File size: 7,450 Bytes
4f080ef d24830e 860d7ef d24830e 4f080ef d24830e 4f080ef d24830e 4f080ef d24830e 4f080ef d24830e 4f080ef 8606620 4f080ef d24830e 4f080ef d24830e 4f080ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import gradio as gr
from gradio_client import Client
from huggingface_hub import InferenceClient
import random
ss_client = Client("https://omnibus-html-image-current-tab.hf.space/")
models=[
"google/gemma-7b",
"google/gemma-7b-it",
"google/gemma-2b",
"google/gemma-2b-it",
"meta-llama/Llama-2-7b-chat-hf",
"codellama/CodeLlama-70b-Instruct-hf",
"openchat/openchat-3.5-0106",
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mixtral-8x7B-Instruct-v0.2",
]
def load_models(inp):
print(type(inp))
print(inp)
print(models[inp])
model_state= InferenceClient(models[inp])
out_box=gr.update(label=models[inp])
return out_box, model_state
VERBOSE=False
def load_models(inp):
if VERBOSE==True:
print(type(inp))
print(inp)
print(models[inp])
#client_z.clear()
#client_z.append(InferenceClient(models[inp]))
return gr.update(label=models[inp])
def format_prompt(message, history, cust_p):
prompt = ""
if history:
for user_prompt, bot_response in history:
prompt += f"<start_of_turn>user{user_prompt}<end_of_turn>"
prompt += f"<start_of_turn>model{bot_response}<end_of_turn>"
if VERBOSE==True:
print(prompt)
#prompt += f"<start_of_turn>user\n{message}<end_of_turn>\n<start_of_turn>model\n"
prompt+=cust_p.replace("USER_INPUT",message)
return prompt
def chat_inf(system_prompt,prompt,history,memory,model_state,seed,temp,tokens,top_p,rep_p,chat_mem,cust_p):
#token max=8192
print(model_state)
hist_len=0
client=model_state
if not history:
history = []
hist_len=0
if not memory:
memory = []
mem_len=0
if memory:
for ea in memory[0-chat_mem:]:
hist_len+=len(str(ea))
in_len=len(system_prompt+prompt)+hist_len
if (in_len+tokens) > 8000:
history.append((prompt,"Wait, that's too many tokens, please reduce the 'Chat Memory' value, or reduce the 'Max new tokens' value"))
yield history,memory
else:
generate_kwargs = dict(
temperature=temp,
max_new_tokens=tokens,
top_p=top_p,
repetition_penalty=rep_p,
do_sample=True,
seed=seed,
)
if system_prompt:
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", memory[0-chat_mem:],cust_p)
else:
formatted_prompt = format_prompt(prompt, memory[0-chat_mem:],cust_p)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
output = ""
for response in stream:
output += response.token.text
yield [(prompt,output)],memory
history.append((prompt,output))
memory.append((prompt,output))
yield history,memory
if VERBOSE==True:
print("\n######### HIST "+str(in_len))
print("\n######### TOKENS "+str(tokens))
def get_screenshot(chat: list,height=5000,width=600,chatblock=[],theme="light",wait=3000,header=True):
print(chatblock)
tog = 0
if chatblock:
tog = 3
result = ss_client.predict(str(chat),height,width,chatblock,header,theme,wait,api_name="/run_script")
out = f'https://omnibus-html-image-current-tab.hf.space/file={result[tog]}'
print(out)
return out
def clear_fn():
return None,None,None,None
rand_val=random.randint(1,1111111111111111)
def check_rand(inp,val):
if inp==True:
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1,1111111111111111))
else:
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))
with gr.Blocks() as app:
model_state=gr.State()
memory=gr.State()
gr.HTML("""<center><h1 style='font-size:xx-large;'>Huggingface Hub InferenceClient</h1><br><h3>Chatbot's</h3></center>""")
chat_b = gr.Chatbot(height=500)
with gr.Group():
with gr.Row():
with gr.Column(scale=3):
inp = gr.Textbox(label="Prompt")
sys_inp = gr.Textbox(label="System Prompt (optional)")
with gr.Accordion("Prompt Format",open=False):
custom_prompt=gr.Textbox(label="Modify Prompt Format", info="For testing purposes. 'USER_INPUT' is where 'SYSTEM_PROMPT, PROMPT' will be placed", lines=3,value="<start_of_turn>userUSER_INPUT<end_of_turn><start_of_turn>model")
with gr.Row():
with gr.Column(scale=2):
btn = gr.Button("Chat")
with gr.Column(scale=1):
with gr.Group():
stop_btn=gr.Button("Stop")
clear_btn=gr.Button("Clear")
client_choice=gr.Dropdown(label="Models",type='index',choices=[c for c in models],value=models[0],interactive=True)
with gr.Column(scale=1):
with gr.Group():
rand = gr.Checkbox(label="Random Seed", value=True)
seed=gr.Slider(label="Seed", minimum=1, maximum=1111111111111111,step=1, value=rand_val)
tokens = gr.Slider(label="Max new tokens",value=1600,minimum=0,maximum=8000,step=64,interactive=True, visible=True,info="The maximum number of tokens")
temp=gr.Slider(label="Temperature",step=0.01, minimum=0.01, maximum=1.0, value=0.49)
top_p=gr.Slider(label="Top-P",step=0.01, minimum=0.01, maximum=1.0, value=0.49)
rep_p=gr.Slider(label="Repetition Penalty",step=0.01, minimum=0.1, maximum=2.0, value=0.99)
chat_mem=gr.Number(label="Chat Memory", info="Number of previous chats to retain",value=4)
with gr.Accordion(label="Screenshot",open=False):
with gr.Row():
with gr.Column(scale=3):
im_btn=gr.Button("Screenshot")
img=gr.Image(type='filepath')
with gr.Column(scale=1):
with gr.Row():
im_height=gr.Number(label="Height",value=5000)
im_width=gr.Number(label="Width",value=500)
wait_time=gr.Number(label="Wait Time",value=3000)
theme=gr.Radio(label="Theme", choices=["light","dark"],value="light")
chatblock=gr.Dropdown(label="Chatblocks",info="Choose specific blocks of chat",choices=[c for c in range(1,40)],multiselect=True)
client_choice.change(load_models,client_choice,[chat_b,model_state])
app.load(load_models,client_choice,[chat_b,model_state])
im_go=im_btn.click(get_screenshot,[chat_b,im_height,im_width,chatblock,theme,wait_time],img)
chat_sub=inp.submit(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,memory,model_state,seed,temp,tokens,top_p,rep_p,chat_mem,custom_prompt],[chat_b,memory])
go=btn.click(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,memory,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem,custom_prompt],[chat_b,memory])
stop_btn.click(None,None,None,cancels=[go,im_go,chat_sub])
clear_btn.click(clear_fn,None,[inp,sys_inp,chat_b,memory])
app.queue(default_concurrency_limit=10).launch() |