Spaces:
Running
on
Zero
Running
on
Zero
NikhilJoson
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -2,14 +2,14 @@
|
|
2 |
import os
|
3 |
import random
|
4 |
import numpy as np
|
5 |
-
|
6 |
-
import torch
|
7 |
import spaces
|
8 |
import gradio as gr
|
9 |
|
10 |
-
|
11 |
import google.generativeai as genai
|
12 |
-
|
|
|
13 |
|
14 |
|
15 |
MARKDOWN = """
|
@@ -18,6 +18,7 @@ Thanks to [Black Forest Labs](https://huggingface.co/black-forest-labs) team for
|
|
18 |
and a big thanks to [Gothos](https://github.com/Gothos) for taking it to the next level by enabling inpainting with the FLUX.
|
19 |
"""
|
20 |
|
|
|
21 |
#Gemini Setup
|
22 |
genai.configure(api_key = os.environ['Gemini_API'])
|
23 |
gemini_flash = genai.GenerativeModel(model_name='gemini-1.5-flash-002')
|
@@ -43,17 +44,196 @@ def gemini_predict(prompt):
|
|
43 |
Query : {prompt}
|
44 |
"""
|
45 |
response = gemini_flash.generate_content(system_message)
|
46 |
-
return(str(response.text)[:-
|
|
|
47 |
|
48 |
|
49 |
MAX_SEED = np.iinfo(np.int32).max
|
50 |
DEVICE = "cuda" #if torch.cuda.is_available() else "cpu"
|
51 |
|
52 |
-
#Setting up Flux (Schnell) Inpainting
|
53 |
-
#inpaint_pipe = FluxInpaintPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)
|
54 |
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
#Uncomment the following 4 lines, if you want LoRA Realism weights added to the pipeline
|
59 |
# inpaint_pipe.load_lora_weights('hugovntr/flux-schnell-realism', weight_name='schnell-realism_v2.3.safetensors', adapter_name="better")
|
@@ -64,9 +244,10 @@ inpaint_pipe = FluxInpaintPipeline.from_pretrained(bfl_repo, transformer=transfo
|
|
64 |
#torch.cuda.empty_cache()
|
65 |
|
66 |
@spaces.GPU()
|
67 |
-
def process(input_image_editor,
|
68 |
if not input_text:
|
69 |
raise gr.Error("Please enter a text prompt.")
|
|
|
70 |
item = gemini_predict(input_text)
|
71 |
#print(item)
|
72 |
|
@@ -77,15 +258,23 @@ def process(input_image_editor, mask_image, input_text, strength, seed, randomiz
|
|
77 |
|
78 |
if randomize_seed:
|
79 |
seed = random.randint(0, MAX_SEED)
|
80 |
-
|
81 |
-
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
82 |
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
strength=strength, num_inference_steps=num_inference_steps, generator=generator,
|
85 |
guidance_scale=guidance_scale).images[0]
|
86 |
|
87 |
|
88 |
-
return result,
|
89 |
|
90 |
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
|
91 |
gr.Markdown(MARKDOWN)
|
@@ -109,14 +298,14 @@ with gr.Blocks(theme=gr.themes.Ocean()) as demo:
|
|
109 |
strength_slider = gr.Slider(
|
110 |
minimum=0.0,
|
111 |
maximum=1.0,
|
112 |
-
value=0.
|
113 |
step=0.01,
|
114 |
label="Strength"
|
115 |
)
|
116 |
num_inference_steps = gr.Slider(
|
117 |
minimum=1,
|
118 |
maximum=100,
|
119 |
-
value=
|
120 |
step=1,
|
121 |
label="Number of inference steps"
|
122 |
)
|
@@ -125,16 +314,38 @@ with gr.Blocks(theme=gr.themes.Ocean()) as demo:
|
|
125 |
minimum=1,
|
126 |
maximum=15,
|
127 |
step=0.1,
|
128 |
-
value=
|
129 |
)
|
130 |
seed_number = gr.Number(
|
131 |
label="Seed",
|
132 |
-
value=
|
133 |
precision=0
|
134 |
)
|
135 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=
|
136 |
-
with gr.Accordion("
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
submit_button_component = gr.Button(value='Inpaint', variant='primary')
|
139 |
with gr.Column(scale=1):
|
140 |
output_image_component = gr.Image(type='pil', image_mode='RGB', label='Generated Image')
|
@@ -145,7 +356,7 @@ with gr.Blocks(theme=gr.themes.Ocean()) as demo:
|
|
145 |
|
146 |
submit_button_component.click(
|
147 |
fn=process,
|
148 |
-
inputs=[input_image_component,
|
149 |
outputs=[output_image_component, output_mask_component, output_seed, identified_item]
|
150 |
)
|
151 |
|
|
|
2 |
import os
|
3 |
import random
|
4 |
import numpy as np
|
5 |
+
import cv2
|
|
|
6 |
import spaces
|
7 |
import gradio as gr
|
8 |
|
9 |
+
import torch
|
10 |
import google.generativeai as genai
|
11 |
+
from transformers import AutoModelForMaskGeneration, AutoProcessor, pipeline
|
12 |
+
from diffusers import FluxTransformer2DModel, FluxInpaintPipeline
|
13 |
|
14 |
|
15 |
MARKDOWN = """
|
|
|
18 |
and a big thanks to [Gothos](https://github.com/Gothos) for taking it to the next level by enabling inpainting with the FLUX.
|
19 |
"""
|
20 |
|
21 |
+
|
22 |
#Gemini Setup
|
23 |
genai.configure(api_key = os.environ['Gemini_API'])
|
24 |
gemini_flash = genai.GenerativeModel(model_name='gemini-1.5-flash-002')
|
|
|
44 |
Query : {prompt}
|
45 |
"""
|
46 |
response = gemini_flash.generate_content(system_message)
|
47 |
+
return(str(response.text)[:-1])
|
48 |
+
|
49 |
|
50 |
|
51 |
MAX_SEED = np.iinfo(np.int32).max
|
52 |
DEVICE = "cuda" #if torch.cuda.is_available() else "cpu"
|
53 |
|
|
|
|
|
54 |
|
55 |
+
###GroundingDINO & SAM Setup
|
56 |
+
|
57 |
+
#To store DINO results
|
58 |
+
@dataclass
|
59 |
+
class BoundingBox:
|
60 |
+
xmin: int
|
61 |
+
ymin: int
|
62 |
+
xmax: int
|
63 |
+
ymax: int
|
64 |
+
|
65 |
+
@property
|
66 |
+
def xyxy(self) -> List[float]:
|
67 |
+
return [self.xmin, self.ymin, self.xmax, self.ymax]
|
68 |
+
|
69 |
+
@dataclass
|
70 |
+
class DetectionResult:
|
71 |
+
score: float
|
72 |
+
label: str
|
73 |
+
box: BoundingBox
|
74 |
+
mask: Optional[np.array] = None
|
75 |
+
|
76 |
+
@classmethod
|
77 |
+
def from_dict(cls, detection_dict: Dict) -> 'DetectionResult':
|
78 |
+
return cls(score=detection_dict['score'],
|
79 |
+
label=detection_dict['label'],
|
80 |
+
box=BoundingBox(xmin=detection_dict['box']['xmin'],
|
81 |
+
ymin=detection_dict['box']['ymin'],
|
82 |
+
xmax=detection_dict['box']['xmax'],
|
83 |
+
ymax=detection_dict['box']['ymax']))
|
84 |
+
|
85 |
+
#Utility Functions for Mask Generation
|
86 |
+
def mask_to_polygon(mask: np.ndarray) -> List[List[int]]:
|
87 |
+
# Find contours in the binary mask
|
88 |
+
contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
89 |
+
|
90 |
+
# Find the contour with the largest area
|
91 |
+
largest_contour = max(contours, key=cv2.contourArea)
|
92 |
+
|
93 |
+
# Extract the vertices of the contour
|
94 |
+
polygon = largest_contour.reshape(-1, 2).tolist()
|
95 |
+
|
96 |
+
return polygon
|
97 |
+
|
98 |
+
def polygon_to_mask(polygon: List[Tuple[int, int]], image_shape: Tuple[int, int]) -> np.ndarray:
|
99 |
+
"""
|
100 |
+
Convert a polygon to a segmentation mask.
|
101 |
+
|
102 |
+
Args:
|
103 |
+
- polygon (list): List of (x, y) coordinates representing the vertices of the polygon.
|
104 |
+
- image_shape (tuple): Shape of the image (height, width) for the mask.
|
105 |
+
|
106 |
+
Returns:
|
107 |
+
- np.ndarray: Segmentation mask with the polygon filled.
|
108 |
+
"""
|
109 |
+
# Create an empty mask
|
110 |
+
mask = np.zeros(image_shape, dtype=np.uint8)
|
111 |
+
|
112 |
+
# Convert polygon to an array of points
|
113 |
+
pts = np.array(polygon, dtype=np.int32)
|
114 |
+
|
115 |
+
# Fill the polygon with white color (255)
|
116 |
+
cv2.fillPoly(mask, [pts], color=(255,))
|
117 |
+
|
118 |
+
return mask
|
119 |
+
|
120 |
+
def get_boxes(results: DetectionResult) -> List[List[List[float]]]:
|
121 |
+
boxes = []
|
122 |
+
for result in results:
|
123 |
+
xyxy = result.box.xyxy
|
124 |
+
boxes.append(xyxy)
|
125 |
+
|
126 |
+
return [boxes]
|
127 |
+
|
128 |
+
def refine_masks(masks: torch.BoolTensor, polygon_refinement: bool = False) -> List[np.ndarray]:
|
129 |
+
masks = masks.cpu().float()
|
130 |
+
masks = masks.permute(0, 2, 3, 1)
|
131 |
+
masks = masks.mean(axis=-1)
|
132 |
+
masks = (masks > 0).int()
|
133 |
+
masks = masks.numpy().astype(np.uint8)
|
134 |
+
masks = list(masks)
|
135 |
+
|
136 |
+
#print(masks)
|
137 |
+
|
138 |
+
if polygon_refinement:
|
139 |
+
for idx, mask in enumerate(masks):
|
140 |
+
shape = mask.shape
|
141 |
+
polygon = mask_to_polygon(mask)
|
142 |
+
mask = polygon_to_mask(polygon, shape)
|
143 |
+
masks[idx] = mask
|
144 |
+
|
145 |
+
return masks
|
146 |
+
|
147 |
+
def get_alphacomp_mask(mask, image, random_color=True):
|
148 |
+
annotated_frame_pil = Image.fromarray(image).convert("RGBA")
|
149 |
+
#mask_image_pil = Image.fromarray((mask_image.cpu().numpy() * 255).astype(np.uint8)).convert("RGBA")
|
150 |
+
mask_image_pil = Image.fromarray(mask).convert("RGBA")
|
151 |
+
|
152 |
+
return np.array(Image.alpha_composite(annotated_frame_pil, mask_image_pil))
|
153 |
+
|
154 |
+
|
155 |
+
# Use Grounding DINO to detect a set of labels in an image in a zero-shot fashion.
|
156 |
+
detector_id = "IDEA-Research/grounding-dino-tiny"
|
157 |
+
object_detector = pipeline(model=detector_id, task="zero-shot-object-detection", device=SAM_device)
|
158 |
+
|
159 |
+
#Use Segment Anything (SAM) to generate masks given an image + a set of bounding boxes.
|
160 |
+
segmenter_id = "facebook/sam-vit-base"
|
161 |
+
processor = AutoProcessor.from_pretrained(segmenter_id)
|
162 |
+
segmentator = AutoModelForMaskGeneration.from_pretrained(segmenter_id).to(SAM_device)
|
163 |
+
|
164 |
+
def detect(image: Image.Image, labels: List[str], threshold: float = 0.3) -> List[Dict[str, Any]]:
|
165 |
+
labels = [label if label.endswith(".") else label+"." for label in labels]
|
166 |
+
|
167 |
+
with torch.no_grad():
|
168 |
+
results = object_detector(image, candidate_labels=labels, threshold=threshold)
|
169 |
+
torch.cuda.empty_cache()
|
170 |
+
|
171 |
+
results = [DetectionResult.from_dict(result) for result in results]
|
172 |
+
#print("DINO results:", results)
|
173 |
+
return results
|
174 |
+
|
175 |
+
def segment_SAM(image: Image.Image, detection_results: List[Dict[str, Any]], polygon_refinement: bool = False) -> List[DetectionResult]:
|
176 |
+
boxes = get_boxes(detection_results)
|
177 |
+
inputs = processor(images=image, input_boxes=boxes, return_tensors="pt").to(SAM_device)
|
178 |
+
|
179 |
+
with torch.no_grad():
|
180 |
+
outputs = segmentator(**inputs)
|
181 |
+
torch.cuda.empty_cache()
|
182 |
+
|
183 |
+
masks = processor.post_process_masks(masks=outputs.pred_masks, original_sizes=inputs.original_sizes,
|
184 |
+
reshaped_input_sizes=inputs.reshaped_input_sizes)[0]
|
185 |
+
|
186 |
+
#print("Masks:", masks)
|
187 |
+
masks = refine_masks(masks, polygon_refinement)
|
188 |
+
|
189 |
+
for detection_result, mask in zip(detection_results, masks):
|
190 |
+
detection_result.mask = mask
|
191 |
+
|
192 |
+
return detection_results
|
193 |
+
|
194 |
+
def grounded_segmentation(image: Union[Image.Image, str], labels: List[str], threshold: float = 0.3,
|
195 |
+
polygon_refinement: bool = False) -> Tuple[np.ndarray, List[DetectionResult]]:
|
196 |
+
|
197 |
+
if isinstance(image, str):
|
198 |
+
image = load_image(image)
|
199 |
+
|
200 |
+
detections = detect(image, labels, threshold)
|
201 |
+
segmented = segment_SAM(image, detections, polygon_refinement)
|
202 |
+
|
203 |
+
return np.array(image), segmented
|
204 |
+
|
205 |
+
def get_finalmask(image_array, detections):
|
206 |
+
for i,d in enumerate(detections):
|
207 |
+
mask_ = d.__getattribute__('mask')
|
208 |
+
if i==0:
|
209 |
+
image_with_mask = get_alphacomp_mask(mask_, image_array)
|
210 |
+
else:
|
211 |
+
image_with_mask += get_alphacomp_mask(mask_, image_array)
|
212 |
+
|
213 |
+
return image_with_mask
|
214 |
+
|
215 |
+
#Preprocessing Mask
|
216 |
+
kernel = np.ones((3, 3), np.uint8) # Taking a matrix of size 3 as the kernel
|
217 |
+
def preprocess_mask(pipe, inp_mask, expan_lvl, blur_lvl):
|
218 |
+
if expan_lvl>0:
|
219 |
+
inp_mask = Image.fromarray(cv2.dilate(np.array(inp_mask), kernel, iterations=expan_lvl))
|
220 |
+
|
221 |
+
if blur_lvl>0:
|
222 |
+
inp_mask = pipe.mask_processor.blur(inp_mask, blur_factor=blur)
|
223 |
+
|
224 |
+
# inp_mask = Image.fromarray(np.array(inp_mask))
|
225 |
+
return inp_mask
|
226 |
+
|
227 |
+
|
228 |
+
def generate_mask(inp_image, label, threshold):
|
229 |
+
image_array, segments = grounded_segmentation(image=inp_image, labels=label, threshold=threshold, polygon_refinement=True,)
|
230 |
+
inp_mask = get_finalmask(image_array, segments)
|
231 |
+
# print(type(inp_mask))
|
232 |
+
return inp_mask
|
233 |
+
|
234 |
+
|
235 |
+
#Setting up Flux (Schnell) Inpainting
|
236 |
+
inpaint_pipe = FluxInpaintPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)
|
237 |
|
238 |
#Uncomment the following 4 lines, if you want LoRA Realism weights added to the pipeline
|
239 |
# inpaint_pipe.load_lora_weights('hugovntr/flux-schnell-realism', weight_name='schnell-realism_v2.3.safetensors', adapter_name="better")
|
|
|
244 |
#torch.cuda.empty_cache()
|
245 |
|
246 |
@spaces.GPU()
|
247 |
+
def process(input_image_editor, input_text, strength, seed, randomize_seed, num_inference_steps, guidance_scale, threshold, expan_lvl, blur_lvl, progress=gr.Progress(track_tqdm=True)):
|
248 |
if not input_text:
|
249 |
raise gr.Error("Please enter a text prompt.")
|
250 |
+
#Object identification
|
251 |
item = gemini_predict(input_text)
|
252 |
#print(item)
|
253 |
|
|
|
258 |
|
259 |
if randomize_seed:
|
260 |
seed = random.randint(0, MAX_SEED)
|
|
|
|
|
261 |
|
262 |
+
|
263 |
+
#Generating Mask
|
264 |
+
label = [item]
|
265 |
+
gen_mask = generate_mask(image, label, threshold)
|
266 |
+
#Pre-processing Mask, optional
|
267 |
+
if expan_lvl>0 or blur_lvl>0:
|
268 |
+
gen_mask = preprocess_mask(inpaint_pipe, gen_mask, expan_lvl, blur_lvl)
|
269 |
+
|
270 |
+
#Inpainting
|
271 |
+
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
272 |
+
result = inpaint_pipe(prompt=input_text, image=image, mask_image=gen_mask, width=width, height=height,
|
273 |
strength=strength, num_inference_steps=num_inference_steps, generator=generator,
|
274 |
guidance_scale=guidance_scale).images[0]
|
275 |
|
276 |
|
277 |
+
return result, gen_mask, seed, item
|
278 |
|
279 |
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
|
280 |
gr.Markdown(MARKDOWN)
|
|
|
298 |
strength_slider = gr.Slider(
|
299 |
minimum=0.0,
|
300 |
maximum=1.0,
|
301 |
+
value=0.8,
|
302 |
step=0.01,
|
303 |
label="Strength"
|
304 |
)
|
305 |
num_inference_steps = gr.Slider(
|
306 |
minimum=1,
|
307 |
maximum=100,
|
308 |
+
value=32,
|
309 |
step=1,
|
310 |
label="Number of inference steps"
|
311 |
)
|
|
|
314 |
minimum=1,
|
315 |
maximum=15,
|
316 |
step=0.1,
|
317 |
+
value=5,
|
318 |
)
|
319 |
seed_number = gr.Number(
|
320 |
label="Seed",
|
321 |
+
value=26,
|
322 |
precision=0
|
323 |
)
|
324 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
|
325 |
+
with gr.Accordion("Mask Settings", open=False):
|
326 |
+
SAM_threshold = gr.Slider(
|
327 |
+
minimum=0.0,
|
328 |
+
maximum=1.0,
|
329 |
+
value=0.4,
|
330 |
+
step=0.01,
|
331 |
+
label="Threshold"
|
332 |
+
)
|
333 |
+
expansion_level = gr.Slider(
|
334 |
+
minimum=0,
|
335 |
+
maximum=5,
|
336 |
+
value=2,
|
337 |
+
step=1,
|
338 |
+
label="Mask Expansion level"
|
339 |
+
)
|
340 |
+
blur_level = gr.Slider(
|
341 |
+
minimum=0,
|
342 |
+
maximum=5,
|
343 |
+
step=1,
|
344 |
+
value=1,
|
345 |
+
label="Mask Blur level"
|
346 |
+
)
|
347 |
+
# with gr.Accordion("Upload a mask", open=False):
|
348 |
+
# uploaded_mask_component = gr.Image(label="Already made mask (black pixels will be preserved, white pixels will be redrawn)", sources=["upload"], type="pil")
|
349 |
submit_button_component = gr.Button(value='Inpaint', variant='primary')
|
350 |
with gr.Column(scale=1):
|
351 |
output_image_component = gr.Image(type='pil', image_mode='RGB', label='Generated Image')
|
|
|
356 |
|
357 |
submit_button_component.click(
|
358 |
fn=process,
|
359 |
+
inputs=[input_image_component, input_text_component, strength_slider, seed_number, randomize_seed, num_inference_steps, guidance_scale, SAM_threshold, expansion_level, blur_level],
|
360 |
outputs=[output_image_component, output_mask_component, output_seed, identified_item]
|
361 |
)
|
362 |
|