Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,874 Bytes
8a8f172 b56a98c 8a8f172 5be4a85 dce0edf b56a98c 8a8f172 5be4a85 2bbf193 3c93cd0 5be4a85 8a8f172 6a4771c 5eea90e eeae61c 6a4771c 8d16ec9 5be4a85 2bbf193 5be4a85 2bbf193 6a4771c 9b93b56 6a4771c 0d9d6b6 5be4a85 32e67bb 5be4a85 ced2fa4 7ff5a45 1b87c04 ced2fa4 1b87c04 59d5e77 e6654e6 6a4771c 5be4a85 6a4771c 5be4a85 50896cc 558080e 50896cc 6a4771c eeae61c 6a4771c 5be4a85 0d9d6b6 6a4771c 50896cc 5be4a85 6a4771c abf5a91 6a4771c eeae61c 6a4771c eeae61c 6a4771c 446b263 6a4771c 446b263 6a4771c 5be4a85 6a4771c 5be4a85 6a4771c 5be4a85 446b263 5be4a85 446b263 5be4a85 446b263 558080e 6a4771c 50896cc 6a4771c 50896cc 6a4771c 5be4a85 123dc2e 6a4771c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
#Importing required libraries
import spaces
import gradio as gr
import os
import random
import numpy as np
import cv2
from PIL import Image
from dataclasses import dataclass
from typing import Any, List, Dict, Optional, Union, Tuple
import torch
import google.generativeai as genai
from transformers import AutoModelForMaskGeneration, AutoProcessor, pipeline, T5EncoderModel, CLIPTextModel
from diffusers import FluxTransformer2DModel, FluxInpaintPipeline
MARKDOWN = """
# Add-It🎨
Add or Replace anything to any image by using a single Prompt and an Image.
Made using [Flux (Schnell)](https://huggingface.co/black-forest-labs/FLUX.1-schnell), [Grounding-DINO](https://huggingface.co/docs/transformers/main/en/model_doc/grounding-dino) and [SAM](https://huggingface.co/docs/transformers/en/model_doc/sam).
"""
#Gemini Setup
genai.configure(api_key = os.environ['Gemini_API'])
gemini_flash = genai.GenerativeModel(model_name='gemini-1.5-flash-002')
def gemini_predict(prompt):
system_message = f"""You are the best text analyser.
You have to analyse a user query and identify what the user wants to change, from a given user query.
Examples:
Query: Change Lipstick colour to blue
Response: Lips
Query: Add a nose stud
Response: Nose
Query: Add a wallpaper to the right wall
Response: Right wall
Query: Change the Sofa's colour to Purple
Response: Sofa
Your response should be in 1 or 2-3 words
Query : {prompt}
"""
response = gemini_flash.generate_content(system_message)
return(str(response.text)[:-1])
MAX_SEED = np.iinfo(np.int32).max
SAM_device = "cuda" # or "cpu"
DEVICE = "cuda"
###GroundingDINO & SAM Setup
#To store DINO results
@dataclass
class BoundingBox:
xmin: int
ymin: int
xmax: int
ymax: int
@property
def xyxy(self) -> List[float]:
return [self.xmin, self.ymin, self.xmax, self.ymax]
@dataclass
class DetectionResult:
score: float
label: str
box: BoundingBox
mask: Optional[np.array] = None
@classmethod
def from_dict(cls, detection_dict: Dict) -> 'DetectionResult':
return cls(score=detection_dict['score'],
label=detection_dict['label'],
box=BoundingBox(xmin=detection_dict['box']['xmin'],
ymin=detection_dict['box']['ymin'],
xmax=detection_dict['box']['xmax'],
ymax=detection_dict['box']['ymax']))
#Utility Functions for Mask Generation
def mask_to_polygon(mask: np.ndarray) -> List[List[int]]:
# Find contours in the binary mask
contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Find the contour with the largest area
largest_contour = max(contours, key=cv2.contourArea)
# Extract the vertices of the contour
polygon = largest_contour.reshape(-1, 2).tolist()
return polygon
def polygon_to_mask(polygon: List[Tuple[int, int]], image_shape: Tuple[int, int]) -> np.ndarray:
"""
Convert a polygon to a segmentation mask.
Args:
- polygon (list): List of (x, y) coordinates representing the vertices of the polygon.
- image_shape (tuple): Shape of the image (height, width) for the mask.
Returns:
- np.ndarray: Segmentation mask with the polygon filled.
"""
# Create an empty mask
mask = np.zeros(image_shape, dtype=np.uint8)
# Convert polygon to an array of points
pts = np.array(polygon, dtype=np.int32)
# Fill the polygon with white color (255)
cv2.fillPoly(mask, [pts], color=(255,))
return mask
def get_boxes(results: DetectionResult) -> List[List[List[float]]]:
boxes = []
for result in results:
xyxy = result.box.xyxy
boxes.append(xyxy)
return [boxes]
def refine_masks(masks: torch.BoolTensor, polygon_refinement: bool = False) -> List[np.ndarray]:
masks = masks.cpu().float()
masks = masks.permute(0, 2, 3, 1)
masks = masks.mean(axis=-1)
masks = (masks > 0).int()
masks = masks.numpy().astype(np.uint8)
masks = list(masks)
#print(masks)
if polygon_refinement:
for idx, mask in enumerate(masks):
shape = mask.shape
polygon = mask_to_polygon(mask)
mask = polygon_to_mask(polygon, shape)
masks[idx] = mask
return masks
def get_alphacomp_mask(mask, image, random_color=True):
annotated_frame_pil = Image.fromarray(image).convert("RGBA")
mask_image_pil = Image.fromarray(mask).convert("RGBA")
return np.array(Image.alpha_composite(annotated_frame_pil, mask_image_pil))
# Use Grounding DINO to detect a set of labels in an image in a zero-shot fashion.
detector_id = "IDEA-Research/grounding-dino-tiny"
object_detector = pipeline(model=detector_id, task="zero-shot-object-detection", device=SAM_device)
#Use Segment Anything (SAM) to generate masks given an image + a set of bounding boxes.
segmenter_id = "facebook/sam-vit-base"
processor = AutoProcessor.from_pretrained(segmenter_id)
segmentator = AutoModelForMaskGeneration.from_pretrained(segmenter_id).to(SAM_device)
def detect(image: Image.Image, labels: List[str], threshold: float = 0.3) -> List[Dict[str, Any]]:
labels = [label if label.endswith(".") else label+"." for label in labels]
with torch.no_grad():
results = object_detector(image, candidate_labels=labels, threshold=threshold)
torch.cuda.empty_cache()
results = [DetectionResult.from_dict(result) for result in results]
#print("DINO results:", results)
return results
def segment_SAM(image: Image.Image, detection_results: List[Dict[str, Any]], polygon_refinement: bool = False) -> List[DetectionResult]:
boxes = get_boxes(detection_results)
inputs = processor(images=image, input_boxes=boxes, return_tensors="pt").to(SAM_device)
with torch.no_grad():
outputs = segmentator(**inputs)
torch.cuda.empty_cache()
masks = processor.post_process_masks(masks=outputs.pred_masks, original_sizes=inputs.original_sizes,
reshaped_input_sizes=inputs.reshaped_input_sizes)[0]
#print("Masks:", masks)
masks = refine_masks(masks, polygon_refinement)
for detection_result, mask in zip(detection_results, masks):
detection_result.mask = mask
return detection_results
def grounded_segmentation(image: Union[Image.Image, str], labels: List[str], threshold: float = 0.3,
polygon_refinement: bool = False) -> Tuple[np.ndarray, List[DetectionResult]]:
if isinstance(image, str):
image = load_image(image)
detections = detect(image, labels, threshold)
segmented = segment_SAM(image, detections, polygon_refinement)
return np.array(image), segmented
def get_finalmask(image_array, detections):
for i,d in enumerate(detections):
mask_ = d.__getattribute__('mask')
if i==0:
image_with_mask = get_alphacomp_mask(mask_, image_array)
else:
image_with_mask += get_alphacomp_mask(mask_, image_array)
return image_with_mask
#Preprocessing Mask
kernel = np.ones((3, 3), np.uint8) # Taking a matrix of size 3 as the kernel
def preprocess_mask(pipe, inp_mask, expan_lvl, blur_lvl):
if expan_lvl>0:
inp_mask = Image.fromarray(cv2.dilate(np.array(inp_mask), kernel, iterations=expan_lvl))
if blur_lvl>0:
inp_mask = pipe.mask_processor.blur(inp_mask, blur_factor=blur_lvl)
# inp_mask = Image.fromarray(np.array(inp_mask))
return inp_mask
def generate_mask(inp_image, label, threshold):
image_array, segments = grounded_segmentation(image=inp_image, labels=label, threshold=threshold, polygon_refinement=True,)
inp_mask = get_finalmask(image_array, segments)
# print(type(inp_mask))
return inp_mask
#Setting up Flux (Schnell) Inpainting
transformer_ = FluxTransformer2DModel.from_pretrained("ashen0209/Flux-Dev2Pro", torch_dtype=torch.bfloat16)
text_encoder_ = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=torch.bfloat16)
text_encoder_2_ = T5EncoderModel.from_pretrained("xlabs-ai/xflux_text_encoders", torch_dtype=torch.bfloat16)
inpaint_pipe = FluxInpaintPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell",transformer=transformer_,text_encoder=text_encoder_,text_encoder_2=text_encoder_2_, torch_dtype=torch.bfloat16).to(DEVICE)
#inpaint_pipe.load_lora_weights("XLabs-AI/flux-RealismLora")
#Uncomment the following 4 lines, if you want LoRA Realism weights added to the pipeline
# inpaint_pipe.load_lora_weights('hugovntr/flux-schnell-realism', weight_name='schnell-realism_v2.3.safetensors', adapter_name="better")
# inpaint_pipe.set_adapters(["better"], adapter_weights=[2.6])
# inpaint_pipe.fuse_lora(adapter_name=["better"], lora_scale=1.0)
# inpaint_pipe.unload_lora_weights()
#torch.cuda.empty_cache()
@spaces.GPU()
def process(input_image_editor, input_text, strength, seed, randomize_seed, num_inference_steps, guidance_scale, threshold, expan_lvl, blur_lvl, progress=gr.Progress(track_tqdm=True)):
if not input_text:
raise gr.Error("Please enter a text prompt.")
#Object identification
item = gemini_predict(input_text)
#print(item)
image = input_image_editor['background']
if not image:
raise gr.Error("Please upload an image.")
width, height = image.size
if width>1024 or height>1024:
image.thumbnail((1024, 1024))
if randomize_seed:
seed = random.randint(0, MAX_SEED)
#Generating Mask
label = [item]
gen_mask = generate_mask(image, label, threshold)
#Pre-processing Mask, optional
if expan_lvl>0 or blur_lvl>0:
gen_mask = preprocess_mask(inpaint_pipe, gen_mask, expan_lvl, blur_lvl)
#Inpainting
generator = torch.Generator(device=DEVICE).manual_seed(seed)
result = inpaint_pipe(prompt=input_text, image=image, mask_image=gen_mask, width=width, height=height,
strength=strength, num_inference_steps=num_inference_steps, generator=generator,
guidance_scale=guidance_scale).images[0]
return result, gen_mask, seed, item
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
gr.Markdown(MARKDOWN)
with gr.Row():
with gr.Column(scale=1):
input_image_component = gr.ImageEditor(
label='Image',
type='pil',
sources=["upload", "webcam"],
image_mode='RGB',
layers=False)
input_text_component = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,)
with gr.Accordion("Advanced Settings", open=False):
strength_slider = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.96,
step=0.01,
label="Strength"
)
num_inference_steps = gr.Slider(
minimum=1,
maximum=100,
value=16,
step=1,
label="Number of inference steps"
)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=5,
)
seed_number = gr.Number(
label="Seed",
value=26,
precision=0
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
with gr.Accordion("Mask Settings", open=False):
SAM_threshold = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.4,
step=0.01,
label="Threshold"
)
expansion_level = gr.Slider(
minimum=0,
maximum=10,
value=2,
step=1,
label="Mask Expansion level"
)
blur_level = gr.Slider(
minimum=0,
maximum=5,
step=1,
value=0,
label="Mask Blur level"
)
submit_button_component = gr.Button(value='Inpaint', variant='primary')
with gr.Column(scale=1):
output_image_component = gr.Image(type='pil', image_mode='RGB', label='Generated Image')
output_mask_component = gr.Image(type='pil', image_mode='RGB', label='Generated Mask')
with gr.Accordion("Debug Info", open=False):
output_seed = gr.Number(label="Used Seed")
identified_item = gr.Textbox(label="Gemini predicted item")
submit_button_component.click(
fn=process,
inputs=[input_image_component, input_text_component, strength_slider, seed_number, randomize_seed, num_inference_steps, guidance_scale, SAM_threshold, expansion_level, blur_level],
outputs=[output_image_component, output_mask_component, output_seed, identified_item]
)
demo.launch(debug=False, show_error=True) |