Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from gradio_client import Client
|
3 |
+
from huggingface_hub import InferenceClient
|
4 |
+
import random
|
5 |
+
ss_client = Client("https://omnibus-html-image-current-tab.hf.space/")
|
6 |
+
|
7 |
+
models=[
|
8 |
+
"google/gemma-7b",
|
9 |
+
"google/gemma-7b-it",
|
10 |
+
"google/gemma-2b",
|
11 |
+
"google/gemma-2b-it",
|
12 |
+
"meta-llama/Llama-2-7b-chat-hf",
|
13 |
+
"codellama/CodeLlama-70b-Instruct-hf",
|
14 |
+
"openchat/openchat-3.5-0106",
|
15 |
+
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
|
16 |
+
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
17 |
+
"mistralai/Mixtral-8x7B-Instruct-v0.2",
|
18 |
+
]
|
19 |
+
clients=[
|
20 |
+
InferenceClient(models[0]),
|
21 |
+
InferenceClient(models[1]),
|
22 |
+
InferenceClient(models[2]),
|
23 |
+
InferenceClient(models[3]),
|
24 |
+
]
|
25 |
+
|
26 |
+
VERBOSE=False
|
27 |
+
|
28 |
+
def load_models(inp):
|
29 |
+
if VERBOSE==True:
|
30 |
+
print(type(inp))
|
31 |
+
print(inp)
|
32 |
+
print(models[inp])
|
33 |
+
#client_z.clear()
|
34 |
+
#client_z.append(InferenceClient(models[inp]))
|
35 |
+
return gr.update(label=models[inp])
|
36 |
+
|
37 |
+
def format_prompt(message, history, cust_p):
|
38 |
+
prompt = ""
|
39 |
+
if history:
|
40 |
+
for user_prompt, bot_response in history:
|
41 |
+
prompt += f"<start_of_turn>user{user_prompt}<end_of_turn>"
|
42 |
+
prompt += f"<start_of_turn>model{bot_response}<end_of_turn>"
|
43 |
+
if VERBOSE==True:
|
44 |
+
print(prompt)
|
45 |
+
#prompt += f"<start_of_turn>user\n{message}<end_of_turn>\n<start_of_turn>model\n"
|
46 |
+
prompt+=cust_p.replace("USER_INPUT",message)
|
47 |
+
return prompt
|
48 |
+
|
49 |
+
def chat_inf(system_prompt,prompt,history,memory,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem,cust_p):
|
50 |
+
#token max=8192
|
51 |
+
print(client_choice)
|
52 |
+
hist_len=0
|
53 |
+
client=clients[int(client_choice)-1]
|
54 |
+
if not history:
|
55 |
+
history = []
|
56 |
+
hist_len=0
|
57 |
+
if not memory:
|
58 |
+
memory = []
|
59 |
+
mem_len=0
|
60 |
+
if memory:
|
61 |
+
for ea in memory[0-chat_mem:]:
|
62 |
+
hist_len+=len(str(ea))
|
63 |
+
in_len=len(system_prompt+prompt)+hist_len
|
64 |
+
|
65 |
+
if (in_len+tokens) > 8000:
|
66 |
+
history.append((prompt,"Wait, that's too many tokens, please reduce the 'Chat Memory' value, or reduce the 'Max new tokens' value"))
|
67 |
+
yield history,memory
|
68 |
+
else:
|
69 |
+
generate_kwargs = dict(
|
70 |
+
temperature=temp,
|
71 |
+
max_new_tokens=tokens,
|
72 |
+
top_p=top_p,
|
73 |
+
repetition_penalty=rep_p,
|
74 |
+
do_sample=True,
|
75 |
+
seed=seed,
|
76 |
+
)
|
77 |
+
if system_prompt:
|
78 |
+
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", memory[0-chat_mem:],cust_p)
|
79 |
+
else:
|
80 |
+
formatted_prompt = format_prompt(prompt, memory[0-chat_mem:],cust_p)
|
81 |
+
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
|
82 |
+
output = ""
|
83 |
+
for response in stream:
|
84 |
+
output += response.token.text
|
85 |
+
yield [(prompt,output)],memory
|
86 |
+
history.append((prompt,output))
|
87 |
+
memory.append((prompt,output))
|
88 |
+
yield history,memory
|
89 |
+
|
90 |
+
if VERBOSE==True:
|
91 |
+
print("\n######### HIST "+str(in_len))
|
92 |
+
print("\n######### TOKENS "+str(tokens))
|
93 |
+
|
94 |
+
def get_screenshot(chat: list,height=5000,width=600,chatblock=[],theme="light",wait=3000,header=True):
|
95 |
+
print(chatblock)
|
96 |
+
tog = 0
|
97 |
+
if chatblock:
|
98 |
+
tog = 3
|
99 |
+
result = ss_client.predict(str(chat),height,width,chatblock,header,theme,wait,api_name="/run_script")
|
100 |
+
out = f'https://omnibus-html-image-current-tab.hf.space/file={result[tog]}'
|
101 |
+
print(out)
|
102 |
+
return out
|
103 |
+
|
104 |
+
def clear_fn():
|
105 |
+
return None,None,None,None
|
106 |
+
rand_val=random.randint(1,1111111111111111)
|
107 |
+
|
108 |
+
def check_rand(inp,val):
|
109 |
+
if inp==True:
|
110 |
+
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1,1111111111111111))
|
111 |
+
else:
|
112 |
+
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))
|
113 |
+
|
114 |
+
with gr.Blocks() as app:
|
115 |
+
memory=gr.State()
|
116 |
+
gr.HTML("""<center><h1 style='font-size:xx-large;'>Google Gemma Models</h1><br><h3>running on Huggingface Inference Client</h3><br><h7>EXPERIMENTAL""")
|
117 |
+
chat_b = gr.Chatbot(height=500)
|
118 |
+
with gr.Group():
|
119 |
+
with gr.Row():
|
120 |
+
with gr.Column(scale=3):
|
121 |
+
inp = gr.Textbox(label="Prompt")
|
122 |
+
sys_inp = gr.Textbox(label="System Prompt (optional)")
|
123 |
+
with gr.Accordion("Prompt Format",open=False):
|
124 |
+
custom_prompt=gr.Textbox(label="Modify Prompt Format", info="For testing purposes. 'USER_INPUT' is where 'SYSTEM_PROMPT, PROMPT' will be placed", lines=3,value="<start_of_turn>userUSER_INPUT<end_of_turn><start_of_turn>model")
|
125 |
+
with gr.Row():
|
126 |
+
with gr.Column(scale=2):
|
127 |
+
btn = gr.Button("Chat")
|
128 |
+
with gr.Column(scale=1):
|
129 |
+
with gr.Group():
|
130 |
+
stop_btn=gr.Button("Stop")
|
131 |
+
clear_btn=gr.Button("Clear")
|
132 |
+
client_choice=gr.Dropdown(label="Models",type='index',choices=[c for c in models],value=models[0],interactive=True)
|
133 |
+
with gr.Column(scale=1):
|
134 |
+
with gr.Group():
|
135 |
+
rand = gr.Checkbox(label="Random Seed", value=True)
|
136 |
+
seed=gr.Slider(label="Seed", minimum=1, maximum=1111111111111111,step=1, value=rand_val)
|
137 |
+
tokens = gr.Slider(label="Max new tokens",value=1600,minimum=0,maximum=8000,step=64,interactive=True, visible=True,info="The maximum number of tokens")
|
138 |
+
temp=gr.Slider(label="Temperature",step=0.01, minimum=0.01, maximum=1.0, value=0.49)
|
139 |
+
top_p=gr.Slider(label="Top-P",step=0.01, minimum=0.01, maximum=1.0, value=0.49)
|
140 |
+
rep_p=gr.Slider(label="Repetition Penalty",step=0.01, minimum=0.1, maximum=2.0, value=0.99)
|
141 |
+
chat_mem=gr.Number(label="Chat Memory", info="Number of previous chats to retain",value=4)
|
142 |
+
with gr.Accordion(label="Screenshot",open=False):
|
143 |
+
with gr.Row():
|
144 |
+
with gr.Column(scale=3):
|
145 |
+
im_btn=gr.Button("Screenshot")
|
146 |
+
img=gr.Image(type='filepath')
|
147 |
+
with gr.Column(scale=1):
|
148 |
+
with gr.Row():
|
149 |
+
im_height=gr.Number(label="Height",value=5000)
|
150 |
+
im_width=gr.Number(label="Width",value=500)
|
151 |
+
wait_time=gr.Number(label="Wait Time",value=3000)
|
152 |
+
theme=gr.Radio(label="Theme", choices=["light","dark"],value="light")
|
153 |
+
chatblock=gr.Dropdown(label="Chatblocks",info="Choose specific blocks of chat",choices=[c for c in range(1,40)],multiselect=True)
|
154 |
+
|
155 |
+
|
156 |
+
client_choice.change(load_models,client_choice,[chat_b])
|
157 |
+
app.load(load_models,client_choice,[chat_b])
|
158 |
+
|
159 |
+
im_go=im_btn.click(get_screenshot,[chat_b,im_height,im_width,chatblock,theme,wait_time],img)
|
160 |
+
|
161 |
+
chat_sub=inp.submit(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,memory,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem,custom_prompt],[chat_b,memory])
|
162 |
+
go=btn.click(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,memory,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem,custom_prompt],[chat_b,memory])
|
163 |
+
|
164 |
+
stop_btn.click(None,None,None,cancels=[go,im_go,chat_sub])
|
165 |
+
clear_btn.click(clear_fn,None,[inp,sys_inp,chat_b,memory])
|
166 |
+
app.queue(default_concurrency_limit=10).launch()
|