Spaces:
Paused
Paused
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
""" | |
Entry point for dora to launch solvers for running training loops. | |
See more info on how to use dora: https://github.com/facebookresearch/dora | |
""" | |
import logging | |
import multiprocessing | |
import os | |
import sys | |
import typing as tp | |
from dora import git_save, hydra_main, XP | |
import flashy | |
import hydra | |
import omegaconf | |
from .environment import AudioCraftEnvironment | |
from .utils.cluster import get_slurm_parameters | |
logger = logging.getLogger(__name__) | |
def resolve_config_dset_paths(cfg): | |
"""Enable Dora to load manifest from git clone repository.""" | |
# manifest files for the different splits | |
for key, value in cfg.datasource.items(): | |
if isinstance(value, str): | |
cfg.datasource[key] = git_save.to_absolute_path(value) | |
def get_solver(cfg): | |
from . import solvers | |
# Convert batch size to batch size for each GPU | |
assert cfg.dataset.batch_size % flashy.distrib.world_size() == 0 | |
cfg.dataset.batch_size //= flashy.distrib.world_size() | |
for split in ['train', 'valid', 'evaluate', 'generate']: | |
if hasattr(cfg.dataset, split) and hasattr(cfg.dataset[split], 'batch_size'): | |
assert cfg.dataset[split].batch_size % flashy.distrib.world_size() == 0 | |
cfg.dataset[split].batch_size //= flashy.distrib.world_size() | |
resolve_config_dset_paths(cfg) | |
solver = solvers.get_solver(cfg) | |
return solver | |
def get_solver_from_xp(xp: XP, override_cfg: tp.Optional[tp.Union[dict, omegaconf.DictConfig]] = None, | |
restore: bool = True, load_best: bool = True, | |
ignore_state_keys: tp.List[str] = [], disable_fsdp: bool = True): | |
"""Given a XP, return the Solver object. | |
Args: | |
xp (XP): Dora experiment for which to retrieve the solver. | |
override_cfg (dict or None): If not None, should be a dict used to | |
override some values in the config of `xp`. This will not impact | |
the XP signature or folder. The format is different | |
than the one used in Dora grids, nested keys should actually be nested dicts, | |
not flattened, e.g. `{'optim': {'batch_size': 32}}`. | |
restore (bool): If `True` (the default), restore state from the last checkpoint. | |
load_best (bool): If `True` (the default), load the best state from the checkpoint. | |
ignore_state_keys (list[str]): List of sources to ignore when loading the state, e.g. `optimizer`. | |
disable_fsdp (bool): if True, disables FSDP entirely. This will | |
also automatically skip loading the EMA. For solver specific | |
state sources, like the optimizer, you might want to | |
use along `ignore_state_keys=['optimizer']`. Must be used with `load_best=True`. | |
""" | |
logger.info(f"Loading solver from XP {xp.sig}. " | |
f"Overrides used: {xp.argv}") | |
cfg = xp.cfg | |
if override_cfg is not None: | |
cfg = omegaconf.OmegaConf.merge(cfg, omegaconf.DictConfig(override_cfg)) | |
if disable_fsdp and cfg.fsdp.use: | |
cfg.fsdp.use = False | |
assert load_best is True | |
# ignoring some keys that were FSDP sharded like model, ema, and best_state. | |
# fsdp_best_state will be used in that case. When using a specific solver, | |
# one is responsible for adding the relevant keys, e.g. 'optimizer'. | |
# We could make something to automatically register those inside the solver, but that | |
# seem overkill at this point. | |
ignore_state_keys = ignore_state_keys + ['model', 'ema', 'best_state'] | |
try: | |
with xp.enter(): | |
solver = get_solver(cfg) | |
if restore: | |
solver.restore(load_best=load_best, ignore_state_keys=ignore_state_keys) | |
return solver | |
finally: | |
hydra.core.global_hydra.GlobalHydra.instance().clear() | |
def get_solver_from_sig(sig: str, *args, **kwargs): | |
"""Return Solver object from Dora signature, i.e. to play with it from a notebook. | |
See `get_solver_from_xp` for more information. | |
""" | |
xp = main.get_xp_from_sig(sig) | |
return get_solver_from_xp(xp, *args, **kwargs) | |
def init_seed_and_system(cfg): | |
import numpy as np | |
import torch | |
import random | |
from audiocraft.modules.transformer import set_efficient_attention_backend | |
multiprocessing.set_start_method(cfg.mp_start_method) | |
logger.debug('Setting mp start method to %s', cfg.mp_start_method) | |
random.seed(cfg.seed) | |
np.random.seed(cfg.seed) | |
# torch also initialize cuda seed if available | |
torch.manual_seed(cfg.seed) | |
torch.set_num_threads(cfg.num_threads) | |
os.environ['MKL_NUM_THREADS'] = str(cfg.num_threads) | |
os.environ['OMP_NUM_THREADS'] = str(cfg.num_threads) | |
logger.debug('Setting num threads to %d', cfg.num_threads) | |
set_efficient_attention_backend(cfg.efficient_attention_backend) | |
logger.debug('Setting efficient attention backend to %s', cfg.efficient_attention_backend) | |
def main(cfg): | |
init_seed_and_system(cfg) | |
# Setup logging both to XP specific folder, and to stderr. | |
log_name = '%s.log.{rank}' % cfg.execute_only if cfg.execute_only else 'solver.log.{rank}' | |
flashy.setup_logging(level=str(cfg.logging.level).upper(), log_name=log_name) | |
# Initialize distributed training, no need to specify anything when using Dora. | |
flashy.distrib.init() | |
solver = get_solver(cfg) | |
if cfg.show: | |
solver.show() | |
return | |
if cfg.execute_only: | |
assert cfg.execute_inplace or cfg.continue_from is not None, \ | |
"Please explicitly specify the checkpoint to continue from with continue_from=<sig_or_path> " + \ | |
"when running with execute_only or set execute_inplace to True." | |
solver.restore(replay_metrics=False) # load checkpoint | |
solver.run_one_stage(cfg.execute_only) | |
return | |
return solver.run() | |
main.dora.dir = AudioCraftEnvironment.get_dora_dir() | |
main._base_cfg.slurm = get_slurm_parameters(main._base_cfg.slurm) | |
if main.dora.shared is not None and not os.access(main.dora.shared, os.R_OK): | |
print("No read permission on dora.shared folder, ignoring it.", file=sys.stderr) | |
main.dora.shared = None | |
if __name__ == '__main__': | |
main() | |