fffiloni commited on
Commit
4725118
·
verified ·
1 Parent(s): f48c226

Upload 256 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +2 -0
  2. audiocraft/__init__.py +26 -0
  3. audiocraft/__pycache__/__init__.cpython-311.pyc +0 -0
  4. audiocraft/__pycache__/environment.cpython-311.pyc +0 -0
  5. audiocraft/__pycache__/train.cpython-311.pyc +0 -0
  6. audiocraft/adversarial/__init__.py +22 -0
  7. audiocraft/adversarial/__pycache__/__init__.cpython-311.pyc +0 -0
  8. audiocraft/adversarial/__pycache__/losses.cpython-311.pyc +0 -0
  9. audiocraft/adversarial/discriminators/__init__.py +10 -0
  10. audiocraft/adversarial/discriminators/__pycache__/__init__.cpython-311.pyc +0 -0
  11. audiocraft/adversarial/discriminators/__pycache__/base.cpython-311.pyc +0 -0
  12. audiocraft/adversarial/discriminators/__pycache__/mpd.cpython-311.pyc +0 -0
  13. audiocraft/adversarial/discriminators/__pycache__/msd.cpython-311.pyc +0 -0
  14. audiocraft/adversarial/discriminators/__pycache__/msstftd.cpython-311.pyc +0 -0
  15. audiocraft/adversarial/discriminators/base.py +34 -0
  16. audiocraft/adversarial/discriminators/mpd.py +106 -0
  17. audiocraft/adversarial/discriminators/msd.py +126 -0
  18. audiocraft/adversarial/discriminators/msstftd.py +134 -0
  19. audiocraft/adversarial/losses.py +228 -0
  20. audiocraft/data/__init__.py +10 -0
  21. audiocraft/data/__pycache__/__init__.cpython-311.pyc +0 -0
  22. audiocraft/data/__pycache__/audio.cpython-311.pyc +0 -0
  23. audiocraft/data/__pycache__/audio_dataset.cpython-311.pyc +0 -0
  24. audiocraft/data/__pycache__/audio_utils.cpython-311.pyc +0 -0
  25. audiocraft/data/__pycache__/btc_chords.cpython-311.pyc +0 -0
  26. audiocraft/data/__pycache__/chords.cpython-311.pyc +0 -0
  27. audiocraft/data/__pycache__/info_audio_dataset.cpython-311.pyc +0 -0
  28. audiocraft/data/__pycache__/music_dataset.cpython-311.pyc +0 -0
  29. audiocraft/data/__pycache__/sound_dataset.cpython-311.pyc +0 -0
  30. audiocraft/data/__pycache__/zip.cpython-311.pyc +0 -0
  31. audiocraft/data/audio.py +257 -0
  32. audiocraft/data/audio_dataset.py +614 -0
  33. audiocraft/data/audio_utils.py +385 -0
  34. audiocraft/data/btc_chords.py +524 -0
  35. audiocraft/data/chords.py +524 -0
  36. audiocraft/data/info_audio_dataset.py +110 -0
  37. audiocraft/data/music_dataset.py +349 -0
  38. audiocraft/data/sound_dataset.py +330 -0
  39. audiocraft/data/zip.py +76 -0
  40. audiocraft/environment.py +176 -0
  41. audiocraft/grids/__init__.py +6 -0
  42. audiocraft/grids/_base_explorers.py +80 -0
  43. audiocraft/grids/audiogen/__init__.py +6 -0
  44. audiocraft/grids/audiogen/audiogen_base_16khz.py +23 -0
  45. audiocraft/grids/audiogen/audiogen_pretrained_16khz_eval.py +68 -0
  46. audiocraft/grids/compression/__init__.py +6 -0
  47. audiocraft/grids/compression/_explorers.py +55 -0
  48. audiocraft/grids/compression/debug.py +31 -0
  49. audiocraft/grids/compression/encodec_audiogen_16khz.py +29 -0
  50. audiocraft/grids/compression/encodec_base_24khz.py +28 -0
.gitattributes CHANGED
@@ -37,3 +37,5 @@ audiocraft/dataset/example/clip/sample_1/no_vocal.wav filter=lfs diff=lfs merge=
37
  audiocraft/dataset/example/clip/sample_2/no_vocal.wav filter=lfs diff=lfs merge=lfs -text
38
  preproc/1_beats-crop/1_mm.wav filter=lfs diff=lfs merge=lfs -text
39
  preproc/1_beats-crop/1_nn.wav filter=lfs diff=lfs merge=lfs -text
 
 
 
37
  audiocraft/dataset/example/clip/sample_2/no_vocal.wav filter=lfs diff=lfs merge=lfs -text
38
  preproc/1_beats-crop/1_mm.wav filter=lfs diff=lfs merge=lfs -text
39
  preproc/1_beats-crop/1_nn.wav filter=lfs diff=lfs merge=lfs -text
40
+ dataset/example/clip/sample_1/no_vocal.wav filter=lfs diff=lfs merge=lfs -text
41
+ dataset/example/clip/sample_2/no_vocal.wav filter=lfs diff=lfs merge=lfs -text
audiocraft/__init__.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ """
7
+ AudioCraft is a general framework for training audio generative models.
8
+ At the moment we provide the training code for:
9
+
10
+ - [MusicGen](https://arxiv.org/abs/2306.05284), a state-of-the-art
11
+ text-to-music and melody+text autoregressive generative model.
12
+ For the solver, see `audiocraft.solvers.musicgen.MusicGenSolver`, and for the model,
13
+ `audiocraft.models.musicgen.MusicGen`.
14
+ - [AudioGen](https://arxiv.org/abs/2209.15352), a state-of-the-art
15
+ text-to-general-audio generative model.
16
+ - [EnCodec](https://arxiv.org/abs/2210.13438), efficient and high fidelity
17
+ neural audio codec which provides an excellent tokenizer for autoregressive language models.
18
+ See `audiocraft.solvers.compression.CompressionSolver`, and `audiocraft.models.encodec.EncodecModel`.
19
+ - [MultiBandDiffusion](TODO), alternative diffusion-based decoder compatible with EnCodec that
20
+ improves the perceived quality and reduces the artifacts coming from adversarial decoders.
21
+ """
22
+
23
+ # flake8: noqa
24
+ from . import data, modules, models
25
+
26
+ __version__ = '1.0.0'
audiocraft/__pycache__/__init__.cpython-311.pyc ADDED
Binary file (1.29 kB). View file
 
audiocraft/__pycache__/environment.cpython-311.pyc ADDED
Binary file (10.5 kB). View file
 
audiocraft/__pycache__/train.cpython-311.pyc ADDED
Binary file (9.52 kB). View file
 
audiocraft/adversarial/__init__.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ """Adversarial losses and discriminator architectures."""
7
+
8
+ # flake8: noqa
9
+ from .discriminators import (
10
+ MultiPeriodDiscriminator,
11
+ MultiScaleDiscriminator,
12
+ MultiScaleSTFTDiscriminator
13
+ )
14
+ from .losses import (
15
+ AdversarialLoss,
16
+ AdvLossType,
17
+ get_adv_criterion,
18
+ get_fake_criterion,
19
+ get_real_criterion,
20
+ FeatLossType,
21
+ FeatureMatchingLoss
22
+ )
audiocraft/adversarial/__pycache__/__init__.cpython-311.pyc ADDED
Binary file (740 Bytes). View file
 
audiocraft/adversarial/__pycache__/losses.cpython-311.pyc ADDED
Binary file (15.9 kB). View file
 
audiocraft/adversarial/discriminators/__init__.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ # flake8: noqa
8
+ from .mpd import MultiPeriodDiscriminator
9
+ from .msd import MultiScaleDiscriminator
10
+ from .msstftd import MultiScaleSTFTDiscriminator
audiocraft/adversarial/discriminators/__pycache__/__init__.cpython-311.pyc ADDED
Binary file (411 Bytes). View file
 
audiocraft/adversarial/discriminators/__pycache__/base.cpython-311.pyc ADDED
Binary file (1.87 kB). View file
 
audiocraft/adversarial/discriminators/__pycache__/mpd.cpython-311.pyc ADDED
Binary file (7.01 kB). View file
 
audiocraft/adversarial/discriminators/__pycache__/msd.cpython-311.pyc ADDED
Binary file (8.88 kB). View file
 
audiocraft/adversarial/discriminators/__pycache__/msstftd.cpython-311.pyc ADDED
Binary file (9.98 kB). View file
 
audiocraft/adversarial/discriminators/base.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from abc import ABC, abstractmethod
8
+ import typing as tp
9
+
10
+ import torch
11
+ import torch.nn as nn
12
+
13
+
14
+ FeatureMapType = tp.List[torch.Tensor]
15
+ LogitsType = torch.Tensor
16
+ MultiDiscriminatorOutputType = tp.Tuple[tp.List[LogitsType], tp.List[FeatureMapType]]
17
+
18
+
19
+ class MultiDiscriminator(ABC, nn.Module):
20
+ """Base implementation for discriminators composed of sub-discriminators acting at different scales.
21
+ """
22
+ def __init__(self):
23
+ super().__init__()
24
+
25
+ @abstractmethod
26
+ def forward(self, x: torch.Tensor) -> MultiDiscriminatorOutputType:
27
+ ...
28
+
29
+ @property
30
+ @abstractmethod
31
+ def num_discriminators(self) -> int:
32
+ """Number of discriminators.
33
+ """
34
+ ...
audiocraft/adversarial/discriminators/mpd.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import typing as tp
8
+
9
+ import torch
10
+ import torch.nn as nn
11
+ import torch.nn.functional as F
12
+
13
+ from ...modules import NormConv2d
14
+ from .base import MultiDiscriminator, MultiDiscriminatorOutputType
15
+
16
+
17
+ def get_padding(kernel_size: int, dilation: int = 1) -> int:
18
+ return int((kernel_size * dilation - dilation) / 2)
19
+
20
+
21
+ class PeriodDiscriminator(nn.Module):
22
+ """Period sub-discriminator.
23
+
24
+ Args:
25
+ period (int): Period between samples of audio.
26
+ in_channels (int): Number of input channels.
27
+ out_channels (int): Number of output channels.
28
+ n_layers (int): Number of convolutional layers.
29
+ kernel_sizes (list of int): Kernel sizes for convolutions.
30
+ stride (int): Stride for convolutions.
31
+ filters (int): Initial number of filters in convolutions.
32
+ filters_scale (int): Multiplier of number of filters as we increase depth.
33
+ max_filters (int): Maximum number of filters.
34
+ norm (str): Normalization method.
35
+ activation (str): Activation function.
36
+ activation_params (dict): Parameters to provide to the activation function.
37
+ """
38
+ def __init__(self, period: int, in_channels: int = 1, out_channels: int = 1,
39
+ n_layers: int = 5, kernel_sizes: tp.List[int] = [5, 3], stride: int = 3,
40
+ filters: int = 8, filters_scale: int = 4, max_filters: int = 1024,
41
+ norm: str = 'weight_norm', activation: str = 'LeakyReLU',
42
+ activation_params: dict = {'negative_slope': 0.2}):
43
+ super().__init__()
44
+ self.period = period
45
+ self.n_layers = n_layers
46
+ self.activation = getattr(torch.nn, activation)(**activation_params)
47
+ self.convs = nn.ModuleList()
48
+ in_chs = in_channels
49
+ for i in range(self.n_layers):
50
+ out_chs = min(filters * (filters_scale ** (i + 1)), max_filters)
51
+ eff_stride = 1 if i == self.n_layers - 1 else stride
52
+ self.convs.append(NormConv2d(in_chs, out_chs, kernel_size=(kernel_sizes[0], 1), stride=(eff_stride, 1),
53
+ padding=((kernel_sizes[0] - 1) // 2, 0), norm=norm))
54
+ in_chs = out_chs
55
+ self.conv_post = NormConv2d(in_chs, out_channels, kernel_size=(kernel_sizes[1], 1), stride=1,
56
+ padding=((kernel_sizes[1] - 1) // 2, 0), norm=norm)
57
+
58
+ def forward(self, x: torch.Tensor):
59
+ fmap = []
60
+ # 1d to 2d
61
+ b, c, t = x.shape
62
+ if t % self.period != 0: # pad first
63
+ n_pad = self.period - (t % self.period)
64
+ x = F.pad(x, (0, n_pad), 'reflect')
65
+ t = t + n_pad
66
+ x = x.view(b, c, t // self.period, self.period)
67
+
68
+ for conv in self.convs:
69
+ x = conv(x)
70
+ x = self.activation(x)
71
+ fmap.append(x)
72
+ x = self.conv_post(x)
73
+ fmap.append(x)
74
+ # x = torch.flatten(x, 1, -1)
75
+
76
+ return x, fmap
77
+
78
+
79
+ class MultiPeriodDiscriminator(MultiDiscriminator):
80
+ """Multi-Period (MPD) Discriminator.
81
+
82
+ Args:
83
+ in_channels (int): Number of input channels.
84
+ out_channels (int): Number of output channels.
85
+ periods (Sequence[int]): Periods between samples of audio for the sub-discriminators.
86
+ **kwargs: Additional args for `PeriodDiscriminator`
87
+ """
88
+ def __init__(self, in_channels: int = 1, out_channels: int = 1,
89
+ periods: tp.Sequence[int] = [2, 3, 5, 7, 11], **kwargs):
90
+ super().__init__()
91
+ self.discriminators = nn.ModuleList([
92
+ PeriodDiscriminator(p, in_channels, out_channels, **kwargs) for p in periods
93
+ ])
94
+
95
+ @property
96
+ def num_discriminators(self):
97
+ return len(self.discriminators)
98
+
99
+ def forward(self, x: torch.Tensor) -> MultiDiscriminatorOutputType:
100
+ logits = []
101
+ fmaps = []
102
+ for disc in self.discriminators:
103
+ logit, fmap = disc(x)
104
+ logits.append(logit)
105
+ fmaps.append(fmap)
106
+ return logits, fmaps
audiocraft/adversarial/discriminators/msd.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import typing as tp
8
+
9
+ import numpy as np
10
+ import torch
11
+ import torch.nn as nn
12
+
13
+ from ...modules import NormConv1d
14
+ from .base import MultiDiscriminator, MultiDiscriminatorOutputType
15
+
16
+
17
+ class ScaleDiscriminator(nn.Module):
18
+ """Waveform sub-discriminator.
19
+
20
+ Args:
21
+ in_channels (int): Number of input channels.
22
+ out_channels (int): Number of output channels.
23
+ kernel_sizes (Sequence[int]): Kernel sizes for first and last convolutions.
24
+ filters (int): Number of initial filters for convolutions.
25
+ max_filters (int): Maximum number of filters.
26
+ downsample_scales (Sequence[int]): Scale for downsampling implemented as strided convolutions.
27
+ inner_kernel_sizes (Sequence[int] or None): Kernel sizes for inner convolutions.
28
+ groups (Sequence[int] or None): Groups for inner convolutions.
29
+ strides (Sequence[int] or None): Strides for inner convolutions.
30
+ paddings (Sequence[int] or None): Paddings for inner convolutions.
31
+ norm (str): Normalization method.
32
+ activation (str): Activation function.
33
+ activation_params (dict): Parameters to provide to the activation function.
34
+ pad (str): Padding for initial convolution.
35
+ pad_params (dict): Parameters to provide to the padding module.
36
+ """
37
+ def __init__(self, in_channels=1, out_channels=1, kernel_sizes: tp.Sequence[int] = [5, 3],
38
+ filters: int = 16, max_filters: int = 1024, downsample_scales: tp.Sequence[int] = [4, 4, 4, 4],
39
+ inner_kernel_sizes: tp.Optional[tp.Sequence[int]] = None, groups: tp.Optional[tp.Sequence[int]] = None,
40
+ strides: tp.Optional[tp.Sequence[int]] = None, paddings: tp.Optional[tp.Sequence[int]] = None,
41
+ norm: str = 'weight_norm', activation: str = 'LeakyReLU',
42
+ activation_params: dict = {'negative_slope': 0.2}, pad: str = 'ReflectionPad1d',
43
+ pad_params: dict = {}):
44
+ super().__init__()
45
+ assert len(kernel_sizes) == 2
46
+ assert kernel_sizes[0] % 2 == 1
47
+ assert kernel_sizes[1] % 2 == 1
48
+ assert (inner_kernel_sizes is None or len(inner_kernel_sizes) == len(downsample_scales))
49
+ assert (groups is None or len(groups) == len(downsample_scales))
50
+ assert (strides is None or len(strides) == len(downsample_scales))
51
+ assert (paddings is None or len(paddings) == len(downsample_scales))
52
+ self.activation = getattr(torch.nn, activation)(**activation_params)
53
+ self.convs = nn.ModuleList()
54
+ self.convs.append(
55
+ nn.Sequential(
56
+ getattr(torch.nn, pad)((np.prod(kernel_sizes) - 1) // 2, **pad_params),
57
+ NormConv1d(in_channels, filters, kernel_size=np.prod(kernel_sizes), stride=1, norm=norm)
58
+ )
59
+ )
60
+
61
+ in_chs = filters
62
+ for i, downsample_scale in enumerate(downsample_scales):
63
+ out_chs = min(in_chs * downsample_scale, max_filters)
64
+ default_kernel_size = downsample_scale * 10 + 1
65
+ default_stride = downsample_scale
66
+ default_padding = (default_kernel_size - 1) // 2
67
+ default_groups = in_chs // 4
68
+ self.convs.append(
69
+ NormConv1d(in_chs, out_chs,
70
+ kernel_size=inner_kernel_sizes[i] if inner_kernel_sizes else default_kernel_size,
71
+ stride=strides[i] if strides else default_stride,
72
+ groups=groups[i] if groups else default_groups,
73
+ padding=paddings[i] if paddings else default_padding,
74
+ norm=norm))
75
+ in_chs = out_chs
76
+
77
+ out_chs = min(in_chs * 2, max_filters)
78
+ self.convs.append(NormConv1d(in_chs, out_chs, kernel_size=kernel_sizes[0], stride=1,
79
+ padding=(kernel_sizes[0] - 1) // 2, norm=norm))
80
+ self.conv_post = NormConv1d(out_chs, out_channels, kernel_size=kernel_sizes[1], stride=1,
81
+ padding=(kernel_sizes[1] - 1) // 2, norm=norm)
82
+
83
+ def forward(self, x: torch.Tensor):
84
+ fmap = []
85
+ for layer in self.convs:
86
+ x = layer(x)
87
+ x = self.activation(x)
88
+ fmap.append(x)
89
+ x = self.conv_post(x)
90
+ fmap.append(x)
91
+ # x = torch.flatten(x, 1, -1)
92
+ return x, fmap
93
+
94
+
95
+ class MultiScaleDiscriminator(MultiDiscriminator):
96
+ """Multi-Scale (MSD) Discriminator,
97
+
98
+ Args:
99
+ in_channels (int): Number of input channels.
100
+ out_channels (int): Number of output channels.
101
+ downsample_factor (int): Downsampling factor between the different scales.
102
+ scale_norms (Sequence[str]): Normalization for each sub-discriminator.
103
+ **kwargs: Additional args for ScaleDiscriminator.
104
+ """
105
+ def __init__(self, in_channels: int = 1, out_channels: int = 1, downsample_factor: int = 2,
106
+ scale_norms: tp.Sequence[str] = ['weight_norm', 'weight_norm', 'weight_norm'], **kwargs):
107
+ super().__init__()
108
+ self.discriminators = nn.ModuleList([
109
+ ScaleDiscriminator(in_channels, out_channels, norm=norm, **kwargs) for norm in scale_norms
110
+ ])
111
+ self.downsample = nn.AvgPool1d(downsample_factor * 2, downsample_factor, padding=downsample_factor)
112
+
113
+ @property
114
+ def num_discriminators(self):
115
+ return len(self.discriminators)
116
+
117
+ def forward(self, x: torch.Tensor) -> MultiDiscriminatorOutputType:
118
+ logits = []
119
+ fmaps = []
120
+ for i, disc in enumerate(self.discriminators):
121
+ if i != 0:
122
+ self.downsample(x)
123
+ logit, fmap = disc(x)
124
+ logits.append(logit)
125
+ fmaps.append(fmap)
126
+ return logits, fmaps
audiocraft/adversarial/discriminators/msstftd.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import typing as tp
8
+
9
+ import torchaudio
10
+ import torch
11
+ from torch import nn
12
+ from einops import rearrange
13
+
14
+ from ...modules import NormConv2d
15
+ from .base import MultiDiscriminator, MultiDiscriminatorOutputType
16
+
17
+
18
+ def get_2d_padding(kernel_size: tp.Tuple[int, int], dilation: tp.Tuple[int, int] = (1, 1)):
19
+ return (((kernel_size[0] - 1) * dilation[0]) // 2, ((kernel_size[1] - 1) * dilation[1]) // 2)
20
+
21
+
22
+ class DiscriminatorSTFT(nn.Module):
23
+ """STFT sub-discriminator.
24
+
25
+ Args:
26
+ filters (int): Number of filters in convolutions.
27
+ in_channels (int): Number of input channels.
28
+ out_channels (int): Number of output channels.
29
+ n_fft (int): Size of FFT for each scale.
30
+ hop_length (int): Length of hop between STFT windows for each scale.
31
+ kernel_size (tuple of int): Inner Conv2d kernel sizes.
32
+ stride (tuple of int): Inner Conv2d strides.
33
+ dilations (list of int): Inner Conv2d dilation on the time dimension.
34
+ win_length (int): Window size for each scale.
35
+ normalized (bool): Whether to normalize by magnitude after stft.
36
+ norm (str): Normalization method.
37
+ activation (str): Activation function.
38
+ activation_params (dict): Parameters to provide to the activation function.
39
+ growth (int): Growth factor for the filters.
40
+ """
41
+ def __init__(self, filters: int, in_channels: int = 1, out_channels: int = 1,
42
+ n_fft: int = 1024, hop_length: int = 256, win_length: int = 1024, max_filters: int = 1024,
43
+ filters_scale: int = 1, kernel_size: tp.Tuple[int, int] = (3, 9), dilations: tp.List = [1, 2, 4],
44
+ stride: tp.Tuple[int, int] = (1, 2), normalized: bool = True, norm: str = 'weight_norm',
45
+ activation: str = 'LeakyReLU', activation_params: dict = {'negative_slope': 0.2}):
46
+ super().__init__()
47
+ assert len(kernel_size) == 2
48
+ assert len(stride) == 2
49
+ self.filters = filters
50
+ self.in_channels = in_channels
51
+ self.out_channels = out_channels
52
+ self.n_fft = n_fft
53
+ self.hop_length = hop_length
54
+ self.win_length = win_length
55
+ self.normalized = normalized
56
+ self.activation = getattr(torch.nn, activation)(**activation_params)
57
+ self.spec_transform = torchaudio.transforms.Spectrogram(
58
+ n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, window_fn=torch.hann_window,
59
+ normalized=self.normalized, center=False, pad_mode=None, power=None)
60
+ spec_channels = 2 * self.in_channels
61
+ self.convs = nn.ModuleList()
62
+ self.convs.append(
63
+ NormConv2d(spec_channels, self.filters, kernel_size=kernel_size, padding=get_2d_padding(kernel_size))
64
+ )
65
+ in_chs = min(filters_scale * self.filters, max_filters)
66
+ for i, dilation in enumerate(dilations):
67
+ out_chs = min((filters_scale ** (i + 1)) * self.filters, max_filters)
68
+ self.convs.append(NormConv2d(in_chs, out_chs, kernel_size=kernel_size, stride=stride,
69
+ dilation=(dilation, 1), padding=get_2d_padding(kernel_size, (dilation, 1)),
70
+ norm=norm))
71
+ in_chs = out_chs
72
+ out_chs = min((filters_scale ** (len(dilations) + 1)) * self.filters, max_filters)
73
+ self.convs.append(NormConv2d(in_chs, out_chs, kernel_size=(kernel_size[0], kernel_size[0]),
74
+ padding=get_2d_padding((kernel_size[0], kernel_size[0])),
75
+ norm=norm))
76
+ self.conv_post = NormConv2d(out_chs, self.out_channels,
77
+ kernel_size=(kernel_size[0], kernel_size[0]),
78
+ padding=get_2d_padding((kernel_size[0], kernel_size[0])),
79
+ norm=norm)
80
+
81
+ def forward(self, x: torch.Tensor):
82
+ fmap = []
83
+ z = self.spec_transform(x) # [B, 2, Freq, Frames, 2]
84
+ z = torch.cat([z.real, z.imag], dim=1)
85
+ z = rearrange(z, 'b c w t -> b c t w')
86
+ for i, layer in enumerate(self.convs):
87
+ z = layer(z)
88
+ z = self.activation(z)
89
+ fmap.append(z)
90
+ z = self.conv_post(z)
91
+ return z, fmap
92
+
93
+
94
+ class MultiScaleSTFTDiscriminator(MultiDiscriminator):
95
+ """Multi-Scale STFT (MS-STFT) discriminator.
96
+
97
+ Args:
98
+ filters (int): Number of filters in convolutions.
99
+ in_channels (int): Number of input channels.
100
+ out_channels (int): Number of output channels.
101
+ sep_channels (bool): Separate channels to distinct samples for stereo support.
102
+ n_ffts (Sequence[int]): Size of FFT for each scale.
103
+ hop_lengths (Sequence[int]): Length of hop between STFT windows for each scale.
104
+ win_lengths (Sequence[int]): Window size for each scale.
105
+ **kwargs: Additional args for STFTDiscriminator.
106
+ """
107
+ def __init__(self, filters: int, in_channels: int = 1, out_channels: int = 1, sep_channels: bool = False,
108
+ n_ffts: tp.List[int] = [1024, 2048, 512], hop_lengths: tp.List[int] = [256, 512, 128],
109
+ win_lengths: tp.List[int] = [1024, 2048, 512], **kwargs):
110
+ super().__init__()
111
+ assert len(n_ffts) == len(hop_lengths) == len(win_lengths)
112
+ self.sep_channels = sep_channels
113
+ self.discriminators = nn.ModuleList([
114
+ DiscriminatorSTFT(filters, in_channels=in_channels, out_channels=out_channels,
115
+ n_fft=n_ffts[i], win_length=win_lengths[i], hop_length=hop_lengths[i], **kwargs)
116
+ for i in range(len(n_ffts))
117
+ ])
118
+
119
+ @property
120
+ def num_discriminators(self):
121
+ return len(self.discriminators)
122
+
123
+ def _separate_channels(self, x: torch.Tensor) -> torch.Tensor:
124
+ B, C, T = x.shape
125
+ return x.view(-1, 1, T)
126
+
127
+ def forward(self, x: torch.Tensor) -> MultiDiscriminatorOutputType:
128
+ logits = []
129
+ fmaps = []
130
+ for disc in self.discriminators:
131
+ logit, fmap = disc(x)
132
+ logits.append(logit)
133
+ fmaps.append(fmap)
134
+ return logits, fmaps
audiocraft/adversarial/losses.py ADDED
@@ -0,0 +1,228 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ """
8
+ Utility module to handle adversarial losses without requiring to mess up the main training loop.
9
+ """
10
+
11
+ import typing as tp
12
+
13
+ import flashy
14
+ import torch
15
+ import torch.nn as nn
16
+ import torch.nn.functional as F
17
+
18
+
19
+ ADVERSARIAL_LOSSES = ['mse', 'hinge', 'hinge2']
20
+
21
+
22
+ AdvLossType = tp.Union[nn.Module, tp.Callable[[torch.Tensor], torch.Tensor]]
23
+ FeatLossType = tp.Union[nn.Module, tp.Callable[[torch.Tensor, torch.Tensor], torch.Tensor]]
24
+
25
+
26
+ class AdversarialLoss(nn.Module):
27
+ """Adversary training wrapper.
28
+
29
+ Args:
30
+ adversary (nn.Module): The adversary module will be used to estimate the logits given the fake and real samples.
31
+ We assume here the adversary output is ``Tuple[List[torch.Tensor], List[List[torch.Tensor]]]``
32
+ where the first item is a list of logits and the second item is a list of feature maps.
33
+ optimizer (torch.optim.Optimizer): Optimizer used for training the given module.
34
+ loss (AdvLossType): Loss function for generator training.
35
+ loss_real (AdvLossType): Loss function for adversarial training on logits from real samples.
36
+ loss_fake (AdvLossType): Loss function for adversarial training on logits from fake samples.
37
+ loss_feat (FeatLossType): Feature matching loss function for generator training.
38
+ normalize (bool): Whether to normalize by number of sub-discriminators.
39
+
40
+ Example of usage:
41
+ adv_loss = AdversarialLoss(adversaries, optimizer, loss, loss_real, loss_fake)
42
+ for real in loader:
43
+ noise = torch.randn(...)
44
+ fake = model(noise)
45
+ adv_loss.train_adv(fake, real)
46
+ loss, _ = adv_loss(fake, real)
47
+ loss.backward()
48
+ """
49
+ def __init__(self,
50
+ adversary: nn.Module,
51
+ optimizer: torch.optim.Optimizer,
52
+ loss: AdvLossType,
53
+ loss_real: AdvLossType,
54
+ loss_fake: AdvLossType,
55
+ loss_feat: tp.Optional[FeatLossType] = None,
56
+ normalize: bool = True):
57
+ super().__init__()
58
+ self.adversary: nn.Module = adversary
59
+ flashy.distrib.broadcast_model(self.adversary)
60
+ self.optimizer = optimizer
61
+ self.loss = loss
62
+ self.loss_real = loss_real
63
+ self.loss_fake = loss_fake
64
+ self.loss_feat = loss_feat
65
+ self.normalize = normalize
66
+
67
+ def _save_to_state_dict(self, destination, prefix, keep_vars):
68
+ # Add the optimizer state dict inside our own.
69
+ super()._save_to_state_dict(destination, prefix, keep_vars)
70
+ destination[prefix + 'optimizer'] = self.optimizer.state_dict()
71
+ return destination
72
+
73
+ def _load_from_state_dict(self, state_dict, prefix, *args, **kwargs):
74
+ # Load optimizer state.
75
+ self.optimizer.load_state_dict(state_dict.pop(prefix + 'optimizer'))
76
+ super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)
77
+
78
+ def get_adversary_pred(self, x):
79
+ """Run adversary model, validating expected output format."""
80
+ logits, fmaps = self.adversary(x)
81
+ assert isinstance(logits, list) and all([isinstance(t, torch.Tensor) for t in logits]), \
82
+ f'Expecting a list of tensors as logits but {type(logits)} found.'
83
+ assert isinstance(fmaps, list), f'Expecting a list of features maps but {type(fmaps)} found.'
84
+ for fmap in fmaps:
85
+ assert isinstance(fmap, list) and all([isinstance(f, torch.Tensor) for f in fmap]), \
86
+ f'Expecting a list of tensors as feature maps but {type(fmap)} found.'
87
+ return logits, fmaps
88
+
89
+ def train_adv(self, fake: torch.Tensor, real: torch.Tensor) -> torch.Tensor:
90
+ """Train the adversary with the given fake and real example.
91
+
92
+ We assume the adversary output is the following format: Tuple[List[torch.Tensor], List[List[torch.Tensor]]].
93
+ The first item being the logits and second item being a list of feature maps for each sub-discriminator.
94
+
95
+ This will automatically synchronize gradients (with `flashy.distrib.eager_sync_model`)
96
+ and call the optimizer.
97
+ """
98
+ loss = torch.tensor(0., device=fake.device)
99
+ all_logits_fake_is_fake, _ = self.get_adversary_pred(fake.detach())
100
+ all_logits_real_is_fake, _ = self.get_adversary_pred(real.detach())
101
+ n_sub_adversaries = len(all_logits_fake_is_fake)
102
+ for logit_fake_is_fake, logit_real_is_fake in zip(all_logits_fake_is_fake, all_logits_real_is_fake):
103
+ loss += self.loss_fake(logit_fake_is_fake) + self.loss_real(logit_real_is_fake)
104
+
105
+ if self.normalize:
106
+ loss /= n_sub_adversaries
107
+
108
+ self.optimizer.zero_grad()
109
+ with flashy.distrib.eager_sync_model(self.adversary):
110
+ loss.backward()
111
+ self.optimizer.step()
112
+
113
+ return loss
114
+
115
+ def forward(self, fake: torch.Tensor, real: torch.Tensor) -> tp.Tuple[torch.Tensor, torch.Tensor]:
116
+ """Return the loss for the generator, i.e. trying to fool the adversary,
117
+ and feature matching loss if provided.
118
+ """
119
+ adv = torch.tensor(0., device=fake.device)
120
+ feat = torch.tensor(0., device=fake.device)
121
+ with flashy.utils.readonly(self.adversary):
122
+ all_logits_fake_is_fake, all_fmap_fake = self.get_adversary_pred(fake)
123
+ all_logits_real_is_fake, all_fmap_real = self.get_adversary_pred(real)
124
+ n_sub_adversaries = len(all_logits_fake_is_fake)
125
+ for logit_fake_is_fake in all_logits_fake_is_fake:
126
+ adv += self.loss(logit_fake_is_fake)
127
+ if self.loss_feat:
128
+ for fmap_fake, fmap_real in zip(all_fmap_fake, all_fmap_real):
129
+ feat += self.loss_feat(fmap_fake, fmap_real)
130
+
131
+ if self.normalize:
132
+ adv /= n_sub_adversaries
133
+ feat /= n_sub_adversaries
134
+
135
+ return adv, feat
136
+
137
+
138
+ def get_adv_criterion(loss_type: str) -> tp.Callable:
139
+ assert loss_type in ADVERSARIAL_LOSSES
140
+ if loss_type == 'mse':
141
+ return mse_loss
142
+ elif loss_type == 'hinge':
143
+ return hinge_loss
144
+ elif loss_type == 'hinge2':
145
+ return hinge2_loss
146
+ raise ValueError('Unsupported loss')
147
+
148
+
149
+ def get_fake_criterion(loss_type: str) -> tp.Callable:
150
+ assert loss_type in ADVERSARIAL_LOSSES
151
+ if loss_type == 'mse':
152
+ return mse_fake_loss
153
+ elif loss_type in ['hinge', 'hinge2']:
154
+ return hinge_fake_loss
155
+ raise ValueError('Unsupported loss')
156
+
157
+
158
+ def get_real_criterion(loss_type: str) -> tp.Callable:
159
+ assert loss_type in ADVERSARIAL_LOSSES
160
+ if loss_type == 'mse':
161
+ return mse_real_loss
162
+ elif loss_type in ['hinge', 'hinge2']:
163
+ return hinge_real_loss
164
+ raise ValueError('Unsupported loss')
165
+
166
+
167
+ def mse_real_loss(x: torch.Tensor) -> torch.Tensor:
168
+ return F.mse_loss(x, torch.tensor(1., device=x.device).expand_as(x))
169
+
170
+
171
+ def mse_fake_loss(x: torch.Tensor) -> torch.Tensor:
172
+ return F.mse_loss(x, torch.tensor(0., device=x.device).expand_as(x))
173
+
174
+
175
+ def hinge_real_loss(x: torch.Tensor) -> torch.Tensor:
176
+ return -torch.mean(torch.min(x - 1, torch.tensor(0., device=x.device).expand_as(x)))
177
+
178
+
179
+ def hinge_fake_loss(x: torch.Tensor) -> torch.Tensor:
180
+ return -torch.mean(torch.min(-x - 1, torch.tensor(0., device=x.device).expand_as(x)))
181
+
182
+
183
+ def mse_loss(x: torch.Tensor) -> torch.Tensor:
184
+ if x.numel() == 0:
185
+ return torch.tensor([0.0], device=x.device)
186
+ return F.mse_loss(x, torch.tensor(1., device=x.device).expand_as(x))
187
+
188
+
189
+ def hinge_loss(x: torch.Tensor) -> torch.Tensor:
190
+ if x.numel() == 0:
191
+ return torch.tensor([0.0], device=x.device)
192
+ return -x.mean()
193
+
194
+
195
+ def hinge2_loss(x: torch.Tensor) -> torch.Tensor:
196
+ if x.numel() == 0:
197
+ return torch.tensor([0.0])
198
+ return -torch.mean(torch.min(x - 1, torch.tensor(0., device=x.device).expand_as(x)))
199
+
200
+
201
+ class FeatureMatchingLoss(nn.Module):
202
+ """Feature matching loss for adversarial training.
203
+
204
+ Args:
205
+ loss (nn.Module): Loss to use for feature matching (default=torch.nn.L1).
206
+ normalize (bool): Whether to normalize the loss.
207
+ by number of feature maps.
208
+ """
209
+ def __init__(self, loss: nn.Module = torch.nn.L1Loss(), normalize: bool = True):
210
+ super().__init__()
211
+ self.loss = loss
212
+ self.normalize = normalize
213
+
214
+ def forward(self, fmap_fake: tp.List[torch.Tensor], fmap_real: tp.List[torch.Tensor]) -> torch.Tensor:
215
+ assert len(fmap_fake) == len(fmap_real) and len(fmap_fake) > 0
216
+ feat_loss = torch.tensor(0., device=fmap_fake[0].device)
217
+ feat_scale = torch.tensor(0., device=fmap_fake[0].device)
218
+ n_fmaps = 0
219
+ for (feat_fake, feat_real) in zip(fmap_fake, fmap_real):
220
+ assert feat_fake.shape == feat_real.shape
221
+ n_fmaps += 1
222
+ feat_loss += self.loss(feat_fake, feat_real)
223
+ feat_scale += torch.mean(torch.abs(feat_real))
224
+
225
+ if self.normalize:
226
+ feat_loss /= n_fmaps
227
+
228
+ return feat_loss
audiocraft/data/__init__.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ """Audio loading and writing support. Datasets for raw audio
7
+ or also including some metadata."""
8
+
9
+ # flake8: noqa
10
+ from . import audio, audio_dataset, info_audio_dataset, music_dataset, sound_dataset, btc_chords
audiocraft/data/__pycache__/__init__.cpython-311.pyc ADDED
Binary file (493 Bytes). View file
 
audiocraft/data/__pycache__/audio.cpython-311.pyc ADDED
Binary file (14.9 kB). View file
 
audiocraft/data/__pycache__/audio_dataset.cpython-311.pyc ADDED
Binary file (36.7 kB). View file
 
audiocraft/data/__pycache__/audio_utils.cpython-311.pyc ADDED
Binary file (21.4 kB). View file
 
audiocraft/data/__pycache__/btc_chords.cpython-311.pyc ADDED
Binary file (23.4 kB). View file
 
audiocraft/data/__pycache__/chords.cpython-311.pyc ADDED
Binary file (23.4 kB). View file
 
audiocraft/data/__pycache__/info_audio_dataset.cpython-311.pyc ADDED
Binary file (7.63 kB). View file
 
audiocraft/data/__pycache__/music_dataset.cpython-311.pyc ADDED
Binary file (21.8 kB). View file
 
audiocraft/data/__pycache__/sound_dataset.cpython-311.pyc ADDED
Binary file (18.8 kB). View file
 
audiocraft/data/__pycache__/zip.cpython-311.pyc ADDED
Binary file (3.68 kB). View file
 
audiocraft/data/audio.py ADDED
@@ -0,0 +1,257 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ """
8
+ Audio IO methods are defined in this module (info, read, write),
9
+ We rely on av library for faster read when possible, otherwise on torchaudio.
10
+ """
11
+
12
+ from dataclasses import dataclass
13
+ from pathlib import Path
14
+ import logging
15
+ import typing as tp
16
+
17
+ import numpy as np
18
+ import soundfile
19
+ import torch
20
+ from torch.nn import functional as F
21
+ import torchaudio as ta
22
+
23
+ import av
24
+
25
+ from .audio_utils import f32_pcm, i16_pcm, normalize_audio
26
+
27
+
28
+ _av_initialized = False
29
+
30
+
31
+ def _init_av():
32
+ global _av_initialized
33
+ if _av_initialized:
34
+ return
35
+ logger = logging.getLogger('libav.mp3')
36
+ logger.setLevel(logging.ERROR)
37
+ _av_initialized = True
38
+
39
+
40
+ @dataclass(frozen=True)
41
+ class AudioFileInfo:
42
+ sample_rate: int
43
+ duration: float
44
+ channels: int
45
+
46
+
47
+ def _av_info(filepath: tp.Union[str, Path]) -> AudioFileInfo:
48
+ _init_av()
49
+ with av.open(str(filepath)) as af:
50
+ stream = af.streams.audio[0]
51
+ sample_rate = stream.codec_context.sample_rate
52
+ duration = float(stream.duration * stream.time_base)
53
+ channels = stream.channels
54
+ return AudioFileInfo(sample_rate, duration, channels)
55
+
56
+
57
+ def _soundfile_info(filepath: tp.Union[str, Path]) -> AudioFileInfo:
58
+ info = soundfile.info(filepath)
59
+ return AudioFileInfo(info.samplerate, info.duration, info.channels)
60
+
61
+
62
+ def audio_info(filepath: tp.Union[str, Path]) -> AudioFileInfo:
63
+ # torchaudio no longer returns useful duration informations for some formats like mp3s.
64
+ filepath = Path(filepath)
65
+ if filepath.suffix in ['.flac', '.ogg']: # TODO: Validate .ogg can be safely read with av_info
66
+ # ffmpeg has some weird issue with flac.
67
+ return _soundfile_info(filepath)
68
+ else:
69
+ return _av_info(filepath)
70
+
71
+
72
+ def _av_read(filepath: tp.Union[str, Path], seek_time: float = 0, duration: float = -1.) -> tp.Tuple[torch.Tensor, int]:
73
+ """FFMPEG-based audio file reading using PyAV bindings.
74
+ Soundfile cannot read mp3 and av_read is more efficient than torchaudio.
75
+
76
+ Args:
77
+ filepath (str or Path): Path to audio file to read.
78
+ seek_time (float): Time at which to start reading in the file.
79
+ duration (float): Duration to read from the file. If set to -1, the whole file is read.
80
+ Returns:
81
+ tuple of torch.Tensor, int: Tuple containing audio data and sample rate
82
+ """
83
+ _init_av()
84
+ with av.open(str(filepath)) as af:
85
+ stream = af.streams.audio[0]
86
+ sr = stream.codec_context.sample_rate
87
+ num_frames = int(sr * duration) if duration >= 0 else -1
88
+ frame_offset = int(sr * seek_time)
89
+ # we need a small negative offset otherwise we get some edge artifact
90
+ # from the mp3 decoder.
91
+ af.seek(int(max(0, (seek_time - 0.1)) / stream.time_base), stream=stream)
92
+ frames = []
93
+ length = 0
94
+ for frame in af.decode(streams=stream.index):
95
+ current_offset = int(frame.rate * frame.pts * frame.time_base)
96
+ strip = max(0, frame_offset - current_offset)
97
+ buf = torch.from_numpy(frame.to_ndarray())
98
+ if buf.shape[0] != stream.channels:
99
+ buf = buf.view(-1, stream.channels).t()
100
+ buf = buf[:, strip:]
101
+ frames.append(buf)
102
+ length += buf.shape[1]
103
+ if num_frames > 0 and length >= num_frames:
104
+ break
105
+ assert frames
106
+ # If the above assert fails, it is likely because we seeked past the end of file point,
107
+ # in which case ffmpeg returns a single frame with only zeros, and a weird timestamp.
108
+ # This will need proper debugging, in due time.
109
+ wav = torch.cat(frames, dim=1)
110
+ assert wav.shape[0] == stream.channels
111
+ if num_frames > 0:
112
+ wav = wav[:, :num_frames]
113
+ return f32_pcm(wav), sr
114
+
115
+
116
+ def audio_read(filepath: tp.Union[str, Path], seek_time: float = 0.,
117
+ duration: float = -1., pad: bool = False) -> tp.Tuple[torch.Tensor, int]:
118
+ """Read audio by picking the most appropriate backend tool based on the audio format.
119
+
120
+ Args:
121
+ filepath (str or Path): Path to audio file to read.
122
+ seek_time (float): Time at which to start reading in the file.
123
+ duration (float): Duration to read from the file. If set to -1, the whole file is read.
124
+ pad (bool): Pad output audio if not reaching expected duration.
125
+ Returns:
126
+ tuple of torch.Tensor, int: Tuple containing audio data and sample rate.
127
+ """
128
+ fp = Path(filepath)
129
+ if fp.suffix in ['.flac', '.ogg']: # TODO: check if we can safely use av_read for .ogg
130
+ # There is some bug with ffmpeg and reading flac
131
+ info = _soundfile_info(filepath)
132
+ frames = -1 if duration <= 0 else int(duration * info.sample_rate)
133
+ frame_offset = int(seek_time * info.sample_rate)
134
+ wav, sr = soundfile.read(filepath, start=frame_offset, frames=frames, dtype=np.float32)
135
+ assert info.sample_rate == sr, f"Mismatch of sample rates {info.sample_rate} {sr}"
136
+ wav = torch.from_numpy(wav).t().contiguous()
137
+ if len(wav.shape) == 1:
138
+ wav = torch.unsqueeze(wav, 0)
139
+ elif (
140
+ fp.suffix in ['.wav', '.mp3'] and fp.suffix[1:] in ta.utils.sox_utils.list_read_formats()
141
+ and duration <= 0 and seek_time == 0
142
+ ):
143
+ # Torchaudio is faster if we load an entire file at once.
144
+ wav, sr = ta.load(fp)
145
+ else:
146
+ wav, sr = _av_read(filepath, seek_time, duration)
147
+ if pad and duration > 0:
148
+ expected_frames = int(duration * sr)
149
+ wav = F.pad(wav, (0, expected_frames - wav.shape[-1]))
150
+ return wav, sr
151
+
152
+
153
+ def audio_write(stem_name: tp.Union[str, Path],
154
+ wav: torch.Tensor, sample_rate: int,
155
+ format: str = 'wav', mp3_rate: int = 320, normalize: bool = True,
156
+ strategy: str = 'peak', peak_clip_headroom_db: float = 1,
157
+ rms_headroom_db: float = 18, loudness_headroom_db: float = 14,
158
+ loudness_compressor: bool = False,
159
+ log_clipping: bool = True, make_parent_dir: bool = True,
160
+ add_suffix: bool = True) -> Path:
161
+ """Convenience function for saving audio to disk. Returns the filename the audio was written to.
162
+
163
+ Args:
164
+ stem_name (str or Path): Filename without extension which will be added automatically.
165
+ format (str): Either "wav" or "mp3".
166
+ mp3_rate (int): kbps when using mp3s.
167
+ normalize (bool): if `True` (default), normalizes according to the prescribed
168
+ strategy (see after). If `False`, the strategy is only used in case clipping
169
+ would happen.
170
+ strategy (str): Can be either 'clip', 'peak', or 'rms'. Default is 'peak',
171
+ i.e. audio is normalized by its largest value. RMS normalizes by root-mean-square
172
+ with extra headroom to avoid clipping. 'clip' just clips.
173
+ peak_clip_headroom_db (float): Headroom in dB when doing 'peak' or 'clip' strategy.
174
+ rms_headroom_db (float): Headroom in dB when doing 'rms' strategy. This must be much larger
175
+ than the `peak_clip` one to avoid further clipping.
176
+ loudness_headroom_db (float): Target loudness for loudness normalization.
177
+ loudness_compressor (bool): Uses tanh for soft clipping when strategy is 'loudness'.
178
+ when strategy is 'loudness' log_clipping (bool): If True, basic logging on stderr when clipping still
179
+ occurs despite strategy (only for 'rms').
180
+ make_parent_dir (bool): Make parent directory if it doesn't exist.
181
+ Returns:
182
+ Path: Path of the saved audio.
183
+ """
184
+ assert wav.dtype.is_floating_point, "wav is not floating point"
185
+ if wav.dim() == 1:
186
+ wav = wav[None]
187
+ elif wav.dim() > 2:
188
+ raise ValueError("Input wav should be at most 2 dimension.")
189
+ assert wav.isfinite().all()
190
+ wav = normalize_audio(wav, normalize, strategy, peak_clip_headroom_db,
191
+ rms_headroom_db, loudness_headroom_db, loudness_compressor,
192
+ log_clipping=log_clipping, sample_rate=sample_rate,
193
+ stem_name=str(stem_name))
194
+ kwargs: dict = {}
195
+ if format == 'mp3':
196
+ suffix = '.mp3'
197
+ kwargs.update({"compression": mp3_rate})
198
+ elif format == 'wav':
199
+ wav = i16_pcm(wav)
200
+ suffix = '.wav'
201
+ kwargs.update({"encoding": "PCM_S", "bits_per_sample": 16})
202
+ else:
203
+ raise RuntimeError(f"Invalid format {format}. Only wav or mp3 are supported.")
204
+ if not add_suffix:
205
+ suffix = ''
206
+ path = Path(str(stem_name) + suffix)
207
+ if make_parent_dir:
208
+ path.parent.mkdir(exist_ok=True, parents=True)
209
+ try:
210
+ ta.save(path, wav, sample_rate, **kwargs)
211
+ except Exception:
212
+ if path.exists():
213
+ # we do not want to leave half written files around.
214
+ path.unlink()
215
+ raise
216
+ return path
217
+
218
+ def audio_postproc(wav: torch.Tensor, sample_rate: int, normalize: bool = True,
219
+ strategy: str = 'peak', peak_clip_headroom_db: float = 1,
220
+ rms_headroom_db: float = 18, loudness_headroom_db: float = 14,
221
+ loudness_compressor: bool = False, log_clipping: bool = True) -> Path:
222
+ """Convenience function for saving audio to disk. Returns the filename the audio was written to.
223
+
224
+ Args:
225
+ wav (torch.Tensor): Audio data to save.
226
+ sample_rate (int): Sample rate of audio data.
227
+ format (str): Either "wav" or "mp3".
228
+ mp3_rate (int): kbps when using mp3s.
229
+ normalize (bool): if `True` (default), normalizes according to the prescribed
230
+ strategy (see after). If `False`, the strategy is only used in case clipping
231
+ would happen.
232
+ strategy (str): Can be either 'clip', 'peak', or 'rms'. Default is 'peak',
233
+ i.e. audio is normalized by its largest value. RMS normalizes by root-mean-square
234
+ with extra headroom to avoid clipping. 'clip' just clips.
235
+ peak_clip_headroom_db (float): Headroom in dB when doing 'peak' or 'clip' strategy.
236
+ rms_headroom_db (float): Headroom in dB when doing 'rms' strategy. This must be much larger
237
+ than the `peak_clip` one to avoid further clipping.
238
+ loudness_headroom_db (float): Target loudness for loudness normalization.
239
+ loudness_compressor (bool): Uses tanh for soft clipping when strategy is 'loudness'.
240
+ when strategy is 'loudness' log_clipping (bool): If True, basic logging on stderr when clipping still
241
+ occurs despite strategy (only for 'rms').
242
+ make_parent_dir (bool): Make parent directory if it doesn't exist.
243
+ Returns:
244
+ Path: Path of the saved audio.
245
+ """
246
+ assert wav.dtype.is_floating_point, "wav is not floating point"
247
+ if wav.dim() == 1:
248
+ wav = wav[None]
249
+ elif wav.dim() > 2:
250
+ raise ValueError("Input wav should be at most 2 dimension.")
251
+ assert wav.isfinite().all()
252
+ wav = normalize_audio(wav, normalize, strategy, peak_clip_headroom_db,
253
+ rms_headroom_db, loudness_headroom_db, loudness_compressor,
254
+ log_clipping=log_clipping, sample_rate=sample_rate,
255
+ stem_name=None)
256
+
257
+ return wav
audiocraft/data/audio_dataset.py ADDED
@@ -0,0 +1,614 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ """AudioDataset support. In order to handle a larger number of files
7
+ without having to scan again the folders, we precompute some metadata
8
+ (filename, sample rate, duration), and use that to efficiently sample audio segments.
9
+ """
10
+ import argparse
11
+ import copy
12
+ from concurrent.futures import ThreadPoolExecutor, Future
13
+ from dataclasses import dataclass, fields
14
+ from contextlib import ExitStack
15
+ from functools import lru_cache
16
+ import gzip
17
+ import json
18
+ import logging
19
+ import os
20
+ from pathlib import Path
21
+ import random
22
+ import sys
23
+ import typing as tp
24
+
25
+ import torch
26
+ import torch.nn.functional as F
27
+
28
+ from .audio import audio_read, audio_info
29
+ from .audio_utils import convert_audio
30
+ from .zip import PathInZip
31
+
32
+ try:
33
+ import dora
34
+ except ImportError:
35
+ dora = None # type: ignore
36
+
37
+
38
+ @dataclass(order=True)
39
+ class BaseInfo:
40
+
41
+ @classmethod
42
+ def _dict2fields(cls, dictionary: dict):
43
+ return {
44
+ field.name: dictionary[field.name]
45
+ for field in fields(cls) if field.name in dictionary
46
+ }
47
+
48
+ @classmethod
49
+ def from_dict(cls, dictionary: dict):
50
+ _dictionary = cls._dict2fields(dictionary)
51
+ return cls(**_dictionary)
52
+
53
+ def to_dict(self):
54
+ return {
55
+ field.name: self.__getattribute__(field.name)
56
+ for field in fields(self)
57
+ }
58
+
59
+
60
+ @dataclass(order=True)
61
+ class AudioMeta(BaseInfo):
62
+ path: str
63
+ duration: float
64
+ sample_rate: int
65
+ bpm: float
66
+ # meter: int
67
+ amplitude: tp.Optional[float] = None
68
+ weight: tp.Optional[float] = None
69
+ phr_start: tp.List[tp.Optional[float]] = None
70
+ # info_path is used to load additional information about the audio file that is stored in zip files.
71
+ info_path: tp.Optional[PathInZip] = None
72
+
73
+ @classmethod
74
+ def from_dict(cls, dictionary: dict):
75
+ base = cls._dict2fields(dictionary)
76
+ if 'info_path' in base and base['info_path'] is not None:
77
+ base['info_path'] = PathInZip(base['info_path'])
78
+ return cls(**base)
79
+
80
+ def to_dict(self):
81
+ d = super().to_dict()
82
+ if d['info_path'] is not None:
83
+ d['info_path'] = str(d['info_path'])
84
+ return d
85
+
86
+
87
+ @dataclass(order=True)
88
+ class SegmentInfo(BaseInfo):
89
+ meta: AudioMeta
90
+ seek_time: float
91
+ # The following values are given once the audio is processed, e.g.
92
+ # at the target sample rate and target number of channels.
93
+ n_frames: int # actual number of frames without padding
94
+ total_frames: int # total number of frames, padding included
95
+ sample_rate: int # actual sample rate
96
+ channels: int # number of audio channels.
97
+
98
+
99
+ DEFAULT_EXTS = ['.wav', '.mp3', '.flac', '.ogg', '.m4a']
100
+
101
+ logger = logging.getLogger(__name__)
102
+
103
+
104
+ def _get_audio_meta(file_path: str, minimal: bool = True) -> AudioMeta:
105
+ """AudioMeta from a path to an audio file.
106
+
107
+ Args:
108
+ file_path (str): Resolved path of valid audio file.
109
+ minimal (bool): Whether to only load the minimal set of metadata (takes longer if not).
110
+ Returns:
111
+ AudioMeta: Audio file path and its metadata.
112
+ """
113
+ info = audio_info(file_path)
114
+ amplitude: tp.Optional[float] = None
115
+ if not minimal:
116
+ wav, sr = audio_read(file_path)
117
+ amplitude = wav.abs().max().item()
118
+
119
+ # load json info
120
+ json_file = file_path.replace('.wav', '.json')
121
+ with open(json_file ,'r') as f:
122
+ json_str = f.read()
123
+ info_json = json.loads(json_str)
124
+
125
+ if "phr_start" not in info_json.keys():
126
+ info_json["phr_start"] = None
127
+
128
+ # return AudioMeta(file_path, info.duration, info.sample_rate, info_json["bpm"], info_json["meter"], amplitude, None, info_json["phr_start"])
129
+ return AudioMeta(file_path, info.duration, info.sample_rate, info_json["bpm"], amplitude, None, info_json["phr_start"])
130
+
131
+ def _resolve_audio_meta(m: AudioMeta, fast: bool = True) -> AudioMeta:
132
+ """If Dora is available as a dependency, try to resolve potential relative paths
133
+ in list of AudioMeta. This method is expected to be used when loading meta from file.
134
+
135
+ Args:
136
+ m (AudioMeta): Audio meta to resolve.
137
+ fast (bool): If True, uses a really fast check for determining if a file
138
+ is already absolute or not. Only valid on Linux/Mac.
139
+ Returns:
140
+ AudioMeta: Audio meta with resolved path.
141
+ """
142
+ def is_abs(m):
143
+ if fast:
144
+ return str(m)[0] == '/'
145
+ else:
146
+ os.path.isabs(str(m))
147
+
148
+ if not dora:
149
+ return m
150
+
151
+ if not is_abs(m.path):
152
+ m.path = dora.git_save.to_absolute_path(m.path)
153
+ if m.info_path is not None and not is_abs(m.info_path.zip_path):
154
+ m.info_path.zip_path = dora.git_save.to_absolute_path(m.path)
155
+ return m
156
+
157
+
158
+ def find_audio_files(path: tp.Union[Path, str],
159
+ exts: tp.List[str] = DEFAULT_EXTS,
160
+ resolve: bool = True,
161
+ minimal: bool = True,
162
+ progress: bool = False,
163
+ workers: int = 0) -> tp.List[AudioMeta]:
164
+ """Build a list of AudioMeta from a given path,
165
+ collecting relevant audio files and fetching meta info.
166
+
167
+ Args:
168
+ path (str or Path): Path to folder containing audio files.
169
+ exts (list of str): List of file extensions to consider for audio files.
170
+ minimal (bool): Whether to only load the minimal set of metadata (takes longer if not).
171
+ progress (bool): Whether to log progress on audio files collection.
172
+ workers (int): number of parallel workers, if 0, use only the current thread.
173
+ Returns:
174
+ list of AudioMeta: List of audio file path and its metadata.
175
+ """
176
+ audio_files = []
177
+ futures: tp.List[Future] = []
178
+ pool: tp.Optional[ThreadPoolExecutor] = None
179
+ with ExitStack() as stack:
180
+ if workers > 0:
181
+ pool = ThreadPoolExecutor(workers)
182
+ stack.enter_context(pool)
183
+
184
+ if progress:
185
+ print("Finding audio files...")
186
+ for root, folders, files in os.walk(path, followlinks=True):
187
+ for file in files:
188
+ full_path = Path(root) / file
189
+ if full_path.suffix.lower() in exts:
190
+ audio_files.append(full_path)
191
+ if pool is not None:
192
+ futures.append(pool.submit(_get_audio_meta, str(audio_files[-1]), minimal))
193
+ if progress:
194
+ print(format(len(audio_files), " 8d"), end='\r', file=sys.stderr)
195
+
196
+ if progress:
197
+ print("Getting audio metadata...")
198
+ meta: tp.List[AudioMeta] = []
199
+ for idx, file_path in enumerate(audio_files):
200
+ try:
201
+ if pool is None:
202
+ m = _get_audio_meta(str(file_path), minimal)
203
+ else:
204
+ m = futures[idx].result()
205
+ if resolve:
206
+ m = _resolve_audio_meta(m)
207
+ except Exception as err:
208
+ print("Error with", str(file_path), err, file=sys.stderr)
209
+ continue
210
+ meta.append(m)
211
+ if progress:
212
+ print(format((1 + idx) / len(audio_files), " 3.1%"), end='\r', file=sys.stderr)
213
+ meta.sort()
214
+ return meta
215
+
216
+
217
+ def load_audio_meta(path: tp.Union[str, Path],
218
+ resolve: bool = True, fast: bool = True) -> tp.List[AudioMeta]:
219
+ """Load list of AudioMeta from an optionally compressed json file.
220
+
221
+ Args:
222
+ path (str or Path): Path to JSON file.
223
+ resolve (bool): Whether to resolve the path from AudioMeta (default=True).
224
+ fast (bool): activates some tricks to make things faster.
225
+ Returns:
226
+ list of AudioMeta: List of audio file path and its total duration.
227
+ """
228
+ open_fn = gzip.open if str(path).lower().endswith('.gz') else open
229
+ with open_fn(path, 'rb') as fp: # type: ignore
230
+ lines = fp.readlines()
231
+ meta = []
232
+ for line in lines:
233
+ d = json.loads(line)
234
+ m = AudioMeta.from_dict(d)
235
+ if resolve:
236
+ m = _resolve_audio_meta(m, fast=fast)
237
+ meta.append(m)
238
+ return meta
239
+
240
+
241
+ def save_audio_meta(path: tp.Union[str, Path], meta: tp.List[AudioMeta]):
242
+ """Save the audio metadata to the file pointer as json.
243
+
244
+ Args:
245
+ path (str or Path): Path to JSON file.
246
+ metadata (list of BaseAudioMeta): List of audio meta to save.
247
+ """
248
+ Path(path).parent.mkdir(exist_ok=True, parents=True)
249
+ open_fn = gzip.open if str(path).lower().endswith('.gz') else open
250
+ with open_fn(path, 'wb') as fp: # type: ignore
251
+ for m in meta:
252
+ json_str = json.dumps(m.to_dict()) + '\n'
253
+ json_bytes = json_str.encode('utf-8')
254
+ fp.write(json_bytes)
255
+
256
+
257
+ class AudioDataset:
258
+ """Base audio dataset.
259
+
260
+ The dataset takes a list of AudioMeta and create a dataset composed of segments of audio
261
+ and potentially additional information, by creating random segments from the list of audio
262
+ files referenced in the metadata and applying minimal data pre-processing such as resampling,
263
+ mixing of channels, padding, etc.
264
+
265
+ If no segment_duration value is provided, the AudioDataset will return the full wav for each
266
+ audio file. Otherwise, it will randomly sample audio files and create a segment of the specified
267
+ duration, applying padding if required.
268
+
269
+ By default, only the torch Tensor corresponding to the waveform is returned. Setting return_info=True
270
+ allows to return a tuple containing the torch Tensor and additional metadata on the segment and the
271
+ original audio meta.
272
+
273
+ Note that you can call `start_epoch(epoch)` in order to get
274
+ a deterministic "randomization" for `shuffle=True`.
275
+ For a given epoch and dataset index, this will always return the same extract.
276
+ You can get back some diversity by setting the `shuffle_seed` param.
277
+
278
+ Args:
279
+ meta (list of AudioMeta): List of audio files metadata.
280
+ segment_duration (float, optional): Optional segment duration of audio to load.
281
+ If not specified, the dataset will load the full audio segment from the file.
282
+ shuffle (bool): Set to `True` to have the data reshuffled at every epoch.
283
+ sample_rate (int): Target sample rate of the loaded audio samples.
284
+ channels (int): Target number of channels of the loaded audio samples.
285
+ sample_on_duration (bool): Set to `True` to sample segments with probability
286
+ dependent on audio file duration. This is only used if `segment_duration` is provided.
287
+ sample_on_weight (bool): Set to `True` to sample segments using the `weight` entry of
288
+ `AudioMeta`. If `sample_on_duration` is also True, the actual weight will be the product
289
+ of the file duration and file weight. This is only used if `segment_duration` is provided.
290
+ min_segment_ratio (float): Minimum segment ratio to use when the audio file
291
+ is shorter than the desired segment.
292
+ max_read_retry (int): Maximum number of retries to sample an audio segment from the dataset.
293
+ return_info (bool): Whether to return the wav only or return wav along with segment info and metadata.
294
+ min_audio_duration (float, optional): Minimum audio file duration, in seconds, if provided
295
+ audio shorter than this will be filtered out.
296
+ max_audio_duration (float, optional): Maximal audio file duration in seconds, if provided
297
+ audio longer than this will be filtered out.
298
+ shuffle_seed (int): can be used to further randomize
299
+ load_wav (bool): if False, skip loading the wav but returns a tensor of 0
300
+ with the expected segment_duration (which must be provided if load_wav is False).
301
+ permutation_on_files (bool): only if `sample_on_weight` and `sample_on_duration`
302
+ are False. Will ensure a permutation on files when going through the dataset.
303
+ In that case the epoch number must be provided in order for the model
304
+ to continue the permutation across epochs. In that case, it is assumed
305
+ that `num_samples = total_batch_size * num_updates_per_epoch`, with
306
+ `total_batch_size` the overall batch size accounting for all gpus.
307
+ """
308
+ def __init__(self,
309
+ meta: tp.List[AudioMeta],
310
+ segment_duration: tp.Optional[float] = None,
311
+ shuffle: bool = True,
312
+ num_samples: int = 10_000,
313
+ sample_rate: int = 48_000,
314
+ channels: int = 2,
315
+ pad: bool = True,
316
+ sample_on_duration: bool = True,
317
+ sample_on_weight: bool = True,
318
+ min_segment_ratio: float = 1,
319
+ max_read_retry: int = 10,
320
+ return_info: bool = False,
321
+ min_audio_duration: tp.Optional[float] = None,
322
+ max_audio_duration: tp.Optional[float] = None,
323
+ shuffle_seed: int = 0,
324
+ load_wav: bool = True,
325
+ permutation_on_files: bool = False,
326
+ ):
327
+ assert len(meta) > 0, "No audio meta provided to AudioDataset. Please check loading of audio meta."
328
+ assert segment_duration is None or segment_duration > 0
329
+ assert segment_duration is None or min_segment_ratio >= 0
330
+ self.segment_duration = segment_duration
331
+ self.min_segment_ratio = min_segment_ratio
332
+ self.max_audio_duration = max_audio_duration
333
+ self.min_audio_duration = min_audio_duration
334
+ if self.min_audio_duration is not None and self.max_audio_duration is not None:
335
+ assert self.min_audio_duration <= self.max_audio_duration
336
+ self.meta: tp.List[AudioMeta] = self._filter_duration(meta)
337
+ assert len(self.meta) # Fail fast if all data has been filtered.
338
+ self.total_duration = sum(d.duration for d in self.meta)
339
+
340
+ if segment_duration is None:
341
+ num_samples = len(self.meta)
342
+ self.num_samples = num_samples
343
+ self.shuffle = shuffle
344
+ self.sample_rate = sample_rate
345
+ self.channels = channels
346
+ self.pad = pad
347
+ self.sample_on_weight = sample_on_weight
348
+ self.sample_on_duration = sample_on_duration
349
+ self.sampling_probabilities = self._get_sampling_probabilities()
350
+ self.max_read_retry = max_read_retry
351
+ self.return_info = return_info
352
+ self.shuffle_seed = shuffle_seed
353
+ self.current_epoch: tp.Optional[int] = None
354
+ self.load_wav = load_wav
355
+ if not load_wav:
356
+ assert segment_duration is not None
357
+ self.permutation_on_files = permutation_on_files
358
+ if permutation_on_files:
359
+ assert not self.sample_on_duration
360
+ assert not self.sample_on_weight
361
+ assert self.shuffle
362
+
363
+ def start_epoch(self, epoch: int):
364
+ self.current_epoch = epoch
365
+
366
+ def __len__(self):
367
+ return self.num_samples
368
+
369
+ def _get_sampling_probabilities(self, normalized: bool = True):
370
+ """Return the sampling probabilities for each file inside `self.meta`."""
371
+ scores: tp.List[float] = []
372
+ for file_meta in self.meta:
373
+ score = 1.
374
+ if self.sample_on_weight and file_meta.weight is not None:
375
+ score *= file_meta.weight
376
+ if self.sample_on_duration:
377
+ score *= file_meta.duration
378
+ scores.append(score)
379
+ probabilities = torch.tensor(scores)
380
+ if normalized:
381
+ probabilities /= probabilities.sum()
382
+ return probabilities
383
+
384
+ @staticmethod
385
+ @lru_cache(16)
386
+ def _get_file_permutation(num_files: int, permutation_index: int, base_seed: int):
387
+ # Used to keep the most recent files permutation in memory implicitely.
388
+ # will work unless someone is using a lot of Datasets in parallel.
389
+ rng = torch.Generator()
390
+ rng.manual_seed(base_seed + permutation_index)
391
+ return torch.randperm(num_files, generator=rng)
392
+
393
+ def sample_file(self, index: int, rng: torch.Generator) -> AudioMeta:
394
+ """Sample a given file from `self.meta`. Can be overridden in subclasses.
395
+ This is only called if `segment_duration` is not None.
396
+
397
+ You must use the provided random number generator `rng` for reproducibility.
398
+ You can further make use of the index accessed.
399
+ """
400
+ if self.permutation_on_files:
401
+ assert self.current_epoch is not None
402
+ total_index = self.current_epoch * len(self) + index
403
+ permutation_index = total_index // len(self.meta)
404
+ relative_index = total_index % len(self.meta)
405
+ permutation = AudioDataset._get_file_permutation(
406
+ len(self.meta), permutation_index, self.shuffle_seed)
407
+ file_index = permutation[relative_index]
408
+ return self.meta[file_index]
409
+
410
+ if not self.sample_on_weight and not self.sample_on_duration:
411
+ file_index = int(torch.randint(len(self.sampling_probabilities), (1,), generator=rng).item())
412
+ else:
413
+ file_index = int(torch.multinomial(self.sampling_probabilities, 1, generator=rng).item())
414
+
415
+ return self.meta[file_index]
416
+
417
+ def _audio_read(self, path: str, seek_time: float = 0, duration: float = -1):
418
+ # Override this method in subclass if needed.
419
+ if self.load_wav:
420
+ return audio_read(path, seek_time, duration, pad=False)
421
+ else:
422
+ assert self.segment_duration is not None
423
+ n_frames = int(self.sample_rate * self.segment_duration)
424
+ return torch.zeros(self.channels, n_frames), self.sample_rate
425
+
426
+ def __getitem__(self, index: int) -> tp.Union[torch.Tensor, tp.Tuple[torch.Tensor, SegmentInfo]]:
427
+ if self.segment_duration is None:
428
+ file_meta = self.meta[index]
429
+ out, sr = audio_read(file_meta.path)
430
+ out = convert_audio(out, sr, self.sample_rate, self.channels)
431
+ n_frames = out.shape[-1]
432
+ segment_info = SegmentInfo(file_meta, seek_time=0., n_frames=n_frames, total_frames=n_frames,
433
+ sample_rate=self.sample_rate, channels=out.shape[0])
434
+ else:
435
+ rng = torch.Generator()
436
+ if self.shuffle:
437
+ # We use index, plus extra randomness, either totally random if we don't know the epoch.
438
+ # otherwise we make use of the epoch number and optional shuffle_seed.
439
+ if self.current_epoch is None:
440
+ rng.manual_seed(index + self.num_samples * random.randint(0, 2**24))
441
+ else:
442
+ rng.manual_seed(index + self.num_samples * (self.current_epoch + self.shuffle_seed))
443
+ else:
444
+ # We only use index
445
+ rng.manual_seed(index)
446
+
447
+ for retry in range(self.max_read_retry):
448
+ file_meta = self.sample_file(index, rng)
449
+ # We add some variance in the file position even if audio file is smaller than segment
450
+ # without ending up with empty segments
451
+
452
+ # sample with phrase
453
+ if file_meta.phr_start is not None:
454
+ # max_seek = max(0, len(file_meta.phr_start[:-1]))
455
+ max_seek = max(0, len([start for start in file_meta.phr_start if start + self.segment_duration <= file_meta.duration])) # sample with time
456
+ seek_time = file_meta.phr_start[int(torch.rand(1, generator=rng).item() * max_seek)] # choose from phrase
457
+
458
+ else:
459
+ max_seek = max(0, file_meta.duration - self.segment_duration * self.min_segment_ratio)
460
+ seek_time = torch.rand(1, generator=rng).item() * max_seek # can be change to choose phrase start
461
+
462
+ if file_meta.duration == self.segment_duration:
463
+ seek_time = 0
464
+
465
+ # phr_dur = 60./file_meta.bpm * (file_meta.meter * 4.) # if meter=4 then 16 beats per phrase
466
+ try:
467
+ out, sr = audio_read(file_meta.path, seek_time, self.segment_duration, pad=False)
468
+ # out, sr = audio_read(file_meta.path, seek_time, phr_dur, pad=False) # use phrase trunk as input
469
+ out = convert_audio(out, sr, self.sample_rate, self.channels)
470
+ n_frames = out.shape[-1]
471
+ target_frames = int(self.segment_duration * self.sample_rate)
472
+ if self.pad:
473
+ out = F.pad(out, (0, target_frames - n_frames))
474
+ segment_info = SegmentInfo(file_meta, seek_time, n_frames=n_frames, total_frames=target_frames,
475
+ sample_rate=self.sample_rate, channels=out.shape[0])
476
+ except Exception as exc:
477
+ logger.warning("Error opening file %s: %r", file_meta.path, exc)
478
+ if retry == self.max_read_retry - 1:
479
+ raise
480
+ else:
481
+ break
482
+
483
+ if self.return_info:
484
+ # Returns the wav and additional information on the wave segment
485
+ return out, segment_info
486
+ else:
487
+ return out
488
+
489
+ def collater(self, samples):
490
+ """The collater function has to be provided to the dataloader
491
+ if AudioDataset has return_info=True in order to properly collate
492
+ the samples of a batch.
493
+ """
494
+ if self.segment_duration is None and len(samples) > 1:
495
+ assert self.pad, "Must allow padding when batching examples of different durations."
496
+
497
+ # In this case the audio reaching the collater is of variable length as segment_duration=None.
498
+ to_pad = self.segment_duration is None and self.pad
499
+ if to_pad:
500
+ max_len = max([wav.shape[-1] for wav, _ in samples])
501
+
502
+ def _pad_wav(wav):
503
+ return F.pad(wav, (0, max_len - wav.shape[-1]))
504
+
505
+ if self.return_info:
506
+ if len(samples) > 0:
507
+ assert len(samples[0]) == 2
508
+ assert isinstance(samples[0][0], torch.Tensor)
509
+ assert isinstance(samples[0][1], SegmentInfo)
510
+
511
+ wavs = [wav for wav, _ in samples]
512
+ segment_infos = [copy.deepcopy(info) for _, info in samples]
513
+
514
+ if to_pad:
515
+ # Each wav could be of a different duration as they are not segmented.
516
+ for i in range(len(samples)):
517
+ # Determines the total length of the signal with padding, so we update here as we pad.
518
+ segment_infos[i].total_frames = max_len
519
+ wavs[i] = _pad_wav(wavs[i])
520
+
521
+ wav = torch.stack(wavs)
522
+ return wav, segment_infos
523
+ else:
524
+ assert isinstance(samples[0], torch.Tensor)
525
+ if to_pad:
526
+ samples = [_pad_wav(s) for s in samples]
527
+ return torch.stack(samples)
528
+
529
+ def _filter_duration(self, meta: tp.List[AudioMeta]) -> tp.List[AudioMeta]:
530
+ """Filters out audio files with audio durations that will not allow to sample examples from them."""
531
+ orig_len = len(meta)
532
+
533
+ # Filter data that is too short.
534
+ if self.min_audio_duration is not None:
535
+ meta = [m for m in meta if m.duration >= self.min_audio_duration]
536
+
537
+ # Filter data that is too long.
538
+ if self.max_audio_duration is not None:
539
+ meta = [m for m in meta if m.duration <= self.max_audio_duration]
540
+
541
+ filtered_len = len(meta)
542
+ removed_percentage = 100*(1-float(filtered_len)/orig_len)
543
+ msg = 'Removed %.2f percent of the data because it was too short or too long.' % removed_percentage
544
+ if removed_percentage < 10:
545
+ logging.debug(msg)
546
+ else:
547
+ logging.warning(msg)
548
+ return meta
549
+
550
+ @classmethod
551
+ def from_meta(cls, root: tp.Union[str, Path], **kwargs):
552
+ """Instantiate AudioDataset from a path to a directory containing a manifest as a jsonl file.
553
+
554
+ Args:
555
+ root (str or Path): Path to root folder containing audio files.
556
+ kwargs: Additional keyword arguments for the AudioDataset.
557
+ """
558
+ root = Path(root)
559
+ if root.is_dir():
560
+ if (root / 'data.jsonl').exists():
561
+ root = root / 'data.jsonl'
562
+ elif (root / 'data.jsonl.gz').exists():
563
+ root = root / 'data.jsonl.gz'
564
+ else:
565
+ raise ValueError("Don't know where to read metadata from in the dir. "
566
+ "Expecting either a data.jsonl or data.jsonl.gz file but none found.")
567
+ meta = load_audio_meta(root)
568
+ return cls(meta, **kwargs)
569
+
570
+ @classmethod
571
+ def from_path(cls, root: tp.Union[str, Path], minimal_meta: bool = True,
572
+ exts: tp.List[str] = DEFAULT_EXTS, **kwargs):
573
+ """Instantiate AudioDataset from a path containing (possibly nested) audio files.
574
+
575
+ Args:
576
+ root (str or Path): Path to root folder containing audio files.
577
+ minimal_meta (bool): Whether to only load minimal metadata or not.
578
+ exts (list of str): Extensions for audio files.
579
+ kwargs: Additional keyword arguments for the AudioDataset.
580
+ """
581
+ root = Path(root)
582
+ if root.is_file():
583
+ meta = load_audio_meta(root, resolve=True)
584
+ else:
585
+ meta = find_audio_files(root, exts, minimal=minimal_meta, resolve=True)
586
+ return cls(meta, **kwargs)
587
+
588
+
589
+ def main():
590
+ logging.basicConfig(stream=sys.stderr, level=logging.INFO)
591
+ parser = argparse.ArgumentParser(
592
+ prog='audio_dataset',
593
+ description='Generate .jsonl files by scanning a folder.')
594
+ parser.add_argument('root', help='Root folder with all the audio files')
595
+ parser.add_argument('output_meta_file',
596
+ help='Output file to store the metadata, ')
597
+ parser.add_argument('--complete',
598
+ action='store_false', dest='minimal', default=True,
599
+ help='Retrieve all metadata, even the one that are expansive '
600
+ 'to compute (e.g. normalization).')
601
+ parser.add_argument('--resolve',
602
+ action='store_true', default=False,
603
+ help='Resolve the paths to be absolute and with no symlinks.')
604
+ parser.add_argument('--workers',
605
+ default=10, type=int,
606
+ help='Number of workers.')
607
+ args = parser.parse_args()
608
+ meta = find_audio_files(args.root, DEFAULT_EXTS, progress=True,
609
+ resolve=args.resolve, minimal=args.minimal, workers=args.workers)
610
+ save_audio_meta(args.output_meta_file, meta)
611
+
612
+
613
+ if __name__ == '__main__':
614
+ main()
audiocraft/data/audio_utils.py ADDED
@@ -0,0 +1,385 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ """Various utilities for audio convertion (pcm format, sample rate and channels),
7
+ and volume normalization."""
8
+ import sys
9
+ import typing as tp
10
+
11
+ import julius
12
+ import torch
13
+ import torchaudio
14
+ import numpy as np
15
+
16
+ from .chords import Chords
17
+ chords = Chords() # initiate object
18
+
19
+
20
+ def convert_audio_channels(wav: torch.Tensor, channels: int = 2) -> torch.Tensor:
21
+ """Convert audio to the given number of channels.
22
+
23
+ Args:
24
+ wav (torch.Tensor): Audio wave of shape [B, C, T].
25
+ channels (int): Expected number of channels as output.
26
+ Returns:
27
+ torch.Tensor: Downmixed or unchanged audio wave [B, C, T].
28
+ """
29
+ *shape, src_channels, length = wav.shape
30
+ if src_channels == channels:
31
+ pass
32
+ elif channels == 1:
33
+ # Case 1:
34
+ # The caller asked 1-channel audio, and the stream has multiple
35
+ # channels, downmix all channels.
36
+ wav = wav.mean(dim=-2, keepdim=True)
37
+ elif src_channels == 1:
38
+ # Case 2:
39
+ # The caller asked for multiple channels, but the input file has
40
+ # a single channel, replicate the audio over all channels.
41
+ wav = wav.expand(*shape, channels, length)
42
+ elif src_channels >= channels:
43
+ # Case 3:
44
+ # The caller asked for multiple channels, and the input file has
45
+ # more channels than requested. In that case return the first channels.
46
+ wav = wav[..., :channels, :]
47
+ else:
48
+ # Case 4: What is a reasonable choice here?
49
+ raise ValueError('The audio file has less channels than requested but is not mono.')
50
+ return wav
51
+
52
+
53
+ def convert_audio(wav: torch.Tensor, from_rate: float,
54
+ to_rate: float, to_channels: int) -> torch.Tensor:
55
+ """Convert audio to new sample rate and number of audio channels."""
56
+ wav = julius.resample_frac(wav, int(from_rate), int(to_rate))
57
+ wav = convert_audio_channels(wav, to_channels)
58
+ return wav
59
+
60
+
61
+ def normalize_loudness(wav: torch.Tensor, sample_rate: int, loudness_headroom_db: float = 14,
62
+ loudness_compressor: bool = False, energy_floor: float = 2e-3):
63
+ """Normalize an input signal to a user loudness in dB LKFS.
64
+ Audio loudness is defined according to the ITU-R BS.1770-4 recommendation.
65
+
66
+ Args:
67
+ wav (torch.Tensor): Input multichannel audio data.
68
+ sample_rate (int): Sample rate.
69
+ loudness_headroom_db (float): Target loudness of the output in dB LUFS.
70
+ loudness_compressor (bool): Uses tanh for soft clipping.
71
+ energy_floor (float): anything below that RMS level will not be rescaled.
72
+ Returns:
73
+ torch.Tensor: Loudness normalized output data.
74
+ """
75
+ energy = wav.pow(2).mean().sqrt().item()
76
+ if energy < energy_floor:
77
+ return wav
78
+ transform = torchaudio.transforms.Loudness(sample_rate)
79
+ input_loudness_db = transform(wav).item()
80
+ # calculate the gain needed to scale to the desired loudness level
81
+ delta_loudness = -loudness_headroom_db - input_loudness_db
82
+ gain = 10.0 ** (delta_loudness / 20.0)
83
+ output = gain * wav
84
+ if loudness_compressor:
85
+ output = torch.tanh(output)
86
+ assert output.isfinite().all(), (input_loudness_db, wav.pow(2).mean().sqrt())
87
+ return output
88
+
89
+
90
+ def _clip_wav(wav: torch.Tensor, log_clipping: bool = False, stem_name: tp.Optional[str] = None) -> None:
91
+ """Utility function to clip the audio with logging if specified."""
92
+ max_scale = wav.abs().max()
93
+ if log_clipping and max_scale > 1:
94
+ clamp_prob = (wav.abs() > 1).float().mean().item()
95
+ print(f"CLIPPING {stem_name or ''} happening with proba (a bit of clipping is okay):",
96
+ clamp_prob, "maximum scale: ", max_scale.item(), file=sys.stderr)
97
+ wav.clamp_(-1, 1)
98
+
99
+
100
+ def normalize_audio(wav: torch.Tensor, normalize: bool = True,
101
+ strategy: str = 'peak', peak_clip_headroom_db: float = 1,
102
+ rms_headroom_db: float = 18, loudness_headroom_db: float = 14,
103
+ loudness_compressor: bool = False, log_clipping: bool = False,
104
+ sample_rate: tp.Optional[int] = None,
105
+ stem_name: tp.Optional[str] = None) -> torch.Tensor:
106
+ """Normalize the audio according to the prescribed strategy (see after).
107
+
108
+ Args:
109
+ wav (torch.Tensor): Audio data.
110
+ normalize (bool): if `True` (default), normalizes according to the prescribed
111
+ strategy (see after). If `False`, the strategy is only used in case clipping
112
+ would happen.
113
+ strategy (str): Can be either 'clip', 'peak', or 'rms'. Default is 'peak',
114
+ i.e. audio is normalized by its largest value. RMS normalizes by root-mean-square
115
+ with extra headroom to avoid clipping. 'clip' just clips.
116
+ peak_clip_headroom_db (float): Headroom in dB when doing 'peak' or 'clip' strategy.
117
+ rms_headroom_db (float): Headroom in dB when doing 'rms' strategy. This must be much larger
118
+ than the `peak_clip` one to avoid further clipping.
119
+ loudness_headroom_db (float): Target loudness for loudness normalization.
120
+ loudness_compressor (bool): If True, uses tanh based soft clipping.
121
+ log_clipping (bool): If True, basic logging on stderr when clipping still
122
+ occurs despite strategy (only for 'rms').
123
+ sample_rate (int): Sample rate for the audio data (required for loudness).
124
+ stem_name (str, optional): Stem name for clipping logging.
125
+ Returns:
126
+ torch.Tensor: Normalized audio.
127
+ """
128
+ scale_peak = 10 ** (-peak_clip_headroom_db / 20)
129
+ scale_rms = 10 ** (-rms_headroom_db / 20)
130
+ if strategy == 'peak':
131
+ rescaling = (scale_peak / wav.abs().max())
132
+ if normalize or rescaling < 1:
133
+ wav = wav * rescaling
134
+ elif strategy == 'clip':
135
+ wav = wav.clamp(-scale_peak, scale_peak)
136
+ elif strategy == 'rms':
137
+ mono = wav.mean(dim=0)
138
+ rescaling = scale_rms / mono.pow(2).mean().sqrt()
139
+ if normalize or rescaling < 1:
140
+ wav = wav * rescaling
141
+ _clip_wav(wav, log_clipping=log_clipping, stem_name=stem_name)
142
+ elif strategy == 'loudness':
143
+ assert sample_rate is not None, "Loudness normalization requires sample rate."
144
+ wav = normalize_loudness(wav, sample_rate, loudness_headroom_db, loudness_compressor)
145
+ _clip_wav(wav, log_clipping=log_clipping, stem_name=stem_name)
146
+ else:
147
+ assert wav.abs().max() < 1
148
+ assert strategy == '' or strategy == 'none', f"Unexpected strategy: '{strategy}'"
149
+ return wav
150
+
151
+
152
+ def f32_pcm(wav: torch.Tensor) -> torch.Tensor:
153
+ """Convert audio to float 32 bits PCM format.
154
+ """
155
+ if wav.dtype.is_floating_point:
156
+ return wav
157
+ elif wav.dtype == torch.int16:
158
+ return wav.float() / 2**15
159
+ elif wav.dtype == torch.int32:
160
+ return wav.float() / 2**31
161
+ raise ValueError(f"Unsupported wav dtype: {wav.dtype}")
162
+
163
+
164
+ def i16_pcm(wav: torch.Tensor) -> torch.Tensor:
165
+ """Convert audio to int 16 bits PCM format.
166
+
167
+ ..Warning:: There exist many formula for doing this conversion. None are perfect
168
+ due to the asymmetry of the int16 range. One either have possible clipping, DC offset,
169
+ or inconsistencies with f32_pcm. If the given wav doesn't have enough headroom,
170
+ it is possible that `i16_pcm(f32_pcm)) != Identity`.
171
+ """
172
+ if wav.dtype.is_floating_point:
173
+ assert wav.abs().max() <= 1
174
+ candidate = (wav * 2 ** 15).round()
175
+ if candidate.max() >= 2 ** 15: # clipping would occur
176
+ candidate = (wav * (2 ** 15 - 1)).round()
177
+ return candidate.short()
178
+ else:
179
+ assert wav.dtype == torch.int16
180
+ return wav
181
+
182
+ def convert_txtchord2chroma_orig(text_chords, bpms, meters, gen_sec):
183
+ chromas = []
184
+ # total_len = int(gen_sec * 44100 / 512)
185
+ total_len = int(gen_sec * 32000 / 640)
186
+ for chord, bpm, meter in zip(text_chords, bpms, meters):
187
+ phr_len = int(60. / bpm * (meter * 4) * 32000 / 640)
188
+ # phr_len = int(60. / bpm * (meter * 4) * 44100 / 2048)
189
+ chroma = torch.zeros([total_len, 12])
190
+ count = 0
191
+ offset = 0
192
+
193
+ stext = chord.split(" ")
194
+ timebin = phr_len // 4 # frames per bar
195
+ while count < total_len:
196
+ for tokens in stext:
197
+ if count >= total_len:
198
+ break
199
+ stoken = tokens.split(',')
200
+ for token in stoken:
201
+ off_timebin = timebin + offset
202
+ rounded_timebin = round(off_timebin)
203
+ offset = off_timebin - rounded_timebin
204
+ offset = offset/len(stoken)
205
+ add_step = rounded_timebin//len(stoken)
206
+ mhot = chords.chord(token)
207
+ rolled = np.roll(mhot[2], mhot[0])
208
+ for i in range(count, count + add_step):
209
+ if count >= total_len:
210
+ break
211
+ chroma[i] = torch.Tensor(rolled)
212
+ count += 1
213
+ chromas.append(chroma)
214
+ chroma = torch.stack(chromas)
215
+ return chroma
216
+
217
+ def convert_txtchord2chroma(chord, bpm, meter, gen_sec):
218
+ total_len = int(gen_sec * 32000 / 640)
219
+
220
+ phr_len = int(60. / bpm * (meter * 4) * 32000 / 640)
221
+ # phr_len = int(60. / bpm * (meter * 4) * 44100 / 2048)
222
+ chroma = torch.zeros([total_len, 12])
223
+ count = 0
224
+ offset = 0
225
+
226
+ stext = chord.split(" ")
227
+ timebin = phr_len // 4 # frames per bar
228
+ while count < total_len:
229
+ for tokens in stext:
230
+ if count >= total_len:
231
+ break
232
+ stoken = tokens.split(',')
233
+ for token in stoken:
234
+ off_timebin = timebin + offset
235
+ rounded_timebin = round(off_timebin)
236
+ offset = off_timebin - rounded_timebin
237
+ offset = offset/len(stoken)
238
+ add_step = rounded_timebin//len(stoken)
239
+ mhot = chords.chord(token)
240
+ rolled = np.roll(mhot[2], mhot[0])
241
+ for i in range(count, count + add_step):
242
+ if count >= total_len:
243
+ break
244
+ chroma[i] = torch.Tensor(rolled)
245
+ count += 1
246
+ return chroma
247
+
248
+
249
+
250
+ def convert_txtchord2chroma_24(chord, bpm, meter, gen_sec):
251
+ total_len = int(gen_sec * 32000 / 640)
252
+
253
+ phr_len = int(60. / bpm * (meter * 4) * 32000 / 640)
254
+ # phr_len = int(60. / bpm * (meter * 4) * 44100 / 2048)
255
+ chroma = torch.zeros([total_len, 24])
256
+ count = 0
257
+ offset = 0
258
+
259
+ stext = chord.split(" ")
260
+ timebin = phr_len // 4 # frames per bar
261
+ while count < total_len:
262
+ for tokens in stext:
263
+ if count >= total_len:
264
+ break
265
+ stoken = tokens.split(',')
266
+ for token in stoken:
267
+ off_timebin = timebin + offset
268
+ rounded_timebin = round(off_timebin)
269
+ offset = off_timebin - rounded_timebin
270
+ offset = offset/len(stoken)
271
+ add_step = rounded_timebin//len(stoken)
272
+
273
+ root, bass, ivs_vec, _ = chords.chord(token)
274
+ root_vec = torch.zeros(12)
275
+ root_vec[root] = 1
276
+ final_vec = np.concatenate([root_vec, ivs_vec]) # [C]
277
+ for i in range(count, count + add_step):
278
+ if count >= total_len:
279
+ break
280
+ chroma[i] = torch.Tensor(final_vec)
281
+ count += 1
282
+ return chroma
283
+
284
+ def get_chroma_chord_from_lab(chord_path, gen_sec):
285
+ total_len = int(gen_sec * 32000 / 640)
286
+ feat_hz = 32000/640
287
+ intervals = []
288
+ labels = []
289
+ feat_chord = np.zeros((12, total_len)) # root| ivs
290
+ with open(chord_path, 'r') as f:
291
+ for line in f.readlines():
292
+ splits = line.split()
293
+ if len(splits) == 3:
294
+ st_sec, ed_sec, ctag = splits
295
+ st_sec = float(st_sec)
296
+ ed_sec = float(ed_sec)
297
+
298
+ st_frame = int(st_sec*feat_hz)
299
+ ed_frame = int(ed_sec*feat_hz)
300
+
301
+ mhot = chords.chord(ctag)
302
+ final_vec = np.roll(mhot[2], mhot[0])
303
+
304
+ final_vec = final_vec[..., None] # [C, T]
305
+ feat_chord[:, st_frame:ed_frame] = final_vec
306
+ feat_chord = torch.from_numpy(feat_chord)
307
+ return feat_chord
308
+
309
+
310
+ def get_chroma_chord_from_text(text_chord, bpm, meter, gen_sec):
311
+ total_len = int(gen_sec * 32000 / 640)
312
+
313
+ phr_len = int(60. / bpm * (meter * 4) * 32000 / 640)
314
+ chroma = np.zeros([12, total_len])
315
+ count = 0
316
+ offset = 0
317
+
318
+ stext = chord.split(" ")
319
+ timebin = phr_len // 4 # frames per bar
320
+ while count < total_len:
321
+ for tokens in stext:
322
+ if count >= total_len:
323
+ break
324
+ stoken = tokens.split(',')
325
+ for token in stoken:
326
+ off_timebin = timebin + offset
327
+ rounded_timebin = round(off_timebin)
328
+ offset = off_timebin - rounded_timebin
329
+ offset = offset/len(stoken)
330
+ add_step = rounded_timebin//len(stoken)
331
+ mhot = chords.chord(token)
332
+ final_vec = np.roll(mhot[2], mhot[0])
333
+ final_vec = final_vec[..., None] # [C, T]
334
+
335
+ for i in range(count, count + add_step):
336
+ if count >= total_len:
337
+ break
338
+ chroma[:, i] = final_vec
339
+ count += 1
340
+ feat_chord = torch.from_numpy(feat_chord)
341
+ return feat_chord
342
+
343
+ def get_beat_from_npy(beat_path, gen_sec):
344
+ total_len = int(gen_sec * 32000 / 640)
345
+
346
+ beats_np = np.load(beat_path, allow_pickle=True)
347
+ feat_beats = np.zeros((2, total_len))
348
+ meter = int(max(beats_np.T[1]))
349
+ beat_time = beats_np[:, 0]
350
+ bar_time = beats_np[np.where(beats_np[:, 1] == 1)[0], 0]
351
+
352
+ beat_frame = [int((t)*feat_hz) for t in beat_time if (t >= 0 and t < duration)]
353
+ bar_frame =[int((t)*feat_hz) for t in bar_time if (t >= 0 and t < duration)]
354
+
355
+ feat_beats[0, beat_frame] = 1
356
+ feat_beats[1, bar_frame] = 1
357
+ kernel = np.array([0.05, 0.1, 0.3, 0.9, 0.3, 0.1, 0.05])
358
+ feat_beats[0] = np.convolve(feat_beats[0] , kernel, 'same') # apply soft kernel
359
+ beat_events = feat_beats[0] + feat_beats[1]
360
+ beat_events = torch.tensor(beat_events).unsqueeze(0) # [T] -> [1, T]
361
+
362
+ bpm = 60 // np.mean([j-i for i, j in zip(beat_time[:-1], beat_time[1:])])
363
+ return beat_events, bpm, meter
364
+
365
+ def get_beat_from_bpm(bpm, meter, gen_sec):
366
+ total_len = int(gen_sec * 32000 / 640)
367
+
368
+ feat_beats = np.zeros((2, total_len))
369
+
370
+ beat_time_gap = 60 / bpm
371
+ beat_gap = 60 / bpm * feat_hz
372
+
373
+ beat_time = np.arange(0, duration, beat_time_gap)
374
+ beat_frame = np.round(np.arange(0, n_frames_feat, beat_gap)).astype(int)
375
+ if beat_frame[-1] == n_frames_feat:
376
+ beat_frame = beat_frame[:-1]
377
+ bar_frame = beat_frame[::meter]
378
+
379
+ feat_beats[0, beat_frame] = 1
380
+ feat_beats[1, bar_frame] = 1
381
+ kernel = np.array([0.05, 0.1, 0.3, 0.9, 0.3, 0.1, 0.05])
382
+ feat_beats[0] = np.convolve(feat_beats[0] , kernel, 'same') # apply soft kernel
383
+ beat_events = feat_beats[0] + feat_beats[1]
384
+ beat_events = torch.tensor(beat_events).unsqueeze(0) # [T] -> [1, T]
385
+ return beat_events, beat_time, meter
audiocraft/data/btc_chords.py ADDED
@@ -0,0 +1,524 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # encoding: utf-8
2
+ """
3
+ This module contains chord evaluation functionality.
4
+
5
+ It provides the evaluation measures used for the MIREX ACE task, and
6
+ tries to follow [1]_ and [2]_ as closely as possible.
7
+
8
+ Notes
9
+ -----
10
+ This implementation tries to follow the references and their implementation
11
+ (e.g., https://github.com/jpauwels/MusOOEvaluator for [2]_). However, there
12
+ are some known (and possibly some unknown) differences. If you find one not
13
+ listed in the following, please file an issue:
14
+
15
+ - Detected chord segments are adjusted to fit the length of the annotations.
16
+ In particular, this means that, if necessary, filler segments of 'no chord'
17
+ are added at beginnings and ends. This can result in different segmentation
18
+ scores compared to the original implementation.
19
+
20
+ References
21
+ ----------
22
+ .. [1] Christopher Harte, "Towards Automatic Extraction of Harmony Information
23
+ from Music Signals." Dissertation,
24
+ Department for Electronic Engineering, Queen Mary University of London,
25
+ 2010.
26
+ .. [2] Johan Pauwels and Geoffroy Peeters.
27
+ "Evaluating Automatically Estimated Chord Sequences."
28
+ In Proceedings of ICASSP 2013, Vancouver, Canada, 2013.
29
+
30
+ """
31
+
32
+ import numpy as np
33
+ import pandas as pd
34
+
35
+
36
+ CHORD_DTYPE = [('root', np.int_),
37
+ ('bass', np.int_),
38
+ ('intervals', np.int_, (12,)),
39
+ ('is_major',np.bool_)]
40
+
41
+ CHORD_ANN_DTYPE = [('start', np.float32),
42
+ ('end', np.float32),
43
+ ('chord', CHORD_DTYPE)]
44
+
45
+ NO_CHORD = (-1, -1, np.zeros(12, dtype=np.int_), False)
46
+ UNKNOWN_CHORD = (-1, -1, np.ones(12, dtype=np.int_) * -1, False)
47
+
48
+ PITCH_CLASS = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B']
49
+
50
+
51
+ def idx_to_chord(idx):
52
+ if idx == 24:
53
+ return "-"
54
+ elif idx == 25:
55
+ return u"\u03B5"
56
+
57
+ minmaj = idx % 2
58
+ root = idx // 2
59
+
60
+ return PITCH_CLASS[root] + ("M" if minmaj == 0 else "m")
61
+
62
+ class Chords:
63
+
64
+ def __init__(self):
65
+ self._shorthands = {
66
+ 'maj': self.interval_list('(1,3,5)'),
67
+ 'min': self.interval_list('(1,b3,5)'),
68
+ 'dim': self.interval_list('(1,b3,b5)'),
69
+ 'aug': self.interval_list('(1,3,#5)'),
70
+ 'maj7': self.interval_list('(1,3,5,7)'),
71
+ 'min7': self.interval_list('(1,b3,5,b7)'),
72
+ '7': self.interval_list('(1,3,5,b7)'),
73
+ '6': self.interval_list('(1,6)'), # custom
74
+ '5': self.interval_list('(1,5)'),
75
+ '4': self.interval_list('(1,4)'), # custom
76
+ '1': self.interval_list('(1)'),
77
+ 'dim7': self.interval_list('(1,b3,b5,bb7)'),
78
+ 'hdim7': self.interval_list('(1,b3,b5,b7)'),
79
+ 'minmaj7': self.interval_list('(1,b3,5,7)'),
80
+ 'maj6': self.interval_list('(1,3,5,6)'),
81
+ 'min6': self.interval_list('(1,b3,5,6)'),
82
+ '9': self.interval_list('(1,3,5,b7,9)'),
83
+ 'maj9': self.interval_list('(1,3,5,7,9)'),
84
+ 'min9': self.interval_list('(1,b3,5,b7,9)'),
85
+ 'add9': self.interval_list('(1,3,5,9)'), # custom
86
+ 'sus2': self.interval_list('(1,2,5)'),
87
+ 'sus4': self.interval_list('(1,4,5)'),
88
+ '7sus2': self.interval_list('(1,2,5,b7)'), # custom
89
+ '7sus4': self.interval_list('(1,4,5,b7)'), # custom
90
+ '11': self.interval_list('(1,3,5,b7,9,11)'),
91
+ 'min11': self.interval_list('(1,b3,5,b7,9,11)'),
92
+ '13': self.interval_list('(1,3,5,b7,13)'),
93
+ 'maj13': self.interval_list('(1,3,5,7,13)'),
94
+ 'min13': self.interval_list('(1,b3,5,b7,13)')
95
+ }
96
+
97
+ def chords(self, labels):
98
+
99
+ """
100
+ Transform a list of chord labels into an array of internal numeric
101
+ representations.
102
+
103
+ Parameters
104
+ ----------
105
+ labels : list
106
+ List of chord labels (str).
107
+
108
+ Returns
109
+ -------
110
+ chords : numpy.array
111
+ Structured array with columns 'root', 'bass', and 'intervals',
112
+ containing a numeric representation of chords.
113
+
114
+ """
115
+ crds = np.zeros(len(labels), dtype=CHORD_DTYPE)
116
+ cache = {}
117
+ for i, lbl in enumerate(labels):
118
+ cv = cache.get(lbl, None)
119
+ if cv is None:
120
+ cv = self.chord(lbl)
121
+ cache[lbl] = cv
122
+ crds[i] = cv
123
+
124
+ return crds
125
+
126
+ def label_error_modify(self, label):
127
+ if label == 'Emin/4': label = 'E:min/4'
128
+ elif label == 'A7/3': label = 'A:7/3'
129
+ elif label == 'Bb7/3': label = 'Bb:7/3'
130
+ elif label == 'Bb7/5': label = 'Bb:7/5'
131
+ elif label.find(':') == -1:
132
+ if label.find('min') != -1:
133
+ label = label[:label.find('min')] + ':' + label[label.find('min'):]
134
+ return label
135
+
136
+ def chord(self, label):
137
+ """
138
+ Transform a chord label into the internal numeric represenation of
139
+ (root, bass, intervals array).
140
+
141
+ Parameters
142
+ ----------
143
+ label : str
144
+ Chord label.
145
+
146
+ Returns
147
+ -------
148
+ chord : tuple
149
+ Numeric representation of the chord: (root, bass, intervals array).
150
+
151
+ """
152
+
153
+
154
+ is_major = False
155
+
156
+ if label == 'N':
157
+ return NO_CHORD
158
+ if label == 'X':
159
+ return UNKNOWN_CHORD
160
+
161
+ label = self.label_error_modify(label)
162
+
163
+ c_idx = label.find(':')
164
+ s_idx = label.find('/')
165
+
166
+ if c_idx == -1:
167
+ quality_str = 'maj'
168
+ if s_idx == -1:
169
+ root_str = label
170
+ bass_str = ''
171
+ else:
172
+ root_str = label[:s_idx]
173
+ bass_str = label[s_idx + 1:]
174
+ else:
175
+ root_str = label[:c_idx]
176
+ if s_idx == -1:
177
+ quality_str = label[c_idx + 1:]
178
+ bass_str = ''
179
+ else:
180
+ quality_str = label[c_idx + 1:s_idx]
181
+ bass_str = label[s_idx + 1:]
182
+
183
+ root = self.pitch(root_str)
184
+ bass = self.interval(bass_str) if bass_str else 0
185
+ ivs = self.chord_intervals(quality_str)
186
+ ivs[bass] = 1
187
+
188
+ if 'min' in quality_str:
189
+ is_major = False
190
+ else:
191
+ is_major = True
192
+
193
+
194
+ return root, bass, ivs, is_major
195
+
196
+ _l = [0, 1, 1, 0, 1, 1, 1]
197
+ _chroma_id = (np.arange(len(_l) * 2) + 1) + np.array(_l + _l).cumsum() - 1
198
+
199
+ def modify(self, base_pitch, modifier):
200
+ """
201
+ Modify a pitch class in integer representation by a given modifier string.
202
+
203
+ A modifier string can be any sequence of 'b' (one semitone down)
204
+ and '#' (one semitone up).
205
+
206
+ Parameters
207
+ ----------
208
+ base_pitch : int
209
+ Pitch class as integer.
210
+ modifier : str
211
+ String of modifiers ('b' or '#').
212
+
213
+ Returns
214
+ -------
215
+ modified_pitch : int
216
+ Modified root note.
217
+
218
+ """
219
+ for m in modifier:
220
+ if m == 'b':
221
+ base_pitch -= 1
222
+ elif m == '#':
223
+ base_pitch += 1
224
+ else:
225
+ raise ValueError('Unknown modifier: {}'.format(m))
226
+ return base_pitch
227
+
228
+ def pitch(self, pitch_str):
229
+ """
230
+ Convert a string representation of a pitch class (consisting of root
231
+ note and modifiers) to an integer representation.
232
+
233
+ Parameters
234
+ ----------
235
+ pitch_str : str
236
+ String representation of a pitch class.
237
+
238
+ Returns
239
+ -------
240
+ pitch : int
241
+ Integer representation of a pitch class.
242
+
243
+ """
244
+ return self.modify(self._chroma_id[(ord(pitch_str[0]) - ord('C')) % 7],
245
+ pitch_str[1:]) % 12
246
+
247
+ def interval(self, interval_str):
248
+ """
249
+ Convert a string representation of a musical interval into a pitch class
250
+ (e.g. a minor seventh 'b7' into 10, because it is 10 semitones above its
251
+ base note).
252
+
253
+ Parameters
254
+ ----------
255
+ interval_str : str
256
+ Musical interval.
257
+
258
+ Returns
259
+ -------
260
+ pitch_class : int
261
+ Number of semitones to base note of interval.
262
+
263
+ """
264
+ for i, c in enumerate(interval_str):
265
+ if c.isdigit():
266
+ return self.modify(self._chroma_id[int(interval_str[i:]) - 1],
267
+ interval_str[:i]) % 12
268
+
269
+ def interval_list(self, intervals_str, given_pitch_classes=None):
270
+ """
271
+ Convert a list of intervals given as string to a binary pitch class
272
+ representation. For example, 'b3, 5' would become
273
+ [0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0].
274
+
275
+ Parameters
276
+ ----------
277
+ intervals_str : str
278
+ List of intervals as comma-separated string (e.g. 'b3, 5').
279
+ given_pitch_classes : None or numpy array
280
+ If None, start with empty pitch class array, if numpy array of length
281
+ 12, this array will be modified.
282
+
283
+ Returns
284
+ -------
285
+ pitch_classes : numpy array
286
+ Binary pitch class representation of intervals.
287
+
288
+ """
289
+ if given_pitch_classes is None:
290
+ given_pitch_classes = np.zeros(12, dtype=np.int_)
291
+ for int_def in intervals_str[1:-1].split(','):
292
+ int_def = int_def.strip()
293
+ if int_def[0] == '*':
294
+ given_pitch_classes[self.interval(int_def[1:])] = 0
295
+ else:
296
+ given_pitch_classes[self.interval(int_def)] = 1
297
+ return given_pitch_classes
298
+
299
+ # mapping of shorthand interval notations to the actual interval representation
300
+
301
+ def chord_intervals(self, quality_str):
302
+ """
303
+ Convert a chord quality string to a pitch class representation. For
304
+ example, 'maj' becomes [1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0].
305
+
306
+ Parameters
307
+ ----------
308
+ quality_str : str
309
+ String defining the chord quality.
310
+
311
+ Returns
312
+ -------
313
+ pitch_classes : numpy array
314
+ Binary pitch class representation of chord quality.
315
+
316
+ """
317
+ list_idx = quality_str.find('(')
318
+ if list_idx == -1:
319
+ return self._shorthands[quality_str].copy()
320
+ if list_idx != 0:
321
+ ivs = self._shorthands[quality_str[:list_idx]].copy()
322
+ else:
323
+ ivs = np.zeros(12, dtype=np.int_)
324
+
325
+
326
+ return self.interval_list(quality_str[list_idx:], ivs)
327
+
328
+ def load_chords(self, filename):
329
+ """
330
+ Load chords from a text file.
331
+
332
+ The chord must follow the syntax defined in [1]_.
333
+
334
+ Parameters
335
+ ----------
336
+ filename : str
337
+ File containing chord segments.
338
+
339
+ Returns
340
+ -------
341
+ crds : numpy structured array
342
+ Structured array with columns "start", "end", and "chord",
343
+ containing the beginning, end, and chord definition of chord
344
+ segments.
345
+
346
+ References
347
+ ----------
348
+ .. [1] Christopher Harte, "Towards Automatic Extraction of Harmony
349
+ Information from Music Signals." Dissertation,
350
+ Department for Electronic Engineering, Queen Mary University of
351
+ London, 2010.
352
+
353
+ """
354
+ start, end, chord_labels = [], [], []
355
+ with open(filename, 'r') as f:
356
+ for line in f:
357
+ if line:
358
+
359
+ splits = line.split()
360
+ if len(splits) == 3:
361
+
362
+ s = splits[0]
363
+ e = splits[1]
364
+ l = splits[2]
365
+
366
+ start.append(float(s))
367
+ end.append(float(e))
368
+ chord_labels.append(l)
369
+
370
+ crds = np.zeros(len(start), dtype=CHORD_ANN_DTYPE)
371
+ crds['start'] = start
372
+ crds['end'] = end
373
+ crds['chord'] = self.chords(chord_labels)
374
+
375
+ return crds
376
+
377
+ def reduce_to_triads(self, chords, keep_bass=False):
378
+ """
379
+ Reduce chords to triads.
380
+
381
+ The function follows the reduction rules implemented in [1]_. If a chord
382
+ chord does not contain a third, major second or fourth, it is reduced to
383
+ a power chord. If it does not contain neither a third nor a fifth, it is
384
+ reduced to a single note "chord".
385
+
386
+ Parameters
387
+ ----------
388
+ chords : numpy structured array
389
+ Chords to be reduced.
390
+ keep_bass : bool
391
+ Indicates whether to keep the bass note or set it to 0.
392
+
393
+ Returns
394
+ -------
395
+ reduced_chords : numpy structured array
396
+ Chords reduced to triads.
397
+
398
+ References
399
+ ----------
400
+ .. [1] Johan Pauwels and Geoffroy Peeters.
401
+ "Evaluating Automatically Estimated Chord Sequences."
402
+ In Proceedings of ICASSP 2013, Vancouver, Canada, 2013.
403
+
404
+ """
405
+ unison = chords['intervals'][:, 0].astype(bool)
406
+ maj_sec = chords['intervals'][:, 2].astype(bool)
407
+ min_third = chords['intervals'][:, 3].astype(bool)
408
+ maj_third = chords['intervals'][:, 4].astype(bool)
409
+ perf_fourth = chords['intervals'][:, 5].astype(bool)
410
+ dim_fifth = chords['intervals'][:, 6].astype(bool)
411
+ perf_fifth = chords['intervals'][:, 7].astype(bool)
412
+ aug_fifth = chords['intervals'][:, 8].astype(bool)
413
+ no_chord = (chords['intervals'] == NO_CHORD[-1]).all(axis=1)
414
+
415
+ reduced_chords = chords.copy()
416
+ ivs = reduced_chords['intervals']
417
+
418
+ ivs[~no_chord] = self.interval_list('(1)')
419
+ ivs[unison & perf_fifth] = self.interval_list('(1,5)')
420
+ ivs[~perf_fourth & maj_sec] = self._shorthands['sus2']
421
+ ivs[perf_fourth & ~maj_sec] = self._shorthands['sus4']
422
+
423
+ ivs[min_third] = self._shorthands['min']
424
+ ivs[min_third & aug_fifth & ~perf_fifth] = self.interval_list('(1,b3,#5)')
425
+ ivs[min_third & dim_fifth & ~perf_fifth] = self._shorthands['dim']
426
+
427
+ ivs[maj_third] = self._shorthands['maj']
428
+ ivs[maj_third & dim_fifth & ~perf_fifth] = self.interval_list('(1,3,b5)')
429
+ ivs[maj_third & aug_fifth & ~perf_fifth] = self._shorthands['aug']
430
+
431
+ if not keep_bass:
432
+ reduced_chords['bass'] = 0
433
+ else:
434
+ # remove bass notes if they are not part of the intervals anymore
435
+ reduced_chords['bass'] *= ivs[range(len(reduced_chords)),
436
+ reduced_chords['bass']]
437
+ # keep -1 in bass for no chords
438
+ reduced_chords['bass'][no_chord] = -1
439
+
440
+ return reduced_chords
441
+
442
+ def convert_to_id(self, root, is_major):
443
+ if root == -1:
444
+ return 24
445
+ else:
446
+ if is_major:
447
+ return root * 2
448
+ else:
449
+ return root * 2 + 1
450
+
451
+ def get_converted_chord(self, filename):
452
+ loaded_chord = self.load_chords(filename)
453
+ triads = self.reduce_to_triads(loaded_chord['chord'])
454
+
455
+ df = self.assign_chord_id(triads)
456
+ df['start'] = loaded_chord['start']
457
+ df['end'] = loaded_chord['end']
458
+
459
+ return df
460
+
461
+ def assign_chord_id(self, entry):
462
+ # maj, min chord only
463
+ # if you want to add other chord, change this part and get_converted_chord(reduce_to_triads)
464
+ df = pd.DataFrame(data=entry[['root', 'is_major']])
465
+ df['chord_id'] = df.apply(lambda row: self.convert_to_id(row['root'], row['is_major']), axis=1)
466
+ return df
467
+
468
+ def convert_to_id_voca(self, root, quality):
469
+ if root == -1:
470
+ return 169
471
+ else:
472
+ if quality == 'min':
473
+ return root * 14
474
+ elif quality == 'maj':
475
+ return root * 14 + 1
476
+ elif quality == 'dim':
477
+ return root * 14 + 2
478
+ elif quality == 'aug':
479
+ return root * 14 + 3
480
+ elif quality == 'min6':
481
+ return root * 14 + 4
482
+ elif quality == 'maj6':
483
+ return root * 14 + 5
484
+ elif quality == 'min7':
485
+ return root * 14 + 6
486
+ elif quality == 'minmaj7':
487
+ return root * 14 + 7
488
+ elif quality == 'maj7':
489
+ return root * 14 + 8
490
+ elif quality == '7':
491
+ return root * 14 + 9
492
+ elif quality == 'dim7':
493
+ return root * 14 + 10
494
+ elif quality == 'hdim7':
495
+ return root * 14 + 11
496
+ elif quality == 'sus2':
497
+ return root * 14 + 12
498
+ elif quality == 'sus4':
499
+ return root * 14 + 13
500
+ else:
501
+ return 168
502
+
503
+
504
+ def lab_file_error_modify(self, ref_labels):
505
+ for i in range(len(ref_labels)):
506
+ if ref_labels[i][-2:] == ':4':
507
+ ref_labels[i] = ref_labels[i].replace(':4', ':sus4')
508
+ elif ref_labels[i][-2:] == ':6':
509
+ ref_labels[i] = ref_labels[i].replace(':6', ':maj6')
510
+ elif ref_labels[i][-4:] == ':6/2':
511
+ ref_labels[i] = ref_labels[i].replace(':6/2', ':maj6/2')
512
+ elif ref_labels[i] == 'Emin/4':
513
+ ref_labels[i] = 'E:min/4'
514
+ elif ref_labels[i] == 'A7/3':
515
+ ref_labels[i] = 'A:7/3'
516
+ elif ref_labels[i] == 'Bb7/3':
517
+ ref_labels[i] = 'Bb:7/3'
518
+ elif ref_labels[i] == 'Bb7/5':
519
+ ref_labels[i] = 'Bb:7/5'
520
+ elif ref_labels[i].find(':') == -1:
521
+ if ref_labels[i].find('min') != -1:
522
+ ref_labels[i] = ref_labels[i][:ref_labels[i].find('min')] + ':' + ref_labels[i][ref_labels[i].find('min'):]
523
+ return ref_labels
524
+
audiocraft/data/chords.py ADDED
@@ -0,0 +1,524 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # encoding: utf-8
2
+ """
3
+ This module contains chord evaluation functionality.
4
+
5
+ It provides the evaluation measures used for the MIREX ACE task, and
6
+ tries to follow [1]_ and [2]_ as closely as possible.
7
+
8
+ Notes
9
+ -----
10
+ This implementation tries to follow the references and their implementation
11
+ (e.g., https://github.com/jpauwels/MusOOEvaluator for [2]_). However, there
12
+ are some known (and possibly some unknown) differences. If you find one not
13
+ listed in the following, please file an issue:
14
+
15
+ - Detected chord segments are adjusted to fit the length of the annotations.
16
+ In particular, this means that, if necessary, filler segments of 'no chord'
17
+ are added at beginnings and ends. This can result in different segmentation
18
+ scores compared to the original implementation.
19
+
20
+ References
21
+ ----------
22
+ .. [1] Christopher Harte, "Towards Automatic Extraction of Harmony Information
23
+ from Music Signals." Dissertation,
24
+ Department for Electronic Engineering, Queen Mary University of London,
25
+ 2010.
26
+ .. [2] Johan Pauwels and Geoffroy Peeters.
27
+ "Evaluating Automatically Estimated Chord Sequences."
28
+ In Proceedings of ICASSP 2013, Vancouver, Canada, 2013.
29
+
30
+ """
31
+
32
+ import numpy as np
33
+ import pandas as pd
34
+
35
+
36
+ CHORD_DTYPE = [('root', np.int_),
37
+ ('bass', np.int_),
38
+ ('intervals', np.int_, (12,)),
39
+ ('is_major',np.bool_)]
40
+
41
+ CHORD_ANN_DTYPE = [('start', np.float32),
42
+ ('end', np.float32),
43
+ ('chord', CHORD_DTYPE)]
44
+
45
+ NO_CHORD = (-1, -1, np.zeros(12, dtype=np.int_), False)
46
+ UNKNOWN_CHORD = (-1, -1, np.ones(12, dtype=np.int_) * -1, False)
47
+
48
+ PITCH_CLASS = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B']
49
+
50
+
51
+ def idx_to_chord(idx):
52
+ if idx == 24:
53
+ return "-"
54
+ elif idx == 25:
55
+ return u"\u03B5"
56
+
57
+ minmaj = idx % 2
58
+ root = idx // 2
59
+
60
+ return PITCH_CLASS[root] + ("M" if minmaj == 0 else "m")
61
+
62
+ class Chords:
63
+
64
+ def __init__(self):
65
+ self._shorthands = {
66
+ 'maj': self.interval_list('(1,3,5)'),
67
+ 'min': self.interval_list('(1,b3,5)'),
68
+ 'dim': self.interval_list('(1,b3,b5)'),
69
+ 'aug': self.interval_list('(1,3,#5)'),
70
+ 'maj7': self.interval_list('(1,3,5,7)'),
71
+ 'min7': self.interval_list('(1,b3,5,b7)'),
72
+ '7': self.interval_list('(1,3,5,b7)'),
73
+ '6': self.interval_list('(1,6)'), # custom
74
+ '5': self.interval_list('(1,5)'),
75
+ '4': self.interval_list('(1,4)'), # custom
76
+ '1': self.interval_list('(1)'),
77
+ 'dim7': self.interval_list('(1,b3,b5,bb7)'),
78
+ 'hdim7': self.interval_list('(1,b3,b5,b7)'),
79
+ 'minmaj7': self.interval_list('(1,b3,5,7)'),
80
+ 'maj6': self.interval_list('(1,3,5,6)'),
81
+ 'min6': self.interval_list('(1,b3,5,6)'),
82
+ '9': self.interval_list('(1,3,5,b7,9)'),
83
+ 'maj9': self.interval_list('(1,3,5,7,9)'),
84
+ 'min9': self.interval_list('(1,b3,5,b7,9)'),
85
+ 'add9': self.interval_list('(1,3,5,9)'), # custom
86
+ 'sus2': self.interval_list('(1,2,5)'),
87
+ 'sus4': self.interval_list('(1,4,5)'),
88
+ '7sus2': self.interval_list('(1,2,5,b7)'), # custom
89
+ '7sus4': self.interval_list('(1,4,5,b7)'), # custom
90
+ '11': self.interval_list('(1,3,5,b7,9,11)'),
91
+ 'min11': self.interval_list('(1,b3,5,b7,9,11)'),
92
+ '13': self.interval_list('(1,3,5,b7,13)'),
93
+ 'maj13': self.interval_list('(1,3,5,7,13)'),
94
+ 'min13': self.interval_list('(1,b3,5,b7,13)')
95
+ }
96
+
97
+ def chords(self, labels):
98
+
99
+ """
100
+ Transform a list of chord labels into an array of internal numeric
101
+ representations.
102
+
103
+ Parameters
104
+ ----------
105
+ labels : list
106
+ List of chord labels (str).
107
+
108
+ Returns
109
+ -------
110
+ chords : numpy.array
111
+ Structured array with columns 'root', 'bass', and 'intervals',
112
+ containing a numeric representation of chords.
113
+
114
+ """
115
+ crds = np.zeros(len(labels), dtype=CHORD_DTYPE)
116
+ cache = {}
117
+ for i, lbl in enumerate(labels):
118
+ cv = cache.get(lbl, None)
119
+ if cv is None:
120
+ cv = self.chord(lbl)
121
+ cache[lbl] = cv
122
+ crds[i] = cv
123
+
124
+ return crds
125
+
126
+ def label_error_modify(self, label):
127
+ if label == 'Emin/4': label = 'E:min/4'
128
+ elif label == 'A7/3': label = 'A:7/3'
129
+ elif label == 'Bb7/3': label = 'Bb:7/3'
130
+ elif label == 'Bb7/5': label = 'Bb:7/5'
131
+ elif label.find(':') == -1:
132
+ if label.find('min') != -1:
133
+ label = label[:label.find('min')] + ':' + label[label.find('min'):]
134
+ return label
135
+
136
+ def chord(self, label):
137
+ """
138
+ Transform a chord label into the internal numeric represenation of
139
+ (root, bass, intervals array).
140
+
141
+ Parameters
142
+ ----------
143
+ label : str
144
+ Chord label.
145
+
146
+ Returns
147
+ -------
148
+ chord : tuple
149
+ Numeric representation of the chord: (root, bass, intervals array).
150
+
151
+ """
152
+
153
+
154
+ is_major = False
155
+
156
+ if label == 'N':
157
+ return NO_CHORD
158
+ if label == 'X':
159
+ return UNKNOWN_CHORD
160
+
161
+ label = self.label_error_modify(label)
162
+
163
+ c_idx = label.find(':')
164
+ s_idx = label.find('/')
165
+
166
+ if c_idx == -1:
167
+ quality_str = 'maj'
168
+ if s_idx == -1:
169
+ root_str = label
170
+ bass_str = ''
171
+ else:
172
+ root_str = label[:s_idx]
173
+ bass_str = label[s_idx + 1:]
174
+ else:
175
+ root_str = label[:c_idx]
176
+ if s_idx == -1:
177
+ quality_str = label[c_idx + 1:]
178
+ bass_str = ''
179
+ else:
180
+ quality_str = label[c_idx + 1:s_idx]
181
+ bass_str = label[s_idx + 1:]
182
+
183
+ root = self.pitch(root_str)
184
+ bass = self.interval(bass_str) if bass_str else 0
185
+ ivs = self.chord_intervals(quality_str)
186
+ ivs[bass] = 1
187
+
188
+ if 'min' in quality_str:
189
+ is_major = False
190
+ else:
191
+ is_major = True
192
+
193
+
194
+ return root, bass, ivs, is_major
195
+
196
+ _l = [0, 1, 1, 0, 1, 1, 1]
197
+ _chroma_id = (np.arange(len(_l) * 2) + 1) + np.array(_l + _l).cumsum() - 1
198
+
199
+ def modify(self, base_pitch, modifier):
200
+ """
201
+ Modify a pitch class in integer representation by a given modifier string.
202
+
203
+ A modifier string can be any sequence of 'b' (one semitone down)
204
+ and '#' (one semitone up).
205
+
206
+ Parameters
207
+ ----------
208
+ base_pitch : int
209
+ Pitch class as integer.
210
+ modifier : str
211
+ String of modifiers ('b' or '#').
212
+
213
+ Returns
214
+ -------
215
+ modified_pitch : int
216
+ Modified root note.
217
+
218
+ """
219
+ for m in modifier:
220
+ if m == 'b':
221
+ base_pitch -= 1
222
+ elif m == '#':
223
+ base_pitch += 1
224
+ else:
225
+ raise ValueError('Unknown modifier: {}'.format(m))
226
+ return base_pitch
227
+
228
+ def pitch(self, pitch_str):
229
+ """
230
+ Convert a string representation of a pitch class (consisting of root
231
+ note and modifiers) to an integer representation.
232
+
233
+ Parameters
234
+ ----------
235
+ pitch_str : str
236
+ String representation of a pitch class.
237
+
238
+ Returns
239
+ -------
240
+ pitch : int
241
+ Integer representation of a pitch class.
242
+
243
+ """
244
+ return self.modify(self._chroma_id[(ord(pitch_str[0]) - ord('C')) % 7],
245
+ pitch_str[1:]) % 12
246
+
247
+ def interval(self, interval_str):
248
+ """
249
+ Convert a string representation of a musical interval into a pitch class
250
+ (e.g. a minor seventh 'b7' into 10, because it is 10 semitones above its
251
+ base note).
252
+
253
+ Parameters
254
+ ----------
255
+ interval_str : str
256
+ Musical interval.
257
+
258
+ Returns
259
+ -------
260
+ pitch_class : int
261
+ Number of semitones to base note of interval.
262
+
263
+ """
264
+ for i, c in enumerate(interval_str):
265
+ if c.isdigit():
266
+ return self.modify(self._chroma_id[int(interval_str[i:]) - 1],
267
+ interval_str[:i]) % 12
268
+
269
+ def interval_list(self, intervals_str, given_pitch_classes=None):
270
+ """
271
+ Convert a list of intervals given as string to a binary pitch class
272
+ representation. For example, 'b3, 5' would become
273
+ [0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0].
274
+
275
+ Parameters
276
+ ----------
277
+ intervals_str : str
278
+ List of intervals as comma-separated string (e.g. 'b3, 5').
279
+ given_pitch_classes : None or numpy array
280
+ If None, start with empty pitch class array, if numpy array of length
281
+ 12, this array will be modified.
282
+
283
+ Returns
284
+ -------
285
+ pitch_classes : numpy array
286
+ Binary pitch class representation of intervals.
287
+
288
+ """
289
+ if given_pitch_classes is None:
290
+ given_pitch_classes = np.zeros(12, dtype=np.int_)
291
+ for int_def in intervals_str[1:-1].split(','):
292
+ int_def = int_def.strip()
293
+ if int_def[0] == '*':
294
+ given_pitch_classes[self.interval(int_def[1:])] = 0
295
+ else:
296
+ given_pitch_classes[self.interval(int_def)] = 1
297
+ return given_pitch_classes
298
+
299
+ # mapping of shorthand interval notations to the actual interval representation
300
+
301
+ def chord_intervals(self, quality_str):
302
+ """
303
+ Convert a chord quality string to a pitch class representation. For
304
+ example, 'maj' becomes [1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0].
305
+
306
+ Parameters
307
+ ----------
308
+ quality_str : str
309
+ String defining the chord quality.
310
+
311
+ Returns
312
+ -------
313
+ pitch_classes : numpy array
314
+ Binary pitch class representation of chord quality.
315
+
316
+ """
317
+ list_idx = quality_str.find('(')
318
+ if list_idx == -1:
319
+ return self._shorthands[quality_str].copy()
320
+ if list_idx != 0:
321
+ ivs = self._shorthands[quality_str[:list_idx]].copy()
322
+ else:
323
+ ivs = np.zeros(12, dtype=np.int_)
324
+
325
+
326
+ return self.interval_list(quality_str[list_idx:], ivs)
327
+
328
+ def load_chords(self, filename):
329
+ """
330
+ Load chords from a text file.
331
+
332
+ The chord must follow the syntax defined in [1]_.
333
+
334
+ Parameters
335
+ ----------
336
+ filename : str
337
+ File containing chord segments.
338
+
339
+ Returns
340
+ -------
341
+ crds : numpy structured array
342
+ Structured array with columns "start", "end", and "chord",
343
+ containing the beginning, end, and chord definition of chord
344
+ segments.
345
+
346
+ References
347
+ ----------
348
+ .. [1] Christopher Harte, "Towards Automatic Extraction of Harmony
349
+ Information from Music Signals." Dissertation,
350
+ Department for Electronic Engineering, Queen Mary University of
351
+ London, 2010.
352
+
353
+ """
354
+ start, end, chord_labels = [], [], []
355
+ with open(filename, 'r') as f:
356
+ for line in f:
357
+ if line:
358
+
359
+ splits = line.split()
360
+ if len(splits) == 3:
361
+
362
+ s = splits[0]
363
+ e = splits[1]
364
+ l = splits[2]
365
+
366
+ start.append(float(s))
367
+ end.append(float(e))
368
+ chord_labels.append(l)
369
+
370
+ crds = np.zeros(len(start), dtype=CHORD_ANN_DTYPE)
371
+ crds['start'] = start
372
+ crds['end'] = end
373
+ crds['chord'] = self.chords(chord_labels)
374
+
375
+ return crds
376
+
377
+ def reduce_to_triads(self, chords, keep_bass=False):
378
+ """
379
+ Reduce chords to triads.
380
+
381
+ The function follows the reduction rules implemented in [1]_. If a chord
382
+ chord does not contain a third, major second or fourth, it is reduced to
383
+ a power chord. If it does not contain neither a third nor a fifth, it is
384
+ reduced to a single note "chord".
385
+
386
+ Parameters
387
+ ----------
388
+ chords : numpy structured array
389
+ Chords to be reduced.
390
+ keep_bass : bool
391
+ Indicates whether to keep the bass note or set it to 0.
392
+
393
+ Returns
394
+ -------
395
+ reduced_chords : numpy structured array
396
+ Chords reduced to triads.
397
+
398
+ References
399
+ ----------
400
+ .. [1] Johan Pauwels and Geoffroy Peeters.
401
+ "Evaluating Automatically Estimated Chord Sequences."
402
+ In Proceedings of ICASSP 2013, Vancouver, Canada, 2013.
403
+
404
+ """
405
+ unison = chords['intervals'][:, 0].astype(bool)
406
+ maj_sec = chords['intervals'][:, 2].astype(bool)
407
+ min_third = chords['intervals'][:, 3].astype(bool)
408
+ maj_third = chords['intervals'][:, 4].astype(bool)
409
+ perf_fourth = chords['intervals'][:, 5].astype(bool)
410
+ dim_fifth = chords['intervals'][:, 6].astype(bool)
411
+ perf_fifth = chords['intervals'][:, 7].astype(bool)
412
+ aug_fifth = chords['intervals'][:, 8].astype(bool)
413
+ no_chord = (chords['intervals'] == NO_CHORD[-1]).all(axis=1)
414
+
415
+ reduced_chords = chords.copy()
416
+ ivs = reduced_chords['intervals']
417
+
418
+ ivs[~no_chord] = self.interval_list('(1)')
419
+ ivs[unison & perf_fifth] = self.interval_list('(1,5)')
420
+ ivs[~perf_fourth & maj_sec] = self._shorthands['sus2']
421
+ ivs[perf_fourth & ~maj_sec] = self._shorthands['sus4']
422
+
423
+ ivs[min_third] = self._shorthands['min']
424
+ ivs[min_third & aug_fifth & ~perf_fifth] = self.interval_list('(1,b3,#5)')
425
+ ivs[min_third & dim_fifth & ~perf_fifth] = self._shorthands['dim']
426
+
427
+ ivs[maj_third] = self._shorthands['maj']
428
+ ivs[maj_third & dim_fifth & ~perf_fifth] = self.interval_list('(1,3,b5)')
429
+ ivs[maj_third & aug_fifth & ~perf_fifth] = self._shorthands['aug']
430
+
431
+ if not keep_bass:
432
+ reduced_chords['bass'] = 0
433
+ else:
434
+ # remove bass notes if they are not part of the intervals anymore
435
+ reduced_chords['bass'] *= ivs[range(len(reduced_chords)),
436
+ reduced_chords['bass']]
437
+ # keep -1 in bass for no chords
438
+ reduced_chords['bass'][no_chord] = -1
439
+
440
+ return reduced_chords
441
+
442
+ def convert_to_id(self, root, is_major):
443
+ if root == -1:
444
+ return 24
445
+ else:
446
+ if is_major:
447
+ return root * 2
448
+ else:
449
+ return root * 2 + 1
450
+
451
+ def get_converted_chord(self, filename):
452
+ loaded_chord = self.load_chords(filename)
453
+ triads = self.reduce_to_triads(loaded_chord['chord'])
454
+
455
+ df = self.assign_chord_id(triads)
456
+ df['start'] = loaded_chord['start']
457
+ df['end'] = loaded_chord['end']
458
+
459
+ return df
460
+
461
+ def assign_chord_id(self, entry):
462
+ # maj, min chord only
463
+ # if you want to add other chord, change this part and get_converted_chord(reduce_to_triads)
464
+ df = pd.DataFrame(data=entry[['root', 'is_major']])
465
+ df['chord_id'] = df.apply(lambda row: self.convert_to_id(row['root'], row['is_major']), axis=1)
466
+ return df
467
+
468
+ def convert_to_id_voca(self, root, quality):
469
+ if root == -1:
470
+ return 169
471
+ else:
472
+ if quality == 'min':
473
+ return root * 14
474
+ elif quality == 'maj':
475
+ return root * 14 + 1
476
+ elif quality == 'dim':
477
+ return root * 14 + 2
478
+ elif quality == 'aug':
479
+ return root * 14 + 3
480
+ elif quality == 'min6':
481
+ return root * 14 + 4
482
+ elif quality == 'maj6':
483
+ return root * 14 + 5
484
+ elif quality == 'min7':
485
+ return root * 14 + 6
486
+ elif quality == 'minmaj7':
487
+ return root * 14 + 7
488
+ elif quality == 'maj7':
489
+ return root * 14 + 8
490
+ elif quality == '7':
491
+ return root * 14 + 9
492
+ elif quality == 'dim7':
493
+ return root * 14 + 10
494
+ elif quality == 'hdim7':
495
+ return root * 14 + 11
496
+ elif quality == 'sus2':
497
+ return root * 14 + 12
498
+ elif quality == 'sus4':
499
+ return root * 14 + 13
500
+ else:
501
+ return 168
502
+
503
+
504
+ def lab_file_error_modify(self, ref_labels):
505
+ for i in range(len(ref_labels)):
506
+ if ref_labels[i][-2:] == ':4':
507
+ ref_labels[i] = ref_labels[i].replace(':4', ':sus4')
508
+ elif ref_labels[i][-2:] == ':6':
509
+ ref_labels[i] = ref_labels[i].replace(':6', ':maj6')
510
+ elif ref_labels[i][-4:] == ':6/2':
511
+ ref_labels[i] = ref_labels[i].replace(':6/2', ':maj6/2')
512
+ elif ref_labels[i] == 'Emin/4':
513
+ ref_labels[i] = 'E:min/4'
514
+ elif ref_labels[i] == 'A7/3':
515
+ ref_labels[i] = 'A:7/3'
516
+ elif ref_labels[i] == 'Bb7/3':
517
+ ref_labels[i] = 'Bb:7/3'
518
+ elif ref_labels[i] == 'Bb7/5':
519
+ ref_labels[i] = 'Bb:7/5'
520
+ elif ref_labels[i].find(':') == -1:
521
+ if ref_labels[i].find('min') != -1:
522
+ ref_labels[i] = ref_labels[i][:ref_labels[i].find('min')] + ':' + ref_labels[i][ref_labels[i].find('min'):]
523
+ return ref_labels
524
+
audiocraft/data/info_audio_dataset.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ """Base classes for the datasets that also provide non-audio metadata,
7
+ e.g. description, text transcription etc.
8
+ """
9
+ from dataclasses import dataclass
10
+ import logging
11
+ import math
12
+ import re
13
+ import typing as tp
14
+
15
+ import torch
16
+
17
+ from .audio_dataset import AudioDataset, AudioMeta
18
+ from ..environment import AudioCraftEnvironment
19
+ from ..modules.conditioners import SegmentWithAttributes, ConditioningAttributes
20
+
21
+
22
+ logger = logging.getLogger(__name__)
23
+
24
+
25
+ def _clusterify_meta(meta: AudioMeta) -> AudioMeta:
26
+ """Monkey-patch meta to match cluster specificities."""
27
+ meta.path = AudioCraftEnvironment.apply_dataset_mappers(meta.path)
28
+ if meta.info_path is not None:
29
+ meta.info_path.zip_path = AudioCraftEnvironment.apply_dataset_mappers(meta.info_path.zip_path)
30
+ return meta
31
+
32
+
33
+ def clusterify_all_meta(meta: tp.List[AudioMeta]) -> tp.List[AudioMeta]:
34
+ """Monkey-patch all meta to match cluster specificities."""
35
+ return [_clusterify_meta(m) for m in meta]
36
+
37
+
38
+ @dataclass
39
+ class AudioInfo(SegmentWithAttributes):
40
+ """Dummy SegmentInfo with empty attributes.
41
+
42
+ The InfoAudioDataset is expected to return metadata that inherits
43
+ from SegmentWithAttributes class and can return conditioning attributes.
44
+
45
+ This basically guarantees all datasets will be compatible with current
46
+ solver that contain conditioners requiring this.
47
+ """
48
+ audio_tokens: tp.Optional[torch.Tensor] = None # populated when using cached batch for training a LM.
49
+
50
+ def to_condition_attributes(self) -> ConditioningAttributes:
51
+ return ConditioningAttributes()
52
+
53
+
54
+ class InfoAudioDataset(AudioDataset):
55
+ """AudioDataset that always returns metadata as SegmentWithAttributes along with the audio waveform.
56
+
57
+ See `audiocraft.data.audio_dataset.AudioDataset` for initialization arguments.
58
+ """
59
+ def __init__(self, meta: tp.List[AudioMeta], **kwargs):
60
+ super().__init__(clusterify_all_meta(meta), **kwargs)
61
+
62
+ def __getitem__(self, index: int) -> tp.Union[torch.Tensor, tp.Tuple[torch.Tensor, SegmentWithAttributes]]:
63
+ if not self.return_info:
64
+ wav = super().__getitem__(index)
65
+ assert isinstance(wav, torch.Tensor)
66
+ return wav
67
+ wav, meta = super().__getitem__(index)
68
+ return wav, AudioInfo(**meta.to_dict())
69
+
70
+
71
+ def get_keyword_or_keyword_list(value: tp.Optional[str]) -> tp.Union[tp.Optional[str], tp.Optional[tp.List[str]]]:
72
+ """Preprocess a single keyword or possible a list of keywords."""
73
+ if isinstance(value, list):
74
+ return get_keyword_list(value)
75
+ else:
76
+ return get_keyword(value)
77
+
78
+
79
+ def get_string(value: tp.Optional[str]) -> tp.Optional[str]:
80
+ """Preprocess a single keyword."""
81
+ if value is None or (not isinstance(value, str)) or len(value) == 0 or value == 'None':
82
+ return None
83
+ else:
84
+ return value.strip()
85
+
86
+
87
+ def get_keyword(value: tp.Optional[str]) -> tp.Optional[str]:
88
+ """Preprocess a single keyword."""
89
+ if value is None or (not isinstance(value, str)) or len(value) == 0 or value == 'None':
90
+ return None
91
+ else:
92
+ return value.strip().lower()
93
+
94
+
95
+ def get_keyword_list(values: tp.Union[str, tp.List[str]]) -> tp.Optional[tp.List[str]]:
96
+ """Preprocess a list of keywords."""
97
+ if isinstance(values, str):
98
+ values = [v.strip() for v in re.split(r'[,\s]', values)]
99
+ elif isinstance(values, float) and math.isnan(values):
100
+ values = []
101
+ if not isinstance(values, list):
102
+ logger.debug(f"Unexpected keyword list {values}")
103
+ values = [str(values)]
104
+
105
+ kws = [get_keyword(v) for v in values]
106
+ kw_list = [k for k in kws if k is not None]
107
+ if len(kw_list) == 0:
108
+ return None
109
+ else:
110
+ return kw_list
audiocraft/data/music_dataset.py ADDED
@@ -0,0 +1,349 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ """Dataset of music tracks with rich metadata.
7
+ """
8
+ from dataclasses import dataclass, field, fields, replace
9
+ import gzip
10
+ import json
11
+ import logging
12
+ from pathlib import Path
13
+ import random
14
+ import typing as tp
15
+ import pretty_midi
16
+ import numpy as np
17
+
18
+ import torch
19
+ import torch.nn.functional as F
20
+ from .btc_chords import Chords
21
+
22
+ from .info_audio_dataset import (
23
+ InfoAudioDataset,
24
+ AudioInfo,
25
+ get_keyword_list,
26
+ get_keyword,
27
+ get_string
28
+ )
29
+ from ..modules.conditioners import (
30
+ ConditioningAttributes,
31
+ JointEmbedCondition,
32
+ WavCondition,
33
+ ChordCondition,
34
+ BeatCondition
35
+ )
36
+ from ..utils.utils import warn_once
37
+
38
+
39
+ logger = logging.getLogger(__name__)
40
+
41
+ CHORDS = Chords()
42
+
43
+
44
+ @dataclass
45
+ class MusicInfo(AudioInfo):
46
+ """Segment info augmented with music metadata.
47
+ """
48
+ # music-specific metadata
49
+ title: tp.Optional[str] = None
50
+ artist: tp.Optional[str] = None # anonymized artist id, used to ensure no overlap between splits
51
+ key: tp.Optional[str] = None
52
+ bpm: tp.Optional[float] = None
53
+ genre: tp.Optional[str] = None
54
+ moods: tp.Optional[list] = None
55
+ keywords: tp.Optional[list] = None
56
+ description: tp.Optional[str] = None
57
+ name: tp.Optional[str] = None
58
+ instrument: tp.Optional[str] = None
59
+ chord: tp.Optional[ChordCondition] = None
60
+ beat: tp.Optional[BeatCondition] = None
61
+ # original wav accompanying the metadata
62
+ self_wav: tp.Optional[WavCondition] = None
63
+ # dict mapping attributes names to tuple of wav, text and metadata
64
+ joint_embed: tp.Dict[str, JointEmbedCondition] = field(default_factory=dict)
65
+
66
+ @property
67
+ def has_music_meta(self) -> bool:
68
+ return self.name is not None
69
+
70
+ def to_condition_attributes(self) -> ConditioningAttributes:
71
+ out = ConditioningAttributes()
72
+ for _field in fields(self):
73
+ key, value = _field.name, getattr(self, _field.name)
74
+ if key == 'self_wav':
75
+ out.wav[key] = value
76
+ elif key == 'chord':
77
+ out.chord[key] = value
78
+ elif key == 'beat':
79
+ out.beat[key] = value
80
+ elif key == 'joint_embed':
81
+ for embed_attribute, embed_cond in value.items():
82
+ out.joint_embed[embed_attribute] = embed_cond
83
+ else:
84
+ if isinstance(value, list):
85
+ value = ' '.join(value)
86
+ out.text[key] = value
87
+ return out
88
+
89
+ @staticmethod
90
+ def attribute_getter(attribute):
91
+ if attribute == 'bpm':
92
+ preprocess_func = get_bpm
93
+ elif attribute == 'key':
94
+ preprocess_func = get_musical_key
95
+ elif attribute in ['moods', 'keywords']:
96
+ preprocess_func = get_keyword_list
97
+ elif attribute in ['genre', 'name', 'instrument']:
98
+ preprocess_func = get_keyword
99
+ elif attribute in ['title', 'artist', 'description']:
100
+ preprocess_func = get_string
101
+ else:
102
+ preprocess_func = None
103
+ return preprocess_func
104
+
105
+ @classmethod
106
+ def from_dict(cls, dictionary: dict, fields_required: bool = False):
107
+ _dictionary: tp.Dict[str, tp.Any] = {}
108
+
109
+ # allow a subset of attributes to not be loaded from the dictionary
110
+ # these attributes may be populated later
111
+ post_init_attributes = ['self_wav', 'chord', 'beat', 'joint_embed']
112
+ optional_fields = ['keywords']
113
+
114
+ for _field in fields(cls):
115
+ if _field.name in post_init_attributes:
116
+ continue
117
+ elif _field.name not in dictionary:
118
+ if fields_required and _field.name not in optional_fields:
119
+ raise KeyError(f"Unexpected missing key: {_field.name}")
120
+ else:
121
+ preprocess_func: tp.Optional[tp.Callable] = cls.attribute_getter(_field.name)
122
+ value = dictionary[_field.name]
123
+ if preprocess_func:
124
+ value = preprocess_func(value)
125
+ _dictionary[_field.name] = value
126
+ return cls(**_dictionary)
127
+
128
+
129
+ def augment_music_info_description(music_info: MusicInfo, merge_text_p: float = 0.,
130
+ drop_desc_p: float = 0., drop_other_p: float = 0.) -> MusicInfo:
131
+ """Augment MusicInfo description with additional metadata fields and potential dropout.
132
+ Additional textual attributes are added given probability 'merge_text_conditions_p' and
133
+ the original textual description is dropped from the augmented description given probability drop_desc_p.
134
+
135
+ Args:
136
+ music_info (MusicInfo): The music metadata to augment.
137
+ merge_text_p (float): Probability of merging additional metadata to the description.
138
+ If provided value is 0, then no merging is performed.
139
+ drop_desc_p (float): Probability of dropping the original description on text merge.
140
+ if provided value is 0, then no drop out is performed.
141
+ drop_other_p (float): Probability of dropping the other fields used for text augmentation.
142
+ Returns:
143
+ MusicInfo: The MusicInfo with augmented textual description.
144
+ """
145
+ def is_valid_field(field_name: str, field_value: tp.Any) -> bool:
146
+ valid_field_name = field_name in ['key', 'bpm', 'genre', 'moods', 'instrument', 'keywords']
147
+ valid_field_value = field_value is not None and isinstance(field_value, (int, float, str, list))
148
+ keep_field = random.uniform(0, 1) < drop_other_p
149
+ return valid_field_name and valid_field_value and keep_field
150
+
151
+ def process_value(v: tp.Any) -> str:
152
+ if isinstance(v, (int, float, str)):
153
+ return str(v)
154
+ if isinstance(v, list):
155
+ return ", ".join(v)
156
+ else:
157
+ raise ValueError(f"Unknown type for text value! ({type(v), v})")
158
+
159
+ description = music_info.description
160
+
161
+ metadata_text = ""
162
+ # metadata_text = "rock style music, consistent rhythm, catchy song."
163
+ if random.uniform(0, 1) < merge_text_p:
164
+ meta_pairs = [f'{_field.name}: {process_value(getattr(music_info, _field.name))}'
165
+ for _field in fields(music_info) if is_valid_field(_field.name, getattr(music_info, _field.name))]
166
+ random.shuffle(meta_pairs)
167
+ metadata_text = ". ".join(meta_pairs)
168
+ description = description if not random.uniform(0, 1) < drop_desc_p else None
169
+ logger.debug(f"Applying text augmentation on MMI info. description: {description}, metadata: {metadata_text}")
170
+
171
+ if description is None:
172
+ description = metadata_text if len(metadata_text) > 1 else None
173
+ else:
174
+ description = ". ".join([description.rstrip('.'), metadata_text])
175
+ description = description.strip() if description else None
176
+
177
+ music_info = replace(music_info)
178
+ music_info.description = description
179
+ return music_info
180
+
181
+
182
+ class Paraphraser:
183
+ def __init__(self, paraphrase_source: tp.Union[str, Path], paraphrase_p: float = 0.):
184
+ self.paraphrase_p = paraphrase_p
185
+ open_fn = gzip.open if str(paraphrase_source).lower().endswith('.gz') else open
186
+ with open_fn(paraphrase_source, 'rb') as f: # type: ignore
187
+ self.paraphrase_source = json.loads(f.read())
188
+ logger.info(f"loaded paraphrasing source from: {paraphrase_source}")
189
+
190
+ def sample_paraphrase(self, audio_path: str, description: str):
191
+ if random.random() >= self.paraphrase_p:
192
+ return description
193
+ info_path = Path(audio_path).with_suffix('.json')
194
+ if info_path not in self.paraphrase_source:
195
+ warn_once(logger, f"{info_path} not in paraphrase source!")
196
+ return description
197
+ new_desc = random.choice(self.paraphrase_source[info_path])
198
+ logger.debug(f"{description} -> {new_desc}")
199
+ return new_desc
200
+
201
+
202
+ class MusicDataset(InfoAudioDataset):
203
+ """Music dataset is an AudioDataset with music-related metadata.
204
+
205
+ Args:
206
+ info_fields_required (bool): Whether to enforce having required fields.
207
+ merge_text_p (float): Probability of merging additional metadata to the description.
208
+ drop_desc_p (float): Probability of dropping the original description on text merge.
209
+ drop_other_p (float): Probability of dropping the other fields used for text augmentation.
210
+ joint_embed_attributes (list[str]): A list of attributes for which joint embedding metadata is returned.
211
+ paraphrase_source (str, optional): Path to the .json or .json.gz file containing the
212
+ paraphrases for the description. The json should be a dict with keys are the
213
+ original info path (e.g. track_path.json) and each value is a list of possible
214
+ paraphrased.
215
+ paraphrase_p (float): probability of taking a paraphrase.
216
+
217
+ See `audiocraft.data.info_audio_dataset.InfoAudioDataset` for full initialization arguments.
218
+ """
219
+ def __init__(self, *args, info_fields_required: bool = True,
220
+ merge_text_p: float = 0., drop_desc_p: float = 0., drop_other_p: float = 0.,
221
+ joint_embed_attributes: tp.List[str] = [],
222
+ paraphrase_source: tp.Optional[str] = None, paraphrase_p: float = 0,
223
+ **kwargs):
224
+ kwargs['return_info'] = True # We require the info for each song of the dataset.
225
+ super().__init__(*args, **kwargs)
226
+ self.info_fields_required = info_fields_required
227
+ self.merge_text_p = merge_text_p
228
+ self.drop_desc_p = drop_desc_p
229
+ self.drop_other_p = drop_other_p
230
+ self.joint_embed_attributes = joint_embed_attributes
231
+ self.paraphraser = None
232
+ self.downsample_rate = 640
233
+ self.sr = 32000
234
+ if paraphrase_source is not None:
235
+ self.paraphraser = Paraphraser(paraphrase_source, paraphrase_p)
236
+
237
+ def __getitem__(self, index):
238
+ wav, info = super().__getitem__(index) # wav_seg and seg_info
239
+ info_data = info.to_dict()
240
+
241
+ # unpack info
242
+ target_sr = self.sr
243
+ n_frames_wave = info.n_frames
244
+ n_frames_feat = int(info.n_frames // self.downsample_rate)
245
+
246
+ music_info_path = str(info.meta.path).replace('no_vocal.wav', 'tags.json')
247
+ chord_path = str(info.meta.path).replace('no_vocal.wav', 'chord.lab')
248
+ beats_path = str(info.meta.path).replace('no_vocal.wav', 'beats.npy')
249
+
250
+ if all([
251
+ not Path(music_info_path).exists(),
252
+ not Path(beats_path).exists(),
253
+ not Path(chord_path).exists(),
254
+ ]):
255
+ raise FileNotFoundError
256
+
257
+ ### music info
258
+ with open(music_info_path, 'r') as json_file:
259
+ music_data = json.load(json_file)
260
+ music_data.update(info_data)
261
+ music_info = MusicInfo.from_dict(music_data, fields_required=self.info_fields_required)
262
+ if self.paraphraser is not None:
263
+ music_info.description = self.paraphraser.sample(music_info.meta.path, music_info.description)
264
+ if self.merge_text_p:
265
+ music_info = augment_music_info_description(
266
+ music_info, self.merge_text_p, self.drop_desc_p, self.drop_other_p)
267
+
268
+
269
+ ### load features to tensors ###
270
+ feat_hz = target_sr/self.downsample_rate
271
+ ## beat&bar: 2 x T
272
+ feat_beats = np.zeros((2, n_frames_feat))
273
+
274
+ beats_np = np.load(beats_path)
275
+ beat_time = beats_np[:, 0]
276
+ bar_time = beats_np[np.where(beats_np[:, 1] == 1)[0], 0]
277
+ beat_frame = [
278
+ int((t-info.seek_time)*feat_hz) for t in beat_time
279
+ if (t >= info.seek_time and t < info.seek_time + self.segment_duration)]
280
+ bar_frame =[
281
+ int((t-info.seek_time)*feat_hz) for t in bar_time
282
+ if (t >= info.seek_time and t < info.seek_time + self.segment_duration)]
283
+ feat_beats[0, beat_frame] = 1
284
+ feat_beats[1, bar_frame] = 1
285
+ kernel = np.array([0.05, 0.1, 0.3, 0.9, 0.3, 0.1, 0.05])
286
+ feat_beats[0] = np.convolve(feat_beats[0] , kernel, 'same') # apply soft kernel
287
+ beat_events = feat_beats[0] + feat_beats[1]
288
+ beat_events = torch.tensor(beat_events).unsqueeze(0) # [T] -> [1, T]
289
+
290
+ music_info.beat = BeatCondition(beat=beat_events[None], length=torch.tensor([n_frames_feat]),
291
+ bpm=[music_data["bpm"]], path=[music_info_path], seek_frame=[info.seek_time*target_sr//self.downsample_rate])
292
+
293
+ ## chord: 12 x T
294
+ feat_chord = np.zeros((12, n_frames_feat)) # root| ivs
295
+ with open(chord_path, 'r') as f:
296
+ for line in f.readlines():
297
+ splits = line.split()
298
+ if len(splits) == 3:
299
+ st_sec, ed_sec, ctag = splits
300
+ st_sec = float(st_sec) - info.seek_time
301
+ ed_sec = float(ed_sec) - info.seek_time
302
+ st_frame = int(st_sec*feat_hz)
303
+ ed_frame = int(ed_sec*feat_hz)
304
+
305
+ # 12 chorma
306
+ mhot = CHORDS.chord(ctag)
307
+ final_vec = np.roll(mhot[2], mhot[0])
308
+
309
+ final_vec = final_vec[..., None]
310
+ feat_chord[:, st_frame:ed_frame] = final_vec
311
+ feat_chord = torch.from_numpy(feat_chord)
312
+
313
+ music_info.chord = ChordCondition(
314
+ chord=feat_chord[None], length=torch.tensor([n_frames_feat]),
315
+ bpm=[music_data["bpm"]], path=[chord_path], seek_frame=[info.seek_time*self.sr//self.downsample_rate])
316
+
317
+ music_info.self_wav = WavCondition(
318
+ wav=wav[None], length=torch.tensor([info.n_frames]),
319
+ sample_rate=[info.sample_rate], path=[info.meta.path], seek_time=[info.seek_time])
320
+
321
+ for att in self.joint_embed_attributes:
322
+ att_value = getattr(music_info, att)
323
+ joint_embed_cond = JointEmbedCondition(
324
+ wav[None], [att_value], torch.tensor([info.n_frames]),
325
+ sample_rate=[info.sample_rate], path=[info.meta.path], seek_time=[info.seek_time])
326
+ music_info.joint_embed[att] = joint_embed_cond
327
+
328
+ return wav, music_info
329
+
330
+
331
+ def get_musical_key(value: tp.Optional[str]) -> tp.Optional[str]:
332
+ """Preprocess key keywords, discarding them if there are multiple key defined."""
333
+ if value is None or (not isinstance(value, str)) or len(value) == 0 or value == 'None':
334
+ return None
335
+ elif ',' in value:
336
+ # For now, we discard when multiple keys are defined separated with comas
337
+ return None
338
+ else:
339
+ return value.strip().lower()
340
+
341
+
342
+ def get_bpm(value: tp.Optional[str]) -> tp.Optional[float]:
343
+ """Preprocess to a float."""
344
+ if value is None:
345
+ return None
346
+ try:
347
+ return float(value)
348
+ except ValueError:
349
+ return None
audiocraft/data/sound_dataset.py ADDED
@@ -0,0 +1,330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ """Dataset of audio with a simple description.
7
+ """
8
+
9
+ from dataclasses import dataclass, fields, replace
10
+ import json
11
+ from pathlib import Path
12
+ import random
13
+ import typing as tp
14
+
15
+ import numpy as np
16
+ import torch
17
+
18
+ from .info_audio_dataset import (
19
+ InfoAudioDataset,
20
+ get_keyword_or_keyword_list
21
+ )
22
+ from ..modules.conditioners import (
23
+ ConditioningAttributes,
24
+ SegmentWithAttributes,
25
+ WavCondition,
26
+ )
27
+
28
+
29
+ EPS = torch.finfo(torch.float32).eps
30
+ TARGET_LEVEL_LOWER = -35
31
+ TARGET_LEVEL_UPPER = -15
32
+
33
+
34
+ @dataclass
35
+ class SoundInfo(SegmentWithAttributes):
36
+ """Segment info augmented with Sound metadata.
37
+ """
38
+ description: tp.Optional[str] = None
39
+ self_wav: tp.Optional[torch.Tensor] = None
40
+
41
+ @property
42
+ def has_sound_meta(self) -> bool:
43
+ return self.description is not None
44
+
45
+ def to_condition_attributes(self) -> ConditioningAttributes:
46
+ out = ConditioningAttributes()
47
+
48
+ for _field in fields(self):
49
+ key, value = _field.name, getattr(self, _field.name)
50
+ if key == 'self_wav':
51
+ out.wav[key] = value
52
+ else:
53
+ out.text[key] = value
54
+ return out
55
+
56
+ @staticmethod
57
+ def attribute_getter(attribute):
58
+ if attribute == 'description':
59
+ preprocess_func = get_keyword_or_keyword_list
60
+ else:
61
+ preprocess_func = None
62
+ return preprocess_func
63
+
64
+ @classmethod
65
+ def from_dict(cls, dictionary: dict, fields_required: bool = False):
66
+ _dictionary: tp.Dict[str, tp.Any] = {}
67
+
68
+ # allow a subset of attributes to not be loaded from the dictionary
69
+ # these attributes may be populated later
70
+ post_init_attributes = ['self_wav']
71
+
72
+ for _field in fields(cls):
73
+ if _field.name in post_init_attributes:
74
+ continue
75
+ elif _field.name not in dictionary:
76
+ if fields_required:
77
+ raise KeyError(f"Unexpected missing key: {_field.name}")
78
+ else:
79
+ preprocess_func: tp.Optional[tp.Callable] = cls.attribute_getter(_field.name)
80
+ value = dictionary[_field.name]
81
+ if preprocess_func:
82
+ value = preprocess_func(value)
83
+ _dictionary[_field.name] = value
84
+ return cls(**_dictionary)
85
+
86
+
87
+ class SoundDataset(InfoAudioDataset):
88
+ """Sound audio dataset: Audio dataset with environmental sound-specific metadata.
89
+
90
+ Args:
91
+ info_fields_required (bool): Whether all the mandatory metadata fields should be in the loaded metadata.
92
+ external_metadata_source (tp.Optional[str]): Folder containing JSON metadata for the corresponding dataset.
93
+ The metadata files contained in this folder are expected to match the stem of the audio file with
94
+ a json extension.
95
+ aug_p (float): Probability of performing audio mixing augmentation on the batch.
96
+ mix_p (float): Proportion of batch items that are mixed together when applying audio mixing augmentation.
97
+ mix_snr_low (int): Lowerbound for SNR value sampled for mixing augmentation.
98
+ mix_snr_high (int): Upperbound for SNR value sampled for mixing augmentation.
99
+ mix_min_overlap (float): Minimum overlap between audio files when performing mixing augmentation.
100
+ kwargs: Additional arguments for AudioDataset.
101
+
102
+ See `audiocraft.data.info_audio_dataset.InfoAudioDataset` for full initialization arguments.
103
+ """
104
+ def __init__(
105
+ self,
106
+ *args,
107
+ info_fields_required: bool = True,
108
+ external_metadata_source: tp.Optional[str] = None,
109
+ aug_p: float = 0.,
110
+ mix_p: float = 0.,
111
+ mix_snr_low: int = -5,
112
+ mix_snr_high: int = 5,
113
+ mix_min_overlap: float = 0.5,
114
+ **kwargs
115
+ ):
116
+ kwargs['return_info'] = True # We require the info for each song of the dataset.
117
+ super().__init__(*args, **kwargs)
118
+ self.info_fields_required = info_fields_required
119
+ self.external_metadata_source = external_metadata_source
120
+ self.aug_p = aug_p
121
+ self.mix_p = mix_p
122
+ if self.aug_p > 0:
123
+ assert self.mix_p > 0, "Expecting some mixing proportion mix_p if aug_p > 0"
124
+ assert self.channels == 1, "SoundDataset with audio mixing considers only monophonic audio"
125
+ self.mix_snr_low = mix_snr_low
126
+ self.mix_snr_high = mix_snr_high
127
+ self.mix_min_overlap = mix_min_overlap
128
+
129
+ def _get_info_path(self, path: tp.Union[str, Path]) -> Path:
130
+ """Get path of JSON with metadata (description, etc.).
131
+ If there exists a JSON with the same name as 'path.name', then it will be used.
132
+ Else, such JSON will be searched for in an external json source folder if it exists.
133
+ """
134
+ info_path = Path(path).with_suffix('.json')
135
+ if Path(info_path).exists():
136
+ return info_path
137
+ elif self.external_metadata_source and (Path(self.external_metadata_source) / info_path.name).exists():
138
+ return Path(self.external_metadata_source) / info_path.name
139
+ else:
140
+ raise Exception(f"Unable to find a metadata JSON for path: {path}")
141
+
142
+ def __getitem__(self, index):
143
+ wav, info = super().__getitem__(index)
144
+ info_data = info.to_dict()
145
+ info_path = self._get_info_path(info.meta.path)
146
+ if Path(info_path).exists():
147
+ with open(info_path, 'r') as json_file:
148
+ sound_data = json.load(json_file)
149
+ sound_data.update(info_data)
150
+ sound_info = SoundInfo.from_dict(sound_data, fields_required=self.info_fields_required)
151
+ # if there are multiple descriptions, sample one randomly
152
+ if isinstance(sound_info.description, list):
153
+ sound_info.description = random.choice(sound_info.description)
154
+ else:
155
+ sound_info = SoundInfo.from_dict(info_data, fields_required=False)
156
+
157
+ sound_info.self_wav = WavCondition(
158
+ wav=wav[None], length=torch.tensor([info.n_frames]),
159
+ sample_rate=[sound_info.sample_rate], path=[info.meta.path], seek_time=[info.seek_time])
160
+
161
+ return wav, sound_info
162
+
163
+ def collater(self, samples):
164
+ # when training, audio mixing is performed in the collate function
165
+ wav, sound_info = super().collater(samples) # SoundDataset always returns infos
166
+ if self.aug_p > 0:
167
+ wav, sound_info = mix_samples(wav, sound_info, self.aug_p, self.mix_p,
168
+ snr_low=self.mix_snr_low, snr_high=self.mix_snr_high,
169
+ min_overlap=self.mix_min_overlap)
170
+ return wav, sound_info
171
+
172
+
173
+ def rms_f(x: torch.Tensor) -> torch.Tensor:
174
+ return (x ** 2).mean(1).pow(0.5)
175
+
176
+
177
+ def normalize(audio: torch.Tensor, target_level: int = -25) -> torch.Tensor:
178
+ """Normalize the signal to the target level."""
179
+ rms = rms_f(audio)
180
+ scalar = 10 ** (target_level / 20) / (rms + EPS)
181
+ audio = audio * scalar.unsqueeze(1)
182
+ return audio
183
+
184
+
185
+ def is_clipped(audio: torch.Tensor, clipping_threshold: float = 0.99) -> torch.Tensor:
186
+ return (abs(audio) > clipping_threshold).any(1)
187
+
188
+
189
+ def mix_pair(src: torch.Tensor, dst: torch.Tensor, min_overlap: float) -> torch.Tensor:
190
+ start = random.randint(0, int(src.shape[1] * (1 - min_overlap)))
191
+ remainder = src.shape[1] - start
192
+ if dst.shape[1] > remainder:
193
+ src[:, start:] = src[:, start:] + dst[:, :remainder]
194
+ else:
195
+ src[:, start:start+dst.shape[1]] = src[:, start:start+dst.shape[1]] + dst
196
+ return src
197
+
198
+
199
+ def snr_mixer(clean: torch.Tensor, noise: torch.Tensor, snr: int, min_overlap: float,
200
+ target_level: int = -25, clipping_threshold: float = 0.99) -> torch.Tensor:
201
+ """Function to mix clean speech and noise at various SNR levels.
202
+
203
+ Args:
204
+ clean (torch.Tensor): Clean audio source to mix, of shape [B, T].
205
+ noise (torch.Tensor): Noise audio source to mix, of shape [B, T].
206
+ snr (int): SNR level when mixing.
207
+ min_overlap (float): Minimum overlap between the two mixed sources.
208
+ target_level (int): Gain level in dB.
209
+ clipping_threshold (float): Threshold for clipping the audio.
210
+ Returns:
211
+ torch.Tensor: The mixed audio, of shape [B, T].
212
+ """
213
+ if clean.shape[1] > noise.shape[1]:
214
+ noise = torch.nn.functional.pad(noise, (0, clean.shape[1] - noise.shape[1]))
215
+ else:
216
+ noise = noise[:, :clean.shape[1]]
217
+
218
+ # normalizing to -25 dB FS
219
+ clean = clean / (clean.max(1)[0].abs().unsqueeze(1) + EPS)
220
+ clean = normalize(clean, target_level)
221
+ rmsclean = rms_f(clean)
222
+
223
+ noise = noise / (noise.max(1)[0].abs().unsqueeze(1) + EPS)
224
+ noise = normalize(noise, target_level)
225
+ rmsnoise = rms_f(noise)
226
+
227
+ # set the noise level for a given SNR
228
+ noisescalar = (rmsclean / (10 ** (snr / 20)) / (rmsnoise + EPS)).unsqueeze(1)
229
+ noisenewlevel = noise * noisescalar
230
+
231
+ # mix noise and clean speech
232
+ noisyspeech = mix_pair(clean, noisenewlevel, min_overlap)
233
+
234
+ # randomly select RMS value between -15 dBFS and -35 dBFS and normalize noisyspeech with that value
235
+ # there is a chance of clipping that might happen with very less probability, which is not a major issue.
236
+ noisy_rms_level = np.random.randint(TARGET_LEVEL_LOWER, TARGET_LEVEL_UPPER)
237
+ rmsnoisy = rms_f(noisyspeech)
238
+ scalarnoisy = (10 ** (noisy_rms_level / 20) / (rmsnoisy + EPS)).unsqueeze(1)
239
+ noisyspeech = noisyspeech * scalarnoisy
240
+ clean = clean * scalarnoisy
241
+ noisenewlevel = noisenewlevel * scalarnoisy
242
+
243
+ # final check to see if there are any amplitudes exceeding +/- 1. If so, normalize all the signals accordingly
244
+ clipped = is_clipped(noisyspeech)
245
+ if clipped.any():
246
+ noisyspeech_maxamplevel = noisyspeech[clipped].max(1)[0].abs().unsqueeze(1) / (clipping_threshold - EPS)
247
+ noisyspeech[clipped] = noisyspeech[clipped] / noisyspeech_maxamplevel
248
+
249
+ return noisyspeech
250
+
251
+
252
+ def snr_mix(src: torch.Tensor, dst: torch.Tensor, snr_low: int, snr_high: int, min_overlap: float):
253
+ if snr_low == snr_high:
254
+ snr = snr_low
255
+ else:
256
+ snr = np.random.randint(snr_low, snr_high)
257
+ mix = snr_mixer(src, dst, snr, min_overlap)
258
+ return mix
259
+
260
+
261
+ def mix_text(src_text: str, dst_text: str):
262
+ """Mix text from different sources by concatenating them."""
263
+ if src_text == dst_text:
264
+ return src_text
265
+ return src_text + " " + dst_text
266
+
267
+
268
+ def mix_samples(wavs: torch.Tensor, infos: tp.List[SoundInfo], aug_p: float, mix_p: float,
269
+ snr_low: int, snr_high: int, min_overlap: float):
270
+ """Mix samples within a batch, summing the waveforms and concatenating the text infos.
271
+
272
+ Args:
273
+ wavs (torch.Tensor): Audio tensors of shape [B, C, T].
274
+ infos (list[SoundInfo]): List of SoundInfo items corresponding to the audio.
275
+ aug_p (float): Augmentation probability.
276
+ mix_p (float): Proportion of items in the batch to mix (and merge) together.
277
+ snr_low (int): Lowerbound for sampling SNR.
278
+ snr_high (int): Upperbound for sampling SNR.
279
+ min_overlap (float): Minimum overlap between mixed samples.
280
+ Returns:
281
+ tuple[torch.Tensor, list[SoundInfo]]: A tuple containing the mixed wavs
282
+ and mixed SoundInfo for the given batch.
283
+ """
284
+ # no mixing to perform within the batch
285
+ if mix_p == 0:
286
+ return wavs, infos
287
+
288
+ if random.uniform(0, 1) < aug_p:
289
+ # perform all augmentations on waveforms as [B, T]
290
+ # randomly picking pairs of audio to mix
291
+ assert wavs.size(1) == 1, f"Mix samples requires monophonic audio but C={wavs.size(1)}"
292
+ wavs = wavs.mean(dim=1, keepdim=False)
293
+ B, T = wavs.shape
294
+ k = int(mix_p * B)
295
+ mixed_sources_idx = torch.randperm(B)[:k]
296
+ mixed_targets_idx = torch.randperm(B)[:k]
297
+ aug_wavs = snr_mix(
298
+ wavs[mixed_sources_idx],
299
+ wavs[mixed_targets_idx],
300
+ snr_low,
301
+ snr_high,
302
+ min_overlap,
303
+ )
304
+ # mixing textual descriptions in metadata
305
+ descriptions = [info.description for info in infos]
306
+ aug_infos = []
307
+ for i, j in zip(mixed_sources_idx, mixed_targets_idx):
308
+ text = mix_text(descriptions[i], descriptions[j])
309
+ m = replace(infos[i])
310
+ m.description = text
311
+ aug_infos.append(m)
312
+
313
+ # back to [B, C, T]
314
+ aug_wavs = aug_wavs.unsqueeze(1)
315
+ assert aug_wavs.shape[0] > 0, "Samples mixing returned empty batch."
316
+ assert aug_wavs.dim() == 3, f"Returned wav should be [B, C, T] but dim = {aug_wavs.dim()}"
317
+ assert aug_wavs.shape[0] == len(aug_infos), "Mismatch between number of wavs and infos in the batch"
318
+
319
+ return aug_wavs, aug_infos # [B, C, T]
320
+ else:
321
+ # randomly pick samples in the batch to match
322
+ # the batch size when performing audio mixing
323
+ B, C, T = wavs.shape
324
+ k = int(mix_p * B)
325
+ wav_idx = torch.randperm(B)[:k]
326
+ wavs = wavs[wav_idx]
327
+ infos = [infos[i] for i in wav_idx]
328
+ assert wavs.shape[0] == len(infos), "Mismatch between number of wavs and infos in the batch"
329
+
330
+ return wavs, infos # [B, C, T]
audiocraft/data/zip.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ """Utility for reading some info from inside a zip file.
7
+ """
8
+
9
+ import typing
10
+ import zipfile
11
+
12
+ from dataclasses import dataclass
13
+ from functools import lru_cache
14
+ from typing_extensions import Literal
15
+
16
+
17
+ DEFAULT_SIZE = 32
18
+ MODE = Literal['r', 'w', 'x', 'a']
19
+
20
+
21
+ @dataclass(order=True)
22
+ class PathInZip:
23
+ """Hold a path of file within a zip file.
24
+
25
+ Args:
26
+ path (str): The convention is <path_to_zip>:<relative_path_inside_zip>.
27
+ Let's assume there is a zip file /some/location/foo.zip
28
+ and inside of it is a json file located at /data/file1.json,
29
+ Then we expect path = "/some/location/foo.zip:/data/file1.json".
30
+ """
31
+
32
+ INFO_PATH_SEP = ':'
33
+ zip_path: str
34
+ file_path: str
35
+
36
+ def __init__(self, path: str) -> None:
37
+ split_path = path.split(self.INFO_PATH_SEP)
38
+ assert len(split_path) == 2
39
+ self.zip_path, self.file_path = split_path
40
+
41
+ @classmethod
42
+ def from_paths(cls, zip_path: str, file_path: str):
43
+ return cls(zip_path + cls.INFO_PATH_SEP + file_path)
44
+
45
+ def __str__(self) -> str:
46
+ return self.zip_path + self.INFO_PATH_SEP + self.file_path
47
+
48
+
49
+ def _open_zip(path: str, mode: MODE = 'r'):
50
+ return zipfile.ZipFile(path, mode)
51
+
52
+
53
+ _cached_open_zip = lru_cache(DEFAULT_SIZE)(_open_zip)
54
+
55
+
56
+ def set_zip_cache_size(max_size: int):
57
+ """Sets the maximal LRU caching for zip file opening.
58
+
59
+ Args:
60
+ max_size (int): the maximal LRU cache.
61
+ """
62
+ global _cached_open_zip
63
+ _cached_open_zip = lru_cache(max_size)(_open_zip)
64
+
65
+
66
+ def open_file_in_zip(path_in_zip: PathInZip, mode: str = 'r') -> typing.IO:
67
+ """Opens a file stored inside a zip and returns a file-like object.
68
+
69
+ Args:
70
+ path_in_zip (PathInZip): A PathInZip object representing the file to return a file-like object of.
71
+ mode (str): The mode in which to open the file with.
72
+ Returns:
73
+ A file-like object for PathInZip.
74
+ """
75
+ zf = _cached_open_zip(path_in_zip.zip_path)
76
+ return zf.open(path_in_zip.file_path)
audiocraft/environment.py ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ """
8
+ Provides cluster and tools configuration across clusters (slurm, dora, utilities).
9
+ """
10
+
11
+ import logging
12
+ import os
13
+ from pathlib import Path
14
+ import re
15
+ import typing as tp
16
+
17
+ import omegaconf
18
+
19
+ from .utils.cluster import _guess_cluster_type
20
+
21
+
22
+ logger = logging.getLogger(__name__)
23
+
24
+
25
+ class AudioCraftEnvironment:
26
+ """Environment configuration for teams and clusters.
27
+
28
+ AudioCraftEnvironment picks compute cluster settings (slurm, dora) from the current running environment
29
+ or declared variable and the loaded team configuration. Additionally, the AudioCraftEnvironment
30
+ provides pointers to a reference folder resolved automatically across clusters that is shared across team members,
31
+ allowing to share sigs or other files to run jobs. Finally, it provides dataset mappers to automatically
32
+ map dataset file paths to new locations across clusters, allowing to use the same manifest of files across cluters.
33
+
34
+ The cluster type is identified automatically and base configuration file is read from config/teams.yaml.
35
+ Use the following environment variables to specify the cluster, team or configuration:
36
+
37
+ AUDIOCRAFT_CLUSTER (optional): Cluster type to enforce. Useful if the cluster type
38
+ cannot be inferred automatically.
39
+ AUDIOCRAFT_CONFIG (optional): Path to yaml config holding the teams configuration.
40
+ If not set, configuration is read from config/teams.yaml.
41
+ AUDIOCRAFT_TEAM (optional): Name of the team. Recommended to set to your own team.
42
+ Cluster configuration are shared across teams to match compute allocation,
43
+ specify your cluster configuration in the configuration file under a key mapping
44
+ your team name.
45
+ """
46
+ _instance = None
47
+ DEFAULT_TEAM = "default"
48
+
49
+ def __init__(self) -> None:
50
+ """Loads configuration."""
51
+ self.team: str = os.getenv("AUDIOCRAFT_TEAM", self.DEFAULT_TEAM)
52
+ cluster_type = _guess_cluster_type()
53
+ cluster = os.getenv(
54
+ "AUDIOCRAFT_CLUSTER", cluster_type.value
55
+ )
56
+ logger.info("Detecting cluster type %s", cluster_type)
57
+
58
+ self.cluster: str = cluster
59
+
60
+ config_path = os.getenv(
61
+ "AUDIOCRAFT_CONFIG",
62
+ Path(__file__)
63
+ .parent.parent.joinpath("config/teams", self.team)
64
+ .with_suffix(".yaml"),
65
+ )
66
+ self.config = omegaconf.OmegaConf.load(config_path)
67
+ self._dataset_mappers = []
68
+ cluster_config = self._get_cluster_config()
69
+ if "dataset_mappers" in cluster_config:
70
+ for pattern, repl in cluster_config["dataset_mappers"].items():
71
+ regex = re.compile(pattern)
72
+ self._dataset_mappers.append((regex, repl))
73
+
74
+ def _get_cluster_config(self) -> omegaconf.DictConfig:
75
+ assert isinstance(self.config, omegaconf.DictConfig)
76
+ return self.config[self.cluster]
77
+
78
+ @classmethod
79
+ def instance(cls):
80
+ if cls._instance is None:
81
+ cls._instance = cls()
82
+ return cls._instance
83
+
84
+ @classmethod
85
+ def reset(cls):
86
+ """Clears the environment and forces a reload on next invocation."""
87
+ cls._instance = None
88
+
89
+ @classmethod
90
+ def get_team(cls) -> str:
91
+ """Gets the selected team as dictated by the AUDIOCRAFT_TEAM env var.
92
+ If not defined, defaults to "labs".
93
+ """
94
+ return cls.instance().team
95
+
96
+ @classmethod
97
+ def get_cluster(cls) -> str:
98
+ """Gets the detected cluster.
99
+ This value can be overridden by the AUDIOCRAFT_CLUSTER env var.
100
+ """
101
+ return cls.instance().cluster
102
+
103
+ @classmethod
104
+ def get_dora_dir(cls) -> Path:
105
+ """Gets the path to the dora directory for the current team and cluster.
106
+ Value is overridden by the AUDIOCRAFT_DORA_DIR env var.
107
+ """
108
+ cluster_config = cls.instance()._get_cluster_config()
109
+ dora_dir = os.getenv("AUDIOCRAFT_DORA_DIR", cluster_config["dora_dir"])
110
+ logger.warning(f"Dora directory: {dora_dir}")
111
+ return Path(dora_dir)
112
+
113
+ @classmethod
114
+ def get_reference_dir(cls) -> Path:
115
+ """Gets the path to the reference directory for the current team and cluster.
116
+ Value is overridden by the AUDIOCRAFT_REFERENCE_DIR env var.
117
+ """
118
+ cluster_config = cls.instance()._get_cluster_config()
119
+ return Path(os.getenv("AUDIOCRAFT_REFERENCE_DIR", cluster_config["reference_dir"]))
120
+
121
+ @classmethod
122
+ def get_slurm_exclude(cls) -> tp.Optional[str]:
123
+ """Get the list of nodes to exclude for that cluster."""
124
+ cluster_config = cls.instance()._get_cluster_config()
125
+ return cluster_config.get("slurm_exclude")
126
+
127
+ @classmethod
128
+ def get_slurm_partitions(cls, partition_types: tp.Optional[tp.List[str]] = None) -> str:
129
+ """Gets the requested partitions for the current team and cluster as a comma-separated string.
130
+
131
+ Args:
132
+ partition_types (list[str], optional): partition types to retrieve. Values must be
133
+ from ['global', 'team']. If not provided, the global partition is returned.
134
+ """
135
+ if not partition_types:
136
+ partition_types = ["global"]
137
+
138
+ cluster_config = cls.instance()._get_cluster_config()
139
+ partitions = [
140
+ cluster_config["partitions"][partition_type]
141
+ for partition_type in partition_types
142
+ ]
143
+ return ",".join(partitions)
144
+
145
+ @classmethod
146
+ def resolve_reference_path(cls, path: tp.Union[str, Path]) -> Path:
147
+ """Converts reference placeholder in path with configured reference dir to resolve paths.
148
+
149
+ Args:
150
+ path (str or Path): Path to resolve.
151
+ Returns:
152
+ Path: Resolved path.
153
+ """
154
+ path = str(path)
155
+
156
+ if path.startswith("//reference"):
157
+ reference_dir = cls.get_reference_dir()
158
+ logger.warn(f"Reference directory: {reference_dir}")
159
+ assert (
160
+ reference_dir.exists() and reference_dir.is_dir()
161
+ ), f"Reference directory does not exist: {reference_dir}."
162
+ path = re.sub("^//reference", str(reference_dir), path)
163
+
164
+ return Path(path)
165
+
166
+ @classmethod
167
+ def apply_dataset_mappers(cls, path: str) -> str:
168
+ """Applies dataset mapping regex rules as defined in the configuration.
169
+ If no rules are defined, the path is returned as-is.
170
+ """
171
+ instance = cls.instance()
172
+
173
+ for pattern, repl in instance._dataset_mappers:
174
+ path = pattern.sub(repl, path)
175
+
176
+ return path
audiocraft/grids/__init__.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ """Dora Grids."""
audiocraft/grids/_base_explorers.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from abc import ABC, abstractmethod
8
+ import time
9
+ import typing as tp
10
+ from dora import Explorer
11
+ import treetable as tt
12
+
13
+
14
+ def get_sheep_ping(sheep) -> tp.Optional[str]:
15
+ """Return the amount of time since the Sheep made some update
16
+ to its log. Returns a str using the relevant time unit."""
17
+ ping = None
18
+ if sheep.log is not None and sheep.log.exists():
19
+ delta = time.time() - sheep.log.stat().st_mtime
20
+ if delta > 3600 * 24:
21
+ ping = f'{delta / (3600 * 24):.1f}d'
22
+ elif delta > 3600:
23
+ ping = f'{delta / (3600):.1f}h'
24
+ elif delta > 60:
25
+ ping = f'{delta / 60:.1f}m'
26
+ else:
27
+ ping = f'{delta:.1f}s'
28
+ return ping
29
+
30
+
31
+ class BaseExplorer(ABC, Explorer):
32
+ """Base explorer for AudioCraft grids.
33
+
34
+ All task specific solvers are expected to implement the `get_grid_metrics`
35
+ method to specify logic about metrics to display for a given task.
36
+
37
+ If additional stages are used, the child explorer must define how to handle
38
+ these new stages in the `process_history` and `process_sheep` methods.
39
+ """
40
+ def stages(self):
41
+ return ["train", "valid", "evaluate"]
42
+
43
+ def get_grid_meta(self):
44
+ """Returns the list of Meta information to display for each XP/job.
45
+ """
46
+ return [
47
+ tt.leaf("index", align=">"),
48
+ tt.leaf("name", wrap=140),
49
+ tt.leaf("state"),
50
+ tt.leaf("sig", align=">"),
51
+ tt.leaf("sid", align="<"),
52
+ ]
53
+
54
+ @abstractmethod
55
+ def get_grid_metrics(self):
56
+ """Return the metrics that should be displayed in the tracking table.
57
+ """
58
+ ...
59
+
60
+ def process_sheep(self, sheep, history):
61
+ train = {
62
+ "epoch": len(history),
63
+ }
64
+ parts = {"train": train}
65
+ for metrics in history:
66
+ for key, sub in metrics.items():
67
+ part = parts.get(key, {})
68
+ if 'duration' in sub:
69
+ # Convert to minutes for readability.
70
+ sub['duration'] = sub['duration'] / 60.
71
+ part.update(sub)
72
+ parts[key] = part
73
+ ping = get_sheep_ping(sheep)
74
+ if ping is not None:
75
+ for name in self.stages():
76
+ if name not in parts:
77
+ parts[name] = {}
78
+ # Add the ping to each part for convenience.
79
+ parts[name]['ping'] = ping
80
+ return parts
audiocraft/grids/audiogen/__init__.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ """AudioGen grids."""
audiocraft/grids/audiogen/audiogen_base_16khz.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from ..musicgen._explorers import LMExplorer
8
+ from ...environment import AudioCraftEnvironment
9
+
10
+
11
+ @LMExplorer
12
+ def explorer(launcher):
13
+ partitions = AudioCraftEnvironment.get_slurm_partitions(['team', 'global'])
14
+ launcher.slurm_(gpus=64, partition=partitions)
15
+ launcher.bind_(solver='audiogen/audiogen_base_16khz')
16
+ # replace this by the desired environmental sound dataset
17
+ launcher.bind_(dset='internal/sounds_16khz')
18
+
19
+ fsdp = {'autocast': False, 'fsdp.use': True}
20
+ medium = {'model/lm/model_scale': 'medium'}
21
+
22
+ launcher.bind_(fsdp)
23
+ launcher(medium)
audiocraft/grids/audiogen/audiogen_pretrained_16khz_eval.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ """
8
+ Evaluation with objective metrics for the pretrained AudioGen models.
9
+ This grid takes signature from the training grid and runs evaluation-only stage.
10
+
11
+ When running the grid for the first time, please use:
12
+ REGEN=1 dora grid audiogen.audiogen_pretrained_16khz_eval
13
+ and re-use the REGEN=1 option when the grid is changed to force regenerating it.
14
+
15
+ Note that you need the proper metrics external libraries setup to use all
16
+ the objective metrics activated in this grid. Refer to the README for more information.
17
+ """
18
+
19
+ import os
20
+
21
+ from ..musicgen._explorers import GenerationEvalExplorer
22
+ from ...environment import AudioCraftEnvironment
23
+ from ... import train
24
+
25
+
26
+ def eval(launcher, batch_size: int = 32):
27
+ opts = {
28
+ 'dset': 'audio/audiocaps_16khz',
29
+ 'solver/audiogen/evaluation': 'objective_eval',
30
+ 'execute_only': 'evaluate',
31
+ '+dataset.evaluate.batch_size': batch_size,
32
+ '+metrics.fad.tf.batch_size': 32,
33
+ }
34
+ # binary for FAD computation: replace this path with your own path
35
+ metrics_opts = {
36
+ 'metrics.fad.tf.bin': '/data/home/jadecopet/local/usr/opt/google-research'
37
+ }
38
+ opt1 = {'generate.lm.use_sampling': True, 'generate.lm.top_k': 250, 'generate.lm.top_p': 0.}
39
+ opt2 = {'transformer_lm.two_step_cfg': True}
40
+
41
+ sub = launcher.bind(opts)
42
+ sub.bind_(metrics_opts)
43
+
44
+ # base objective metrics
45
+ sub(opt1, opt2)
46
+
47
+
48
+ @GenerationEvalExplorer
49
+ def explorer(launcher):
50
+ partitions = AudioCraftEnvironment.get_slurm_partitions(['team', 'global'])
51
+ launcher.slurm_(gpus=4, partition=partitions)
52
+
53
+ if 'REGEN' not in os.environ:
54
+ folder = train.main.dora.dir / 'grids' / __name__.split('.', 2)[-1]
55
+ with launcher.job_array():
56
+ for sig in folder.iterdir():
57
+ if not sig.is_symlink():
58
+ continue
59
+ xp = train.main.get_xp_from_sig(sig.name)
60
+ launcher(xp.argv)
61
+ return
62
+
63
+ audiogen_base = launcher.bind(solver="audiogen/audiogen_base_16khz")
64
+ audiogen_base.bind_({'autocast': False, 'fsdp.use': True})
65
+
66
+ audiogen_base_medium = audiogen_base.bind({'continue_from': '//pretrained/facebook/audiogen-medium'})
67
+ audiogen_base_medium.bind_({'model/lm/model_scale': 'medium'})
68
+ eval(audiogen_base_medium, batch_size=128)
audiocraft/grids/compression/__init__.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+ """EnCodec grids."""
audiocraft/grids/compression/_explorers.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import treetable as tt
8
+
9
+ from .._base_explorers import BaseExplorer
10
+
11
+
12
+ class CompressionExplorer(BaseExplorer):
13
+ eval_metrics = ["sisnr", "visqol"]
14
+
15
+ def stages(self):
16
+ return ["train", "valid", "evaluate"]
17
+
18
+ def get_grid_meta(self):
19
+ """Returns the list of Meta information to display for each XP/job.
20
+ """
21
+ return [
22
+ tt.leaf("index", align=">"),
23
+ tt.leaf("name", wrap=140),
24
+ tt.leaf("state"),
25
+ tt.leaf("sig", align=">"),
26
+ ]
27
+
28
+ def get_grid_metrics(self):
29
+ """Return the metrics that should be displayed in the tracking table.
30
+ """
31
+ return [
32
+ tt.group(
33
+ "train",
34
+ [
35
+ tt.leaf("epoch"),
36
+ tt.leaf("bandwidth", ".2f"),
37
+ tt.leaf("adv", ".4f"),
38
+ tt.leaf("d_loss", ".4f"),
39
+ ],
40
+ align=">",
41
+ ),
42
+ tt.group(
43
+ "valid",
44
+ [
45
+ tt.leaf("bandwidth", ".2f"),
46
+ tt.leaf("adv", ".4f"),
47
+ tt.leaf("msspec", ".4f"),
48
+ tt.leaf("sisnr", ".2f"),
49
+ ],
50
+ align=">",
51
+ ),
52
+ tt.group(
53
+ "evaluate", [tt.leaf(name, ".3f") for name in self.eval_metrics], align=">"
54
+ ),
55
+ ]
audiocraft/grids/compression/debug.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ """
8
+ Grid search file, simply list all the exp you want in `explorer`.
9
+ Any new exp added there will be scheduled.
10
+ You can cancel and experiment by commenting its line.
11
+
12
+ This grid is a minimal example for debugging compression task
13
+ and how to override parameters directly in a grid.
14
+ Learn more about dora grids: https://github.com/facebookresearch/dora
15
+ """
16
+
17
+ from ._explorers import CompressionExplorer
18
+ from ...environment import AudioCraftEnvironment
19
+
20
+
21
+ @CompressionExplorer
22
+ def explorer(launcher):
23
+ partitions = AudioCraftEnvironment.get_slurm_partitions(['team', 'global'])
24
+ launcher.slurm_(gpus=2, partition=partitions)
25
+ launcher.bind_(solver='compression/debug')
26
+
27
+ with launcher.job_array():
28
+ # base debug task using config from solver=compression/debug
29
+ launcher()
30
+ # we can override parameters in the grid to launch additional xps
31
+ launcher({'rvq.bins': 2048, 'rvq.n_q': 4})
audiocraft/grids/compression/encodec_audiogen_16khz.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ """
8
+ Grid search file, simply list all the exp you want in `explorer`.
9
+ Any new exp added there will be scheduled.
10
+ You can cancel and experiment by commenting its line.
11
+
12
+ This grid shows how to train the new AudioGen EnCodec model at 16 kHz.
13
+ """
14
+
15
+ from ._explorers import CompressionExplorer
16
+ from ...environment import AudioCraftEnvironment
17
+
18
+
19
+ @CompressionExplorer
20
+ def explorer(launcher):
21
+ partitions = AudioCraftEnvironment.get_slurm_partitions(['team', 'global'])
22
+ launcher.slurm_(gpus=8, partition=partitions)
23
+ # use configuration for AudioGen's EnCodec model trained on monophonic audio sampled at 16 kHz
24
+ # AudioGen's EnCodec is trained with a total stride of 320 leading to a frame rate of 50 hz
25
+ launcher.bind_(solver='compression/encodec_audiogen_16khz')
26
+ # replace this by the desired sound dataset
27
+ launcher.bind_(dset='internal/sounds_16khz')
28
+ # launch xp
29
+ launcher()
audiocraft/grids/compression/encodec_base_24khz.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ """
8
+ Grid search file, simply list all the exp you want in `explorer`.
9
+ Any new exp added there will be scheduled.
10
+ You can cancel and experiment by commenting its line.
11
+
12
+ This grid shows how to train a base causal EnCodec model at 24 kHz.
13
+ """
14
+
15
+ from ._explorers import CompressionExplorer
16
+ from ...environment import AudioCraftEnvironment
17
+
18
+
19
+ @CompressionExplorer
20
+ def explorer(launcher):
21
+ partitions = AudioCraftEnvironment.get_slurm_partitions(['team', 'global'])
22
+ launcher.slurm_(gpus=8, partition=partitions)
23
+ # base causal EnCodec trained on monophonic audio sampled at 24 kHz
24
+ launcher.bind_(solver='compression/encodec_base_24khz')
25
+ # replace this by the desired dataset
26
+ launcher.bind_(dset='audio/example')
27
+ # launch xp
28
+ launcher()