InvSR / src /diffusers /models /autoencoders /autoencoder_oobleck.py
OAOA's picture
first commit
bfa59ab
raw
history blame
17 kB
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
import torch.nn as nn
from torch.nn.utils import weight_norm
from ...configuration_utils import ConfigMixin, register_to_config
from ...utils import BaseOutput
from ...utils.accelerate_utils import apply_forward_hook
from ...utils.torch_utils import randn_tensor
from ..modeling_utils import ModelMixin
class Snake1d(nn.Module):
"""
A 1-dimensional Snake activation function module.
"""
def __init__(self, hidden_dim, logscale=True):
super().__init__()
self.alpha = nn.Parameter(torch.zeros(1, hidden_dim, 1))
self.beta = nn.Parameter(torch.zeros(1, hidden_dim, 1))
self.alpha.requires_grad = True
self.beta.requires_grad = True
self.logscale = logscale
def forward(self, hidden_states):
shape = hidden_states.shape
alpha = self.alpha if not self.logscale else torch.exp(self.alpha)
beta = self.beta if not self.logscale else torch.exp(self.beta)
hidden_states = hidden_states.reshape(shape[0], shape[1], -1)
hidden_states = hidden_states + (beta + 1e-9).reciprocal() * torch.sin(alpha * hidden_states).pow(2)
hidden_states = hidden_states.reshape(shape)
return hidden_states
class OobleckResidualUnit(nn.Module):
"""
A residual unit composed of Snake1d and weight-normalized Conv1d layers with dilations.
"""
def __init__(self, dimension: int = 16, dilation: int = 1):
super().__init__()
pad = ((7 - 1) * dilation) // 2
self.snake1 = Snake1d(dimension)
self.conv1 = weight_norm(nn.Conv1d(dimension, dimension, kernel_size=7, dilation=dilation, padding=pad))
self.snake2 = Snake1d(dimension)
self.conv2 = weight_norm(nn.Conv1d(dimension, dimension, kernel_size=1))
def forward(self, hidden_state):
"""
Forward pass through the residual unit.
Args:
hidden_state (`torch.Tensor` of shape `(batch_size, channels, time_steps)`):
Input tensor .
Returns:
output_tensor (`torch.Tensor` of shape `(batch_size, channels, time_steps)`)
Input tensor after passing through the residual unit.
"""
output_tensor = hidden_state
output_tensor = self.conv1(self.snake1(output_tensor))
output_tensor = self.conv2(self.snake2(output_tensor))
padding = (hidden_state.shape[-1] - output_tensor.shape[-1]) // 2
if padding > 0:
hidden_state = hidden_state[..., padding:-padding]
output_tensor = hidden_state + output_tensor
return output_tensor
class OobleckEncoderBlock(nn.Module):
"""Encoder block used in Oobleck encoder."""
def __init__(self, input_dim, output_dim, stride: int = 1):
super().__init__()
self.res_unit1 = OobleckResidualUnit(input_dim, dilation=1)
self.res_unit2 = OobleckResidualUnit(input_dim, dilation=3)
self.res_unit3 = OobleckResidualUnit(input_dim, dilation=9)
self.snake1 = Snake1d(input_dim)
self.conv1 = weight_norm(
nn.Conv1d(input_dim, output_dim, kernel_size=2 * stride, stride=stride, padding=math.ceil(stride / 2))
)
def forward(self, hidden_state):
hidden_state = self.res_unit1(hidden_state)
hidden_state = self.res_unit2(hidden_state)
hidden_state = self.snake1(self.res_unit3(hidden_state))
hidden_state = self.conv1(hidden_state)
return hidden_state
class OobleckDecoderBlock(nn.Module):
"""Decoder block used in Oobleck decoder."""
def __init__(self, input_dim, output_dim, stride: int = 1):
super().__init__()
self.snake1 = Snake1d(input_dim)
self.conv_t1 = weight_norm(
nn.ConvTranspose1d(
input_dim,
output_dim,
kernel_size=2 * stride,
stride=stride,
padding=math.ceil(stride / 2),
)
)
self.res_unit1 = OobleckResidualUnit(output_dim, dilation=1)
self.res_unit2 = OobleckResidualUnit(output_dim, dilation=3)
self.res_unit3 = OobleckResidualUnit(output_dim, dilation=9)
def forward(self, hidden_state):
hidden_state = self.snake1(hidden_state)
hidden_state = self.conv_t1(hidden_state)
hidden_state = self.res_unit1(hidden_state)
hidden_state = self.res_unit2(hidden_state)
hidden_state = self.res_unit3(hidden_state)
return hidden_state
class OobleckDiagonalGaussianDistribution(object):
def __init__(self, parameters: torch.Tensor, deterministic: bool = False):
self.parameters = parameters
self.mean, self.scale = parameters.chunk(2, dim=1)
self.std = nn.functional.softplus(self.scale) + 1e-4
self.var = self.std * self.std
self.logvar = torch.log(self.var)
self.deterministic = deterministic
def sample(self, generator: Optional[torch.Generator] = None) -> torch.Tensor:
# make sure sample is on the same device as the parameters and has same dtype
sample = randn_tensor(
self.mean.shape,
generator=generator,
device=self.parameters.device,
dtype=self.parameters.dtype,
)
x = self.mean + self.std * sample
return x
def kl(self, other: "OobleckDiagonalGaussianDistribution" = None) -> torch.Tensor:
if self.deterministic:
return torch.Tensor([0.0])
else:
if other is None:
return (self.mean * self.mean + self.var - self.logvar - 1.0).sum(1).mean()
else:
normalized_diff = torch.pow(self.mean - other.mean, 2) / other.var
var_ratio = self.var / other.var
logvar_diff = self.logvar - other.logvar
kl = normalized_diff + var_ratio + logvar_diff - 1
kl = kl.sum(1).mean()
return kl
def mode(self) -> torch.Tensor:
return self.mean
@dataclass
class AutoencoderOobleckOutput(BaseOutput):
"""
Output of AutoencoderOobleck encoding method.
Args:
latent_dist (`OobleckDiagonalGaussianDistribution`):
Encoded outputs of `Encoder` represented as the mean and standard deviation of
`OobleckDiagonalGaussianDistribution`. `OobleckDiagonalGaussianDistribution` allows for sampling latents
from the distribution.
"""
latent_dist: "OobleckDiagonalGaussianDistribution" # noqa: F821
@dataclass
class OobleckDecoderOutput(BaseOutput):
r"""
Output of decoding method.
Args:
sample (`torch.Tensor` of shape `(batch_size, audio_channels, sequence_length)`):
The decoded output sample from the last layer of the model.
"""
sample: torch.Tensor
class OobleckEncoder(nn.Module):
"""Oobleck Encoder"""
def __init__(self, encoder_hidden_size, audio_channels, downsampling_ratios, channel_multiples):
super().__init__()
strides = downsampling_ratios
channel_multiples = [1] + channel_multiples
# Create first convolution
self.conv1 = weight_norm(nn.Conv1d(audio_channels, encoder_hidden_size, kernel_size=7, padding=3))
self.block = []
# Create EncoderBlocks that double channels as they downsample by `stride`
for stride_index, stride in enumerate(strides):
self.block += [
OobleckEncoderBlock(
input_dim=encoder_hidden_size * channel_multiples[stride_index],
output_dim=encoder_hidden_size * channel_multiples[stride_index + 1],
stride=stride,
)
]
self.block = nn.ModuleList(self.block)
d_model = encoder_hidden_size * channel_multiples[-1]
self.snake1 = Snake1d(d_model)
self.conv2 = weight_norm(nn.Conv1d(d_model, encoder_hidden_size, kernel_size=3, padding=1))
def forward(self, hidden_state):
hidden_state = self.conv1(hidden_state)
for module in self.block:
hidden_state = module(hidden_state)
hidden_state = self.snake1(hidden_state)
hidden_state = self.conv2(hidden_state)
return hidden_state
class OobleckDecoder(nn.Module):
"""Oobleck Decoder"""
def __init__(self, channels, input_channels, audio_channels, upsampling_ratios, channel_multiples):
super().__init__()
strides = upsampling_ratios
channel_multiples = [1] + channel_multiples
# Add first conv layer
self.conv1 = weight_norm(nn.Conv1d(input_channels, channels * channel_multiples[-1], kernel_size=7, padding=3))
# Add upsampling + MRF blocks
block = []
for stride_index, stride in enumerate(strides):
block += [
OobleckDecoderBlock(
input_dim=channels * channel_multiples[len(strides) - stride_index],
output_dim=channels * channel_multiples[len(strides) - stride_index - 1],
stride=stride,
)
]
self.block = nn.ModuleList(block)
output_dim = channels
self.snake1 = Snake1d(output_dim)
self.conv2 = weight_norm(nn.Conv1d(channels, audio_channels, kernel_size=7, padding=3, bias=False))
def forward(self, hidden_state):
hidden_state = self.conv1(hidden_state)
for layer in self.block:
hidden_state = layer(hidden_state)
hidden_state = self.snake1(hidden_state)
hidden_state = self.conv2(hidden_state)
return hidden_state
class AutoencoderOobleck(ModelMixin, ConfigMixin):
r"""
An autoencoder for encoding waveforms into latents and decoding latent representations into waveforms. First
introduced in Stable Audio.
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
for all models (such as downloading or saving).
Parameters:
encoder_hidden_size (`int`, *optional*, defaults to 128):
Intermediate representation dimension for the encoder.
downsampling_ratios (`List[int]`, *optional*, defaults to `[2, 4, 4, 8, 8]`):
Ratios for downsampling in the encoder. These are used in reverse order for upsampling in the decoder.
channel_multiples (`List[int]`, *optional*, defaults to `[1, 2, 4, 8, 16]`):
Multiples used to determine the hidden sizes of the hidden layers.
decoder_channels (`int`, *optional*, defaults to 128):
Intermediate representation dimension for the decoder.
decoder_input_channels (`int`, *optional*, defaults to 64):
Input dimension for the decoder. Corresponds to the latent dimension.
audio_channels (`int`, *optional*, defaults to 2):
Number of channels in the audio data. Either 1 for mono or 2 for stereo.
sampling_rate (`int`, *optional*, defaults to 44100):
The sampling rate at which the audio waveform should be digitalized expressed in hertz (Hz).
"""
_supports_gradient_checkpointing = False
@register_to_config
def __init__(
self,
encoder_hidden_size=128,
downsampling_ratios=[2, 4, 4, 8, 8],
channel_multiples=[1, 2, 4, 8, 16],
decoder_channels=128,
decoder_input_channels=64,
audio_channels=2,
sampling_rate=44100,
):
super().__init__()
self.encoder_hidden_size = encoder_hidden_size
self.downsampling_ratios = downsampling_ratios
self.decoder_channels = decoder_channels
self.upsampling_ratios = downsampling_ratios[::-1]
self.hop_length = int(np.prod(downsampling_ratios))
self.sampling_rate = sampling_rate
self.encoder = OobleckEncoder(
encoder_hidden_size=encoder_hidden_size,
audio_channels=audio_channels,
downsampling_ratios=downsampling_ratios,
channel_multiples=channel_multiples,
)
self.decoder = OobleckDecoder(
channels=decoder_channels,
input_channels=decoder_input_channels,
audio_channels=audio_channels,
upsampling_ratios=self.upsampling_ratios,
channel_multiples=channel_multiples,
)
self.use_slicing = False
def enable_slicing(self):
r"""
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
"""
self.use_slicing = True
def disable_slicing(self):
r"""
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
decoding in one step.
"""
self.use_slicing = False
@apply_forward_hook
def encode(
self, x: torch.Tensor, return_dict: bool = True
) -> Union[AutoencoderOobleckOutput, Tuple[OobleckDiagonalGaussianDistribution]]:
"""
Encode a batch of images into latents.
Args:
x (`torch.Tensor`): Input batch of images.
return_dict (`bool`, *optional*, defaults to `True`):
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
Returns:
The latent representations of the encoded images. If `return_dict` is True, a
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
"""
if self.use_slicing and x.shape[0] > 1:
encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)]
h = torch.cat(encoded_slices)
else:
h = self.encoder(x)
posterior = OobleckDiagonalGaussianDistribution(h)
if not return_dict:
return (posterior,)
return AutoencoderOobleckOutput(latent_dist=posterior)
def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[OobleckDecoderOutput, torch.Tensor]:
dec = self.decoder(z)
if not return_dict:
return (dec,)
return OobleckDecoderOutput(sample=dec)
@apply_forward_hook
def decode(
self, z: torch.FloatTensor, return_dict: bool = True, generator=None
) -> Union[OobleckDecoderOutput, torch.FloatTensor]:
"""
Decode a batch of images.
Args:
z (`torch.Tensor`): Input batch of latent vectors.
return_dict (`bool`, *optional*, defaults to `True`):
Whether to return a [`~models.vae.OobleckDecoderOutput`] instead of a plain tuple.
Returns:
[`~models.vae.OobleckDecoderOutput`] or `tuple`:
If return_dict is True, a [`~models.vae.OobleckDecoderOutput`] is returned, otherwise a plain `tuple`
is returned.
"""
if self.use_slicing and z.shape[0] > 1:
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
decoded = torch.cat(decoded_slices)
else:
decoded = self._decode(z).sample
if not return_dict:
return (decoded,)
return OobleckDecoderOutput(sample=decoded)
def forward(
self,
sample: torch.Tensor,
sample_posterior: bool = False,
return_dict: bool = True,
generator: Optional[torch.Generator] = None,
) -> Union[OobleckDecoderOutput, torch.Tensor]:
r"""
Args:
sample (`torch.Tensor`): Input sample.
sample_posterior (`bool`, *optional*, defaults to `False`):
Whether to sample from the posterior.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`OobleckDecoderOutput`] instead of a plain tuple.
"""
x = sample
posterior = self.encode(x).latent_dist
if sample_posterior:
z = posterior.sample(generator=generator)
else:
z = posterior.mode()
dec = self.decode(z).sample
if not return_dict:
return (dec,)
return OobleckDecoderOutput(sample=dec)