Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,046 Bytes
bfa59ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
import torch.nn as nn
from torch.nn.utils import weight_norm
from ...configuration_utils import ConfigMixin, register_to_config
from ...utils import BaseOutput
from ...utils.accelerate_utils import apply_forward_hook
from ...utils.torch_utils import randn_tensor
from ..modeling_utils import ModelMixin
class Snake1d(nn.Module):
"""
A 1-dimensional Snake activation function module.
"""
def __init__(self, hidden_dim, logscale=True):
super().__init__()
self.alpha = nn.Parameter(torch.zeros(1, hidden_dim, 1))
self.beta = nn.Parameter(torch.zeros(1, hidden_dim, 1))
self.alpha.requires_grad = True
self.beta.requires_grad = True
self.logscale = logscale
def forward(self, hidden_states):
shape = hidden_states.shape
alpha = self.alpha if not self.logscale else torch.exp(self.alpha)
beta = self.beta if not self.logscale else torch.exp(self.beta)
hidden_states = hidden_states.reshape(shape[0], shape[1], -1)
hidden_states = hidden_states + (beta + 1e-9).reciprocal() * torch.sin(alpha * hidden_states).pow(2)
hidden_states = hidden_states.reshape(shape)
return hidden_states
class OobleckResidualUnit(nn.Module):
"""
A residual unit composed of Snake1d and weight-normalized Conv1d layers with dilations.
"""
def __init__(self, dimension: int = 16, dilation: int = 1):
super().__init__()
pad = ((7 - 1) * dilation) // 2
self.snake1 = Snake1d(dimension)
self.conv1 = weight_norm(nn.Conv1d(dimension, dimension, kernel_size=7, dilation=dilation, padding=pad))
self.snake2 = Snake1d(dimension)
self.conv2 = weight_norm(nn.Conv1d(dimension, dimension, kernel_size=1))
def forward(self, hidden_state):
"""
Forward pass through the residual unit.
Args:
hidden_state (`torch.Tensor` of shape `(batch_size, channels, time_steps)`):
Input tensor .
Returns:
output_tensor (`torch.Tensor` of shape `(batch_size, channels, time_steps)`)
Input tensor after passing through the residual unit.
"""
output_tensor = hidden_state
output_tensor = self.conv1(self.snake1(output_tensor))
output_tensor = self.conv2(self.snake2(output_tensor))
padding = (hidden_state.shape[-1] - output_tensor.shape[-1]) // 2
if padding > 0:
hidden_state = hidden_state[..., padding:-padding]
output_tensor = hidden_state + output_tensor
return output_tensor
class OobleckEncoderBlock(nn.Module):
"""Encoder block used in Oobleck encoder."""
def __init__(self, input_dim, output_dim, stride: int = 1):
super().__init__()
self.res_unit1 = OobleckResidualUnit(input_dim, dilation=1)
self.res_unit2 = OobleckResidualUnit(input_dim, dilation=3)
self.res_unit3 = OobleckResidualUnit(input_dim, dilation=9)
self.snake1 = Snake1d(input_dim)
self.conv1 = weight_norm(
nn.Conv1d(input_dim, output_dim, kernel_size=2 * stride, stride=stride, padding=math.ceil(stride / 2))
)
def forward(self, hidden_state):
hidden_state = self.res_unit1(hidden_state)
hidden_state = self.res_unit2(hidden_state)
hidden_state = self.snake1(self.res_unit3(hidden_state))
hidden_state = self.conv1(hidden_state)
return hidden_state
class OobleckDecoderBlock(nn.Module):
"""Decoder block used in Oobleck decoder."""
def __init__(self, input_dim, output_dim, stride: int = 1):
super().__init__()
self.snake1 = Snake1d(input_dim)
self.conv_t1 = weight_norm(
nn.ConvTranspose1d(
input_dim,
output_dim,
kernel_size=2 * stride,
stride=stride,
padding=math.ceil(stride / 2),
)
)
self.res_unit1 = OobleckResidualUnit(output_dim, dilation=1)
self.res_unit2 = OobleckResidualUnit(output_dim, dilation=3)
self.res_unit3 = OobleckResidualUnit(output_dim, dilation=9)
def forward(self, hidden_state):
hidden_state = self.snake1(hidden_state)
hidden_state = self.conv_t1(hidden_state)
hidden_state = self.res_unit1(hidden_state)
hidden_state = self.res_unit2(hidden_state)
hidden_state = self.res_unit3(hidden_state)
return hidden_state
class OobleckDiagonalGaussianDistribution(object):
def __init__(self, parameters: torch.Tensor, deterministic: bool = False):
self.parameters = parameters
self.mean, self.scale = parameters.chunk(2, dim=1)
self.std = nn.functional.softplus(self.scale) + 1e-4
self.var = self.std * self.std
self.logvar = torch.log(self.var)
self.deterministic = deterministic
def sample(self, generator: Optional[torch.Generator] = None) -> torch.Tensor:
# make sure sample is on the same device as the parameters and has same dtype
sample = randn_tensor(
self.mean.shape,
generator=generator,
device=self.parameters.device,
dtype=self.parameters.dtype,
)
x = self.mean + self.std * sample
return x
def kl(self, other: "OobleckDiagonalGaussianDistribution" = None) -> torch.Tensor:
if self.deterministic:
return torch.Tensor([0.0])
else:
if other is None:
return (self.mean * self.mean + self.var - self.logvar - 1.0).sum(1).mean()
else:
normalized_diff = torch.pow(self.mean - other.mean, 2) / other.var
var_ratio = self.var / other.var
logvar_diff = self.logvar - other.logvar
kl = normalized_diff + var_ratio + logvar_diff - 1
kl = kl.sum(1).mean()
return kl
def mode(self) -> torch.Tensor:
return self.mean
@dataclass
class AutoencoderOobleckOutput(BaseOutput):
"""
Output of AutoencoderOobleck encoding method.
Args:
latent_dist (`OobleckDiagonalGaussianDistribution`):
Encoded outputs of `Encoder` represented as the mean and standard deviation of
`OobleckDiagonalGaussianDistribution`. `OobleckDiagonalGaussianDistribution` allows for sampling latents
from the distribution.
"""
latent_dist: "OobleckDiagonalGaussianDistribution" # noqa: F821
@dataclass
class OobleckDecoderOutput(BaseOutput):
r"""
Output of decoding method.
Args:
sample (`torch.Tensor` of shape `(batch_size, audio_channels, sequence_length)`):
The decoded output sample from the last layer of the model.
"""
sample: torch.Tensor
class OobleckEncoder(nn.Module):
"""Oobleck Encoder"""
def __init__(self, encoder_hidden_size, audio_channels, downsampling_ratios, channel_multiples):
super().__init__()
strides = downsampling_ratios
channel_multiples = [1] + channel_multiples
# Create first convolution
self.conv1 = weight_norm(nn.Conv1d(audio_channels, encoder_hidden_size, kernel_size=7, padding=3))
self.block = []
# Create EncoderBlocks that double channels as they downsample by `stride`
for stride_index, stride in enumerate(strides):
self.block += [
OobleckEncoderBlock(
input_dim=encoder_hidden_size * channel_multiples[stride_index],
output_dim=encoder_hidden_size * channel_multiples[stride_index + 1],
stride=stride,
)
]
self.block = nn.ModuleList(self.block)
d_model = encoder_hidden_size * channel_multiples[-1]
self.snake1 = Snake1d(d_model)
self.conv2 = weight_norm(nn.Conv1d(d_model, encoder_hidden_size, kernel_size=3, padding=1))
def forward(self, hidden_state):
hidden_state = self.conv1(hidden_state)
for module in self.block:
hidden_state = module(hidden_state)
hidden_state = self.snake1(hidden_state)
hidden_state = self.conv2(hidden_state)
return hidden_state
class OobleckDecoder(nn.Module):
"""Oobleck Decoder"""
def __init__(self, channels, input_channels, audio_channels, upsampling_ratios, channel_multiples):
super().__init__()
strides = upsampling_ratios
channel_multiples = [1] + channel_multiples
# Add first conv layer
self.conv1 = weight_norm(nn.Conv1d(input_channels, channels * channel_multiples[-1], kernel_size=7, padding=3))
# Add upsampling + MRF blocks
block = []
for stride_index, stride in enumerate(strides):
block += [
OobleckDecoderBlock(
input_dim=channels * channel_multiples[len(strides) - stride_index],
output_dim=channels * channel_multiples[len(strides) - stride_index - 1],
stride=stride,
)
]
self.block = nn.ModuleList(block)
output_dim = channels
self.snake1 = Snake1d(output_dim)
self.conv2 = weight_norm(nn.Conv1d(channels, audio_channels, kernel_size=7, padding=3, bias=False))
def forward(self, hidden_state):
hidden_state = self.conv1(hidden_state)
for layer in self.block:
hidden_state = layer(hidden_state)
hidden_state = self.snake1(hidden_state)
hidden_state = self.conv2(hidden_state)
return hidden_state
class AutoencoderOobleck(ModelMixin, ConfigMixin):
r"""
An autoencoder for encoding waveforms into latents and decoding latent representations into waveforms. First
introduced in Stable Audio.
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
for all models (such as downloading or saving).
Parameters:
encoder_hidden_size (`int`, *optional*, defaults to 128):
Intermediate representation dimension for the encoder.
downsampling_ratios (`List[int]`, *optional*, defaults to `[2, 4, 4, 8, 8]`):
Ratios for downsampling in the encoder. These are used in reverse order for upsampling in the decoder.
channel_multiples (`List[int]`, *optional*, defaults to `[1, 2, 4, 8, 16]`):
Multiples used to determine the hidden sizes of the hidden layers.
decoder_channels (`int`, *optional*, defaults to 128):
Intermediate representation dimension for the decoder.
decoder_input_channels (`int`, *optional*, defaults to 64):
Input dimension for the decoder. Corresponds to the latent dimension.
audio_channels (`int`, *optional*, defaults to 2):
Number of channels in the audio data. Either 1 for mono or 2 for stereo.
sampling_rate (`int`, *optional*, defaults to 44100):
The sampling rate at which the audio waveform should be digitalized expressed in hertz (Hz).
"""
_supports_gradient_checkpointing = False
@register_to_config
def __init__(
self,
encoder_hidden_size=128,
downsampling_ratios=[2, 4, 4, 8, 8],
channel_multiples=[1, 2, 4, 8, 16],
decoder_channels=128,
decoder_input_channels=64,
audio_channels=2,
sampling_rate=44100,
):
super().__init__()
self.encoder_hidden_size = encoder_hidden_size
self.downsampling_ratios = downsampling_ratios
self.decoder_channels = decoder_channels
self.upsampling_ratios = downsampling_ratios[::-1]
self.hop_length = int(np.prod(downsampling_ratios))
self.sampling_rate = sampling_rate
self.encoder = OobleckEncoder(
encoder_hidden_size=encoder_hidden_size,
audio_channels=audio_channels,
downsampling_ratios=downsampling_ratios,
channel_multiples=channel_multiples,
)
self.decoder = OobleckDecoder(
channels=decoder_channels,
input_channels=decoder_input_channels,
audio_channels=audio_channels,
upsampling_ratios=self.upsampling_ratios,
channel_multiples=channel_multiples,
)
self.use_slicing = False
def enable_slicing(self):
r"""
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
"""
self.use_slicing = True
def disable_slicing(self):
r"""
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
decoding in one step.
"""
self.use_slicing = False
@apply_forward_hook
def encode(
self, x: torch.Tensor, return_dict: bool = True
) -> Union[AutoencoderOobleckOutput, Tuple[OobleckDiagonalGaussianDistribution]]:
"""
Encode a batch of images into latents.
Args:
x (`torch.Tensor`): Input batch of images.
return_dict (`bool`, *optional*, defaults to `True`):
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
Returns:
The latent representations of the encoded images. If `return_dict` is True, a
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
"""
if self.use_slicing and x.shape[0] > 1:
encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)]
h = torch.cat(encoded_slices)
else:
h = self.encoder(x)
posterior = OobleckDiagonalGaussianDistribution(h)
if not return_dict:
return (posterior,)
return AutoencoderOobleckOutput(latent_dist=posterior)
def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[OobleckDecoderOutput, torch.Tensor]:
dec = self.decoder(z)
if not return_dict:
return (dec,)
return OobleckDecoderOutput(sample=dec)
@apply_forward_hook
def decode(
self, z: torch.FloatTensor, return_dict: bool = True, generator=None
) -> Union[OobleckDecoderOutput, torch.FloatTensor]:
"""
Decode a batch of images.
Args:
z (`torch.Tensor`): Input batch of latent vectors.
return_dict (`bool`, *optional*, defaults to `True`):
Whether to return a [`~models.vae.OobleckDecoderOutput`] instead of a plain tuple.
Returns:
[`~models.vae.OobleckDecoderOutput`] or `tuple`:
If return_dict is True, a [`~models.vae.OobleckDecoderOutput`] is returned, otherwise a plain `tuple`
is returned.
"""
if self.use_slicing and z.shape[0] > 1:
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
decoded = torch.cat(decoded_slices)
else:
decoded = self._decode(z).sample
if not return_dict:
return (decoded,)
return OobleckDecoderOutput(sample=decoded)
def forward(
self,
sample: torch.Tensor,
sample_posterior: bool = False,
return_dict: bool = True,
generator: Optional[torch.Generator] = None,
) -> Union[OobleckDecoderOutput, torch.Tensor]:
r"""
Args:
sample (`torch.Tensor`): Input sample.
sample_posterior (`bool`, *optional*, defaults to `False`):
Whether to sample from the posterior.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`OobleckDecoderOutput`] instead of a plain tuple.
"""
x = sample
posterior = self.encode(x).latent_dist
if sample_posterior:
z = posterior.sample(generator=generator)
else:
z = posterior.mode()
dec = self.decode(z).sample
if not return_dict:
return (dec,)
return OobleckDecoderOutput(sample=dec)
|