Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
from dataclasses import dataclass | |
from typing import Optional, Tuple, Union | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from torch.nn.utils import weight_norm | |
from ...configuration_utils import ConfigMixin, register_to_config | |
from ...utils import BaseOutput | |
from ...utils.accelerate_utils import apply_forward_hook | |
from ...utils.torch_utils import randn_tensor | |
from ..modeling_utils import ModelMixin | |
class Snake1d(nn.Module): | |
""" | |
A 1-dimensional Snake activation function module. | |
""" | |
def __init__(self, hidden_dim, logscale=True): | |
super().__init__() | |
self.alpha = nn.Parameter(torch.zeros(1, hidden_dim, 1)) | |
self.beta = nn.Parameter(torch.zeros(1, hidden_dim, 1)) | |
self.alpha.requires_grad = True | |
self.beta.requires_grad = True | |
self.logscale = logscale | |
def forward(self, hidden_states): | |
shape = hidden_states.shape | |
alpha = self.alpha if not self.logscale else torch.exp(self.alpha) | |
beta = self.beta if not self.logscale else torch.exp(self.beta) | |
hidden_states = hidden_states.reshape(shape[0], shape[1], -1) | |
hidden_states = hidden_states + (beta + 1e-9).reciprocal() * torch.sin(alpha * hidden_states).pow(2) | |
hidden_states = hidden_states.reshape(shape) | |
return hidden_states | |
class OobleckResidualUnit(nn.Module): | |
""" | |
A residual unit composed of Snake1d and weight-normalized Conv1d layers with dilations. | |
""" | |
def __init__(self, dimension: int = 16, dilation: int = 1): | |
super().__init__() | |
pad = ((7 - 1) * dilation) // 2 | |
self.snake1 = Snake1d(dimension) | |
self.conv1 = weight_norm(nn.Conv1d(dimension, dimension, kernel_size=7, dilation=dilation, padding=pad)) | |
self.snake2 = Snake1d(dimension) | |
self.conv2 = weight_norm(nn.Conv1d(dimension, dimension, kernel_size=1)) | |
def forward(self, hidden_state): | |
""" | |
Forward pass through the residual unit. | |
Args: | |
hidden_state (`torch.Tensor` of shape `(batch_size, channels, time_steps)`): | |
Input tensor . | |
Returns: | |
output_tensor (`torch.Tensor` of shape `(batch_size, channels, time_steps)`) | |
Input tensor after passing through the residual unit. | |
""" | |
output_tensor = hidden_state | |
output_tensor = self.conv1(self.snake1(output_tensor)) | |
output_tensor = self.conv2(self.snake2(output_tensor)) | |
padding = (hidden_state.shape[-1] - output_tensor.shape[-1]) // 2 | |
if padding > 0: | |
hidden_state = hidden_state[..., padding:-padding] | |
output_tensor = hidden_state + output_tensor | |
return output_tensor | |
class OobleckEncoderBlock(nn.Module): | |
"""Encoder block used in Oobleck encoder.""" | |
def __init__(self, input_dim, output_dim, stride: int = 1): | |
super().__init__() | |
self.res_unit1 = OobleckResidualUnit(input_dim, dilation=1) | |
self.res_unit2 = OobleckResidualUnit(input_dim, dilation=3) | |
self.res_unit3 = OobleckResidualUnit(input_dim, dilation=9) | |
self.snake1 = Snake1d(input_dim) | |
self.conv1 = weight_norm( | |
nn.Conv1d(input_dim, output_dim, kernel_size=2 * stride, stride=stride, padding=math.ceil(stride / 2)) | |
) | |
def forward(self, hidden_state): | |
hidden_state = self.res_unit1(hidden_state) | |
hidden_state = self.res_unit2(hidden_state) | |
hidden_state = self.snake1(self.res_unit3(hidden_state)) | |
hidden_state = self.conv1(hidden_state) | |
return hidden_state | |
class OobleckDecoderBlock(nn.Module): | |
"""Decoder block used in Oobleck decoder.""" | |
def __init__(self, input_dim, output_dim, stride: int = 1): | |
super().__init__() | |
self.snake1 = Snake1d(input_dim) | |
self.conv_t1 = weight_norm( | |
nn.ConvTranspose1d( | |
input_dim, | |
output_dim, | |
kernel_size=2 * stride, | |
stride=stride, | |
padding=math.ceil(stride / 2), | |
) | |
) | |
self.res_unit1 = OobleckResidualUnit(output_dim, dilation=1) | |
self.res_unit2 = OobleckResidualUnit(output_dim, dilation=3) | |
self.res_unit3 = OobleckResidualUnit(output_dim, dilation=9) | |
def forward(self, hidden_state): | |
hidden_state = self.snake1(hidden_state) | |
hidden_state = self.conv_t1(hidden_state) | |
hidden_state = self.res_unit1(hidden_state) | |
hidden_state = self.res_unit2(hidden_state) | |
hidden_state = self.res_unit3(hidden_state) | |
return hidden_state | |
class OobleckDiagonalGaussianDistribution(object): | |
def __init__(self, parameters: torch.Tensor, deterministic: bool = False): | |
self.parameters = parameters | |
self.mean, self.scale = parameters.chunk(2, dim=1) | |
self.std = nn.functional.softplus(self.scale) + 1e-4 | |
self.var = self.std * self.std | |
self.logvar = torch.log(self.var) | |
self.deterministic = deterministic | |
def sample(self, generator: Optional[torch.Generator] = None) -> torch.Tensor: | |
# make sure sample is on the same device as the parameters and has same dtype | |
sample = randn_tensor( | |
self.mean.shape, | |
generator=generator, | |
device=self.parameters.device, | |
dtype=self.parameters.dtype, | |
) | |
x = self.mean + self.std * sample | |
return x | |
def kl(self, other: "OobleckDiagonalGaussianDistribution" = None) -> torch.Tensor: | |
if self.deterministic: | |
return torch.Tensor([0.0]) | |
else: | |
if other is None: | |
return (self.mean * self.mean + self.var - self.logvar - 1.0).sum(1).mean() | |
else: | |
normalized_diff = torch.pow(self.mean - other.mean, 2) / other.var | |
var_ratio = self.var / other.var | |
logvar_diff = self.logvar - other.logvar | |
kl = normalized_diff + var_ratio + logvar_diff - 1 | |
kl = kl.sum(1).mean() | |
return kl | |
def mode(self) -> torch.Tensor: | |
return self.mean | |
class AutoencoderOobleckOutput(BaseOutput): | |
""" | |
Output of AutoencoderOobleck encoding method. | |
Args: | |
latent_dist (`OobleckDiagonalGaussianDistribution`): | |
Encoded outputs of `Encoder` represented as the mean and standard deviation of | |
`OobleckDiagonalGaussianDistribution`. `OobleckDiagonalGaussianDistribution` allows for sampling latents | |
from the distribution. | |
""" | |
latent_dist: "OobleckDiagonalGaussianDistribution" # noqa: F821 | |
class OobleckDecoderOutput(BaseOutput): | |
r""" | |
Output of decoding method. | |
Args: | |
sample (`torch.Tensor` of shape `(batch_size, audio_channels, sequence_length)`): | |
The decoded output sample from the last layer of the model. | |
""" | |
sample: torch.Tensor | |
class OobleckEncoder(nn.Module): | |
"""Oobleck Encoder""" | |
def __init__(self, encoder_hidden_size, audio_channels, downsampling_ratios, channel_multiples): | |
super().__init__() | |
strides = downsampling_ratios | |
channel_multiples = [1] + channel_multiples | |
# Create first convolution | |
self.conv1 = weight_norm(nn.Conv1d(audio_channels, encoder_hidden_size, kernel_size=7, padding=3)) | |
self.block = [] | |
# Create EncoderBlocks that double channels as they downsample by `stride` | |
for stride_index, stride in enumerate(strides): | |
self.block += [ | |
OobleckEncoderBlock( | |
input_dim=encoder_hidden_size * channel_multiples[stride_index], | |
output_dim=encoder_hidden_size * channel_multiples[stride_index + 1], | |
stride=stride, | |
) | |
] | |
self.block = nn.ModuleList(self.block) | |
d_model = encoder_hidden_size * channel_multiples[-1] | |
self.snake1 = Snake1d(d_model) | |
self.conv2 = weight_norm(nn.Conv1d(d_model, encoder_hidden_size, kernel_size=3, padding=1)) | |
def forward(self, hidden_state): | |
hidden_state = self.conv1(hidden_state) | |
for module in self.block: | |
hidden_state = module(hidden_state) | |
hidden_state = self.snake1(hidden_state) | |
hidden_state = self.conv2(hidden_state) | |
return hidden_state | |
class OobleckDecoder(nn.Module): | |
"""Oobleck Decoder""" | |
def __init__(self, channels, input_channels, audio_channels, upsampling_ratios, channel_multiples): | |
super().__init__() | |
strides = upsampling_ratios | |
channel_multiples = [1] + channel_multiples | |
# Add first conv layer | |
self.conv1 = weight_norm(nn.Conv1d(input_channels, channels * channel_multiples[-1], kernel_size=7, padding=3)) | |
# Add upsampling + MRF blocks | |
block = [] | |
for stride_index, stride in enumerate(strides): | |
block += [ | |
OobleckDecoderBlock( | |
input_dim=channels * channel_multiples[len(strides) - stride_index], | |
output_dim=channels * channel_multiples[len(strides) - stride_index - 1], | |
stride=stride, | |
) | |
] | |
self.block = nn.ModuleList(block) | |
output_dim = channels | |
self.snake1 = Snake1d(output_dim) | |
self.conv2 = weight_norm(nn.Conv1d(channels, audio_channels, kernel_size=7, padding=3, bias=False)) | |
def forward(self, hidden_state): | |
hidden_state = self.conv1(hidden_state) | |
for layer in self.block: | |
hidden_state = layer(hidden_state) | |
hidden_state = self.snake1(hidden_state) | |
hidden_state = self.conv2(hidden_state) | |
return hidden_state | |
class AutoencoderOobleck(ModelMixin, ConfigMixin): | |
r""" | |
An autoencoder for encoding waveforms into latents and decoding latent representations into waveforms. First | |
introduced in Stable Audio. | |
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented | |
for all models (such as downloading or saving). | |
Parameters: | |
encoder_hidden_size (`int`, *optional*, defaults to 128): | |
Intermediate representation dimension for the encoder. | |
downsampling_ratios (`List[int]`, *optional*, defaults to `[2, 4, 4, 8, 8]`): | |
Ratios for downsampling in the encoder. These are used in reverse order for upsampling in the decoder. | |
channel_multiples (`List[int]`, *optional*, defaults to `[1, 2, 4, 8, 16]`): | |
Multiples used to determine the hidden sizes of the hidden layers. | |
decoder_channels (`int`, *optional*, defaults to 128): | |
Intermediate representation dimension for the decoder. | |
decoder_input_channels (`int`, *optional*, defaults to 64): | |
Input dimension for the decoder. Corresponds to the latent dimension. | |
audio_channels (`int`, *optional*, defaults to 2): | |
Number of channels in the audio data. Either 1 for mono or 2 for stereo. | |
sampling_rate (`int`, *optional*, defaults to 44100): | |
The sampling rate at which the audio waveform should be digitalized expressed in hertz (Hz). | |
""" | |
_supports_gradient_checkpointing = False | |
def __init__( | |
self, | |
encoder_hidden_size=128, | |
downsampling_ratios=[2, 4, 4, 8, 8], | |
channel_multiples=[1, 2, 4, 8, 16], | |
decoder_channels=128, | |
decoder_input_channels=64, | |
audio_channels=2, | |
sampling_rate=44100, | |
): | |
super().__init__() | |
self.encoder_hidden_size = encoder_hidden_size | |
self.downsampling_ratios = downsampling_ratios | |
self.decoder_channels = decoder_channels | |
self.upsampling_ratios = downsampling_ratios[::-1] | |
self.hop_length = int(np.prod(downsampling_ratios)) | |
self.sampling_rate = sampling_rate | |
self.encoder = OobleckEncoder( | |
encoder_hidden_size=encoder_hidden_size, | |
audio_channels=audio_channels, | |
downsampling_ratios=downsampling_ratios, | |
channel_multiples=channel_multiples, | |
) | |
self.decoder = OobleckDecoder( | |
channels=decoder_channels, | |
input_channels=decoder_input_channels, | |
audio_channels=audio_channels, | |
upsampling_ratios=self.upsampling_ratios, | |
channel_multiples=channel_multiples, | |
) | |
self.use_slicing = False | |
def enable_slicing(self): | |
r""" | |
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to | |
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. | |
""" | |
self.use_slicing = True | |
def disable_slicing(self): | |
r""" | |
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing | |
decoding in one step. | |
""" | |
self.use_slicing = False | |
def encode( | |
self, x: torch.Tensor, return_dict: bool = True | |
) -> Union[AutoencoderOobleckOutput, Tuple[OobleckDiagonalGaussianDistribution]]: | |
""" | |
Encode a batch of images into latents. | |
Args: | |
x (`torch.Tensor`): Input batch of images. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple. | |
Returns: | |
The latent representations of the encoded images. If `return_dict` is True, a | |
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned. | |
""" | |
if self.use_slicing and x.shape[0] > 1: | |
encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)] | |
h = torch.cat(encoded_slices) | |
else: | |
h = self.encoder(x) | |
posterior = OobleckDiagonalGaussianDistribution(h) | |
if not return_dict: | |
return (posterior,) | |
return AutoencoderOobleckOutput(latent_dist=posterior) | |
def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[OobleckDecoderOutput, torch.Tensor]: | |
dec = self.decoder(z) | |
if not return_dict: | |
return (dec,) | |
return OobleckDecoderOutput(sample=dec) | |
def decode( | |
self, z: torch.FloatTensor, return_dict: bool = True, generator=None | |
) -> Union[OobleckDecoderOutput, torch.FloatTensor]: | |
""" | |
Decode a batch of images. | |
Args: | |
z (`torch.Tensor`): Input batch of latent vectors. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether to return a [`~models.vae.OobleckDecoderOutput`] instead of a plain tuple. | |
Returns: | |
[`~models.vae.OobleckDecoderOutput`] or `tuple`: | |
If return_dict is True, a [`~models.vae.OobleckDecoderOutput`] is returned, otherwise a plain `tuple` | |
is returned. | |
""" | |
if self.use_slicing and z.shape[0] > 1: | |
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)] | |
decoded = torch.cat(decoded_slices) | |
else: | |
decoded = self._decode(z).sample | |
if not return_dict: | |
return (decoded,) | |
return OobleckDecoderOutput(sample=decoded) | |
def forward( | |
self, | |
sample: torch.Tensor, | |
sample_posterior: bool = False, | |
return_dict: bool = True, | |
generator: Optional[torch.Generator] = None, | |
) -> Union[OobleckDecoderOutput, torch.Tensor]: | |
r""" | |
Args: | |
sample (`torch.Tensor`): Input sample. | |
sample_posterior (`bool`, *optional*, defaults to `False`): | |
Whether to sample from the posterior. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`OobleckDecoderOutput`] instead of a plain tuple. | |
""" | |
x = sample | |
posterior = self.encode(x).latent_dist | |
if sample_posterior: | |
z = posterior.sample(generator=generator) | |
else: | |
z = posterior.mode() | |
dec = self.decode(z).sample | |
if not return_dict: | |
return (dec,) | |
return OobleckDecoderOutput(sample=dec) | |