agent1_column = gr.CheckboxGroup(
                        label="Agents",
                        choices=agents,
                        interactive=True,
                        elem_id="filter-columns-precision",
                    )

                    model2_column = gr.CheckboxGroup(
                        label="Opponent Model",
                        choices=opponent_models,
                        interactive=True,
                        elem_id="filter-columns-type",
                    )
                    agent2_column = gr.CheckboxGroup(
                        label="Opponent Agents",
                        choices=opponent_agents,
                        interactive=True,
                        elem_id="filter-columns-precision",
                    )
                    # filter_columns_size = gr.CheckboxGroup(
                    #     label="Model sizes (in billions of parameters)",
                    #     choices=[f'NUMERIC_INTERVALS{i}' for i in range(0, 5)],
                    #     value=[f'NUMERIC_INTERVALS{i}' for i in range(0, 5)],
                    #     interactive=True,
                    #     elem_id="filter-columns-size",
                    # )

            leaderboard_table = gr.components.Dataframe(
                value=gtbench_raw_data,
                elem_id="leaderboard-table",
                interactive=False,
                visible=True,
                # column_widths=["2%", "33%"]
            )

            game_bench_df_for_search = gr.components.Dataframe(
                value=gtbench_raw_data,
                elem_id="leaderboard-table",
                interactive=False,
                visible=False,
                # column_widths=["2%", "33%"]
            )

            # Dummy leaderboard for handling the case when the user uses backspace key
            # hidden_leaderboard_table_for_search = gr.components.Dataframe(
            #     value=[],
            #     headers=COLS,
            #     datatype=TYPES,
            #     visible=False,
            # )
            # search_bar.submit(
            #     update_table,
            #     [
            #         # hidden_leaderboard_table_for_search,
            #         # shown_columns,
            #         # filter_columns_type,
            #         # filter_columns_precision,
            #         # filter_columns_size,
            #         # deleted_models_visibility,
            #         # flagged_models_visibility,
            #         # search_bar,
            #     ],
            #     leaderboard_table,
            # )

            # # Define a hidden component that will trigger a reload only if a query parameter has be set
            # hidden_search_bar = gr.Textbox(value="", visible=False)
            # hidden_search_bar.change(
            #     update_table,
            #     [
            #         hidden_leaderboard_table_for_search,
            #         shown_columns,
            #         filter_columns_type,
            #         filter_columns_precision,
            #         filter_columns_size,
            #         deleted_models_visibility,
            #         flagged_models_visibility,
            #         search_bar,
            #     ],
            #     leaderboard_table,
            # )
            # # Check query parameter once at startup and update search bar + hidden component
            # demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar])

            for selector in [shown_columns, model1_column, model2_column, agent1_column, agent2_column]:
                selector.change(
                    update_table,
                    [
                        game_bench_df_for_search,
                        shown_columns,
                        model1_column,
                        model2_column,
                        agent1_column,
                        agent2_column
                        # filter_columns_precision,
                        # None,  # filter_columns_size,
                        # None,  # deleted_models_visibility,
                        # None,  # flagged_models_visibility,
                        # None,  # search_bar,
                    ],
                    leaderboard_table,
                    queue=True,
                )

        # with gr.TabItem("πŸ“ˆ Metrics through time", elem_id="llm-benchmark-tab-table", id=4):
        #     with gr.Row():
        #         with gr.Column():
        #             chart = create_metric_plot_obj_1(
        #                 dummy_data_for_plot(
        #                     ["Metric1", "Metric2", 'Metric3']),
        #                 ["Metric1", "Metric2", "Metric3"],
        #                 title="Average of Top Scores and Human Baseline Over Time (from last update)",
        #             )
        #             gr.Plot(value=chart, min_width=500)

        with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
            gr.Markdown(FAQ_TEXT, elem_classes="markdown-text")

        '''
        with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
            with gr.Column():
                with gr.Row():
                    gr.Markdown(EVALUATION_QUEUE_TEXT,
                                elem_classes="markdown-text")

                with gr.Column():
                    with gr.Accordion(
                        f"βœ… Finished Evaluations ({9})",
                        open=False,
                    ):
                        with gr.Row():
                            finished_eval_table = gr.components.Dataframe(
                                value=None,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
                    with gr.Accordion(
                        f"πŸ”„ Running Evaluation Queue ({5})",
                        open=False,
                    ):
                        with gr.Row():
                            running_eval_table = gr.components.Dataframe(
                                value=None,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )

                    with gr.Accordion(
                        f"⏳ Pending Evaluation Queue ({7})",
                        open=False,
                    ):
                        with gr.Row():
                            pending_eval_table = gr.components.Dataframe(
                                value=None,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
            with gr.Row():
                gr.Markdown("# βœ‰οΈβœ¨ Submit your Agent here!",
                            elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(label="Agent name")
                    # revision_name_textbox = gr.Textbox(
                    #     label="Revision commit", placeholder="main")
                    # private = gr.Checkbox(
                    #     False, label="Private", visible=not IS_PUBLIC)
                    model_type = gr.Dropdown(
                        choices=[t.to_str(" : ")
                                 for t in ModelType if t != ModelType.Unknown],
                        label="Agent type",
                        multiselect=False,
                        value=ModelType.FT.to_str(" : "),
                        interactive=True,
                    )

                # with gr.Column():
                #     precision = gr.Dropdown(
                #         choices=[i.value.name for i in Precision if i !=
                #                  Precision.Unknown],
                #         label="Precision",
                #         multiselect=False,
                #         value="float16",
                #         interactive=True,
                #     )
                #     weight_type = gr.Dropdown(
                #         choices=[i.value.name for i in WeightType],
                #         label="Weights type",
                #         multiselect=False,
                #         value="Original",
                #         interactive=True,
                #     )
                #     base_model_name_textbox = gr.Textbox(
                #         label="Base model (for delta or adapter weights)")

            submit_button = gr.Button("Submit Eval")
            submission_result = gr.Markdown()
    #         submit_button.click(
    #             add_new_eval,
    #             [
    #                 model_name_textbox,
    #                 base_model_name_textbox,
    #                 revision_name_textbox,
    #                 precision,
    #                 private,
    #                 weight_type,
    #                 model_type,
    #             ],
    #             submission_result,
    #         )

    '''
    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

# scheduler = BackgroundScheduler()
# scheduler.add_job(restart_space, "interval", seconds=1800)
# scheduler.start()
demo.launch()
# Both launches the space and its CI
# configure_space_ci(
#     demo.queue(default_concurrency_limit=40),
#     trusted_authors=[],  # add manually trusted authors
#     private="True",  # ephemeral spaces will have same visibility as the main space. Otherwise, set to `True` or `False` explicitly.
#     variables={},  # We overwrite HF_HOME as tmp CI spaces will have no cache
#     secrets=["HF_TOKEN", "H4_TOKEN"],  # which secret do I want to copy from the main space? Can be a `List[str]`."HF_TOKEN", "H4_TOKEN"
#     hardware=None,  # "cpu-basic" by default. Otherwise set to "auto" to have same hardware as the main space or any valid string value.
#     storage=None,  # no storage by default. Otherwise set to "auto" to have same storage as the main space or any valid string value.
# ).launch()


# notes: opponent model , opponent agent
# column is games