File size: 13,874 Bytes
8a8f172
b56a98c
 
 
8a8f172
 
 
5be4a85
dce0edf
b56a98c
 
8a8f172
5be4a85
2bbf193
3c93cd0
5be4a85
8a8f172
 
6a4771c
5eea90e
 
eeae61c
6a4771c
8d16ec9
5be4a85
2bbf193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5be4a85
 
2bbf193
 
6a4771c
9b93b56
 
6a4771c
0d9d6b6
5be4a85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32e67bb
5be4a85
 
 
 
 
 
 
 
 
 
 
 
 
ced2fa4
7ff5a45
1b87c04
 
ced2fa4
1b87c04
59d5e77
e6654e6
 
 
 
 
 
 
 
6a4771c
 
5be4a85
6a4771c
 
5be4a85
50896cc
558080e
50896cc
6a4771c
 
 
 
eeae61c
 
6a4771c
 
 
 
5be4a85
 
 
 
 
 
 
 
 
 
 
0d9d6b6
 
6a4771c
50896cc
5be4a85
6a4771c
abf5a91
6a4771c
 
 
 
 
 
 
 
eeae61c
6a4771c
 
 
 
 
eeae61c
6a4771c
 
 
 
446b263
6a4771c
 
 
 
 
 
446b263
6a4771c
 
 
 
 
 
 
 
5be4a85
6a4771c
 
 
5be4a85
6a4771c
 
5be4a85
 
 
 
 
 
 
 
 
 
 
446b263
5be4a85
 
 
 
 
 
 
 
446b263
5be4a85
 
446b263
558080e
6a4771c
50896cc
 
6a4771c
 
50896cc
6a4771c
 
 
5be4a85
123dc2e
6a4771c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
#Importing required libraries
import spaces
import gradio as gr

import os
import random
import numpy as np
import cv2
from PIL import Image
from dataclasses import dataclass
from typing import Any, List, Dict, Optional, Union, Tuple

import torch
import google.generativeai as genai
from transformers import AutoModelForMaskGeneration, AutoProcessor, pipeline, T5EncoderModel, CLIPTextModel
from diffusers import FluxTransformer2DModel, FluxInpaintPipeline


MARKDOWN = """
# Add-It🎨
Add or Replace anything to any image by using a single Prompt and an Image.
Made using [Flux (Schnell)](https://huggingface.co/black-forest-labs/FLUX.1-schnell), [Grounding-DINO](https://huggingface.co/docs/transformers/main/en/model_doc/grounding-dino) and [SAM](https://huggingface.co/docs/transformers/en/model_doc/sam).
"""


#Gemini Setup
genai.configure(api_key = os.environ['Gemini_API'])
gemini_flash = genai.GenerativeModel(model_name='gemini-1.5-flash-002')

def gemini_predict(prompt):
    system_message = f"""You are the best text analyser.
                         You have to analyse a user query and identify what the user wants to change, from a given user query.
        
                         Examples:
                             Query: Change Lipstick colour to blue
                             Response: Lips
        
                             Query: Add a nose stud
                             Response: Nose
        
                             Query: Add a wallpaper to the right wall
                             Response: Right wall
        
                             Query: Change the Sofa's colour to Purple
                             Response: Sofa
        
                        Your response should be in 1 or 2-3 words
                        Query : {prompt}
                        """
    response = gemini_flash.generate_content(system_message)
    return(str(response.text)[:-1])



MAX_SEED = np.iinfo(np.int32).max
SAM_device = "cuda" # or "cpu"
DEVICE = "cuda"


###GroundingDINO & SAM Setup

#To store DINO results
@dataclass
class BoundingBox:
    xmin: int
    ymin: int
    xmax: int
    ymax: int

    @property
    def xyxy(self) -> List[float]:
        return [self.xmin, self.ymin, self.xmax, self.ymax]

@dataclass
class DetectionResult:
    score: float
    label: str
    box: BoundingBox
    mask: Optional[np.array] = None

    @classmethod
    def from_dict(cls, detection_dict: Dict) -> 'DetectionResult':
        return cls(score=detection_dict['score'],
                   label=detection_dict['label'],
                   box=BoundingBox(xmin=detection_dict['box']['xmin'],
                                   ymin=detection_dict['box']['ymin'],
                                   xmax=detection_dict['box']['xmax'],
                                   ymax=detection_dict['box']['ymax']))

#Utility Functions for Mask Generation
def mask_to_polygon(mask: np.ndarray) -> List[List[int]]:
    # Find contours in the binary mask
    contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

    # Find the contour with the largest area
    largest_contour = max(contours, key=cv2.contourArea)

    # Extract the vertices of the contour
    polygon = largest_contour.reshape(-1, 2).tolist()

    return polygon

def polygon_to_mask(polygon: List[Tuple[int, int]], image_shape: Tuple[int, int]) -> np.ndarray:
    """
    Convert a polygon to a segmentation mask.

    Args:
    - polygon (list): List of (x, y) coordinates representing the vertices of the polygon.
    - image_shape (tuple): Shape of the image (height, width) for the mask.

    Returns:
    - np.ndarray: Segmentation mask with the polygon filled.
    """
    # Create an empty mask
    mask = np.zeros(image_shape, dtype=np.uint8)

    # Convert polygon to an array of points
    pts = np.array(polygon, dtype=np.int32)

    # Fill the polygon with white color (255)
    cv2.fillPoly(mask, [pts], color=(255,))

    return mask

def get_boxes(results: DetectionResult) -> List[List[List[float]]]:
    boxes = []
    for result in results:
        xyxy = result.box.xyxy
        boxes.append(xyxy)

    return [boxes]

def refine_masks(masks: torch.BoolTensor, polygon_refinement: bool = False) -> List[np.ndarray]:
    masks = masks.cpu().float()
    masks = masks.permute(0, 2, 3, 1)
    masks = masks.mean(axis=-1)
    masks = (masks > 0).int()
    masks = masks.numpy().astype(np.uint8)
    masks = list(masks)
    
    #print(masks)

    if polygon_refinement:
        for idx, mask in enumerate(masks):
            shape = mask.shape
            polygon = mask_to_polygon(mask)
            mask = polygon_to_mask(polygon, shape)
            masks[idx] = mask

    return masks

def get_alphacomp_mask(mask, image, random_color=True):
    annotated_frame_pil = Image.fromarray(image).convert("RGBA")
    mask_image_pil = Image.fromarray(mask).convert("RGBA")
    
    return np.array(Image.alpha_composite(annotated_frame_pil, mask_image_pil))


# Use Grounding DINO to detect a set of labels in an image in a zero-shot fashion.
detector_id = "IDEA-Research/grounding-dino-tiny"
object_detector = pipeline(model=detector_id, task="zero-shot-object-detection", device=SAM_device)

#Use Segment Anything (SAM) to generate masks given an image + a set of bounding boxes.
segmenter_id = "facebook/sam-vit-base"
processor = AutoProcessor.from_pretrained(segmenter_id)
segmentator = AutoModelForMaskGeneration.from_pretrained(segmenter_id).to(SAM_device)
    
def detect(image: Image.Image, labels: List[str], threshold: float = 0.3) -> List[Dict[str, Any]]:
    labels = [label if label.endswith(".") else label+"." for label in labels]
    
    with torch.no_grad():
        results = object_detector(image,  candidate_labels=labels, threshold=threshold)
    torch.cuda.empty_cache()

    results = [DetectionResult.from_dict(result) for result in results]
    #print("DINO results:", results)
    return results

def segment_SAM(image: Image.Image, detection_results: List[Dict[str, Any]], polygon_refinement: bool = False) -> List[DetectionResult]:
    boxes = get_boxes(detection_results)
    inputs = processor(images=image, input_boxes=boxes, return_tensors="pt").to(SAM_device)
    
    with torch.no_grad():
        outputs = segmentator(**inputs)
    torch.cuda.empty_cache()

    masks = processor.post_process_masks(masks=outputs.pred_masks, original_sizes=inputs.original_sizes,
                                         reshaped_input_sizes=inputs.reshaped_input_sizes)[0]
    
    #print("Masks:", masks)
    masks = refine_masks(masks, polygon_refinement)

    for detection_result, mask in zip(detection_results, masks):
        detection_result.mask = mask

    return detection_results

def grounded_segmentation(image: Union[Image.Image, str], labels: List[str], threshold: float = 0.3,
                          polygon_refinement: bool = False) -> Tuple[np.ndarray, List[DetectionResult]]:
    
    if isinstance(image, str):
        image = load_image(image)
        
    detections = detect(image, labels, threshold)
    segmented = segment_SAM(image, detections, polygon_refinement)
    
    return np.array(image), segmented

def get_finalmask(image_array, detections):
    for i,d in enumerate(detections):
        mask_ = d.__getattribute__('mask')
        if i==0:
            image_with_mask = get_alphacomp_mask(mask_, image_array)
        else:
            image_with_mask += get_alphacomp_mask(mask_, image_array)
        
    return image_with_mask

#Preprocessing Mask
kernel = np.ones((3, 3), np.uint8) # Taking a matrix of size 3 as the kernel 
def preprocess_mask(pipe, inp_mask, expan_lvl, blur_lvl):
    if expan_lvl>0:
        inp_mask = Image.fromarray(cv2.dilate(np.array(inp_mask), kernel, iterations=expan_lvl))
        
    if blur_lvl>0:
        inp_mask = pipe.mask_processor.blur(inp_mask, blur_factor=blur_lvl)

    # inp_mask = Image.fromarray(np.array(inp_mask))
    return inp_mask
    

def generate_mask(inp_image, label, threshold):
    image_array, segments = grounded_segmentation(image=inp_image, labels=label, threshold=threshold, polygon_refinement=True,)
    inp_mask = get_finalmask(image_array, segments)
    # print(type(inp_mask))
    return inp_mask


#Setting up Flux (Schnell) Inpainting
transformer_ = FluxTransformer2DModel.from_pretrained("ashen0209/Flux-Dev2Pro", torch_dtype=torch.bfloat16)
text_encoder_ = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=torch.bfloat16)
text_encoder_2_ = T5EncoderModel.from_pretrained("xlabs-ai/xflux_text_encoders", torch_dtype=torch.bfloat16)

inpaint_pipe = FluxInpaintPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell",transformer=transformer_,text_encoder=text_encoder_,text_encoder_2=text_encoder_2_, torch_dtype=torch.bfloat16).to(DEVICE)
#inpaint_pipe.load_lora_weights("XLabs-AI/flux-RealismLora")


#Uncomment the following 4 lines, if you want LoRA Realism weights added to the pipeline
# inpaint_pipe.load_lora_weights('hugovntr/flux-schnell-realism', weight_name='schnell-realism_v2.3.safetensors', adapter_name="better")
# inpaint_pipe.set_adapters(["better"], adapter_weights=[2.6])
# inpaint_pipe.fuse_lora(adapter_name=["better"], lora_scale=1.0)
# inpaint_pipe.unload_lora_weights()

#torch.cuda.empty_cache()

@spaces.GPU()
def process(input_image_editor, input_text, strength, seed, randomize_seed, num_inference_steps, guidance_scale, threshold, expan_lvl, blur_lvl, progress=gr.Progress(track_tqdm=True)):
    if not input_text:
        raise gr.Error("Please enter a text prompt.")
    #Object identification
    item = gemini_predict(input_text)
    #print(item)
    
    image = input_image_editor['background']
    if not image:
        raise gr.Error("Please upload an image.")
    width, height = image.size
    if width>1024 or height>1024:
        image.thumbnail((1024, 1024))

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)


    #Generating Mask
    label = [item]
    gen_mask = generate_mask(image, label, threshold)
    #Pre-processing Mask, optional
    if expan_lvl>0 or blur_lvl>0:
        gen_mask = preprocess_mask(inpaint_pipe, gen_mask, expan_lvl, blur_lvl)

    #Inpainting
    generator = torch.Generator(device=DEVICE).manual_seed(seed)
    result = inpaint_pipe(prompt=input_text, image=image, mask_image=gen_mask, width=width, height=height,
                          strength=strength, num_inference_steps=num_inference_steps, generator=generator,
                          guidance_scale=guidance_scale).images[0]

    
    return result, gen_mask, seed, item

with gr.Blocks(theme=gr.themes.Ocean()) as demo:
    gr.Markdown(MARKDOWN)
    with gr.Row():
        with gr.Column(scale=1):
            input_image_component = gr.ImageEditor(
                label='Image',
                type='pil',
                sources=["upload", "webcam"],
                image_mode='RGB',
                layers=False)
            input_text_component = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,)
            with gr.Accordion("Advanced Settings", open=False):
                strength_slider = gr.Slider(
                    minimum=0.0,
                    maximum=1.0,
                    value=0.96,
                    step=0.01,
                    label="Strength"
                )
                num_inference_steps = gr.Slider(
                    minimum=1,
                    maximum=100,
                    value=16,
                    step=1,
                    label="Number of inference steps"
                )
                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=1,
                    maximum=15,
                    step=0.1,
                    value=5,
                )
                seed_number = gr.Number(
                    label="Seed", 
                    value=26,
                    precision=0
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
            with gr.Accordion("Mask Settings", open=False):
                SAM_threshold = gr.Slider(
                    minimum=0.0,
                    maximum=1.0,
                    value=0.4,
                    step=0.01,
                    label="Threshold"
                )
                expansion_level = gr.Slider(
                    minimum=0,
                    maximum=10,
                    value=2,
                    step=1,
                    label="Mask Expansion level"
                )
                blur_level = gr.Slider(
                    minimum=0,
                    maximum=5,
                    step=1,
                    value=0,
                    label="Mask Blur level"
                )            
            
            submit_button_component = gr.Button(value='Inpaint', variant='primary')
        with gr.Column(scale=1):
            output_image_component = gr.Image(type='pil', image_mode='RGB', label='Generated Image')
            output_mask_component = gr.Image(type='pil', image_mode='RGB', label='Generated Mask')
            with gr.Accordion("Debug Info", open=False):
                output_seed = gr.Number(label="Used Seed")
                identified_item = gr.Textbox(label="Gemini predicted item")

    submit_button_component.click(
        fn=process,
        inputs=[input_image_component, input_text_component, strength_slider, seed_number, randomize_seed, num_inference_steps, guidance_scale, SAM_threshold, expansion_level, blur_level],
        outputs=[output_image_component, output_mask_component, output_seed, identified_item]
    )

demo.launch(debug=False, show_error=True)