File size: 4,513 Bytes
1746e54
 
c7f3034
 
 
 
 
 
 
 
 
 
1746e54
 
 
c7f3034
4ebdfdd
 
 
c7f3034
5e2f771
 
4ebdfdd
 
 
b83f0ab
4ebdfdd
c7f3034
 
 
 
5e2f771
c7f3034
4ebdfdd
c7f3034
 
9bbeb12
6142c36
c7f3034
c772844
c7f3034
6142c36
c7f3034
e9d99d4
6eafee9
 
 
4ebdfdd
 
 
 
 
 
 
 
 
 
 
5fb149b
 
 
5e2f771
5fb149b
 
 
 
 
 
 
 
 
c7f3034
4ebdfdd
c7f3034
4ebdfdd
 
 
 
 
 
 
 
 
 
 
 
 
b83f0ab
5fb149b
4ebdfdd
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import subprocess
import os
import gradio as gr
import torch

if torch.cuda.is_available():
    device = "cuda"
    print("Using GPU")
else:
    device = "cpu"
    print("Using CPU")


subprocess.run(["git", "clone", "https://github.com/Nick088Official/Stable_Diffusion_Finetuned_Minecraft_Skin_Generator.git"])
os.chdir("Stable_Diffusion_Finetuned_Minecraft_Skin_Generator")

def run_inference(prompt, stable_diffusion_model, num_inference_steps, guidance_scale, num_images_per_prompt, model_precision_type, output_image_name, verbose):
    if stable_diffusion_model == '2':
        sd_model = "minecraft-skins"
    else:
        sd_model = "minecraft-skins-sdxl"

    command = f"Python_Scripts/{sd_model}.py '{prompt}' {num_inference_steps} {guidance_scale} {num_images_per_prompt} {model_precision_type} {output_image_name} {'--verbose' if verbose else ''}"

    subprocess.run(["python", command], shell=True, check=True)

    return output_image_name


prompt = gr.Textbox(label="Prompt", interactive=True)

stable_diffusion_model = gr.Dropdown(["2", "xl"], interactive=True, label="Stable Diffusion Model", value="xl", info="Choose which Stable Diffusion Model to use, xl understands prompts better")

num_inference_steps = gr.Number(value=50, minimum=1, interactive=True, label="Inference Steps",)

guidance_scale = gr.Number(value=7.5, minimum=0.1, interactive=True, label="Guidance Scale", info="How closely the generated image adheres to the prompt")

num_images_per_prompt = gr.Number(value=1, minimum=1, interactive=True, label="Images Per Prompt", info="The number of images to make with the prompt")

model_precision_type = gr.Dropdown(["fp16", "fp32"], value="fp16", interactive=True, label="Model Precision Type", info="The precision type to load the model, like fp16 which is faster, or fp32 which gives better results")

seed = gr.Number(value=42, interactive=True, label="Seed", info="A starting point to initiate the generation process, put 0 for a random one")

output_image_name = gr.Textbox(label="Name of Generated Skin Output", interactive=True, value="output.png")

verbose = gr.Checkbox(label="Verbose Output", interactive=True, value=False, info="Produce verbose output while running")

    
# Define Gradio UI components
prompt_input = gr.Textbox(label="Your Prompt", info="What the Minecraft Skin should look like")
stable_diffusion_model_input = gr.Dropdown(['2', 'xl'], label="Stable Diffusion Model", info="Choose which Stable Diffusion Model to use, xl understands prompts better")
num_inference_steps_input = gr.Number(label="Number of Inference Steps", precision=0, value=25)
guidance_scale_input = gr.Number(minimum=0.1, value=7.5, label="Guidance Scale", info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference")
num_images_per_prompt_input = gr.inputs.Number(minimum=1, value=1, precision=0, label="Number of Images per Prompt", info="The number of images to make with the prompt")
model_precision_type_input = gr.Dropdown(["fp16", "fp32"], value="fp16", label="Model Precision Type", info="The precision type to load the model, like fp16 which is faster, or fp32 which gives better results")
output_image_name_input = gr.Textbox(label="Output Image Name", info="The name of the file of the output image skin, keep the .png", value="output-skin.png")
verbose_input = gr.Checkbox(label="Verbose Output", info="Produce more detailed output while running", value=False)

examples = [
    [
        "A man in a purple suit wearing a tophat.",
        "xl",
        25,
        7.5,
        1,
        "fp16",
        42,
        "output.png",
        False
    ]
]

# Create the Gradio interface
gr.Interface(
    fn=run_inference,
    inputs=[
        prompt_input,
        stable_diffusion_model_input,
        num_inference_steps_input,
        guidance_scale_input,
        num_images_per_prompt_input,
        model_precision_type_input,
        output_image_name_input,
        verbose_input
    ],
    outputs=gr.outputs.Image(label="Generated Image"),
    title="Minecraft Skin Generator",
    description="Make AI generated Minecraft Skins by a Finetuned Stable Diffusion Version!<br>Model used: https://github.com/Nick088Official/Stable_Diffusion_Finetuned_Minecraft_Skin_Generator<br>Hugging Face Space made by [Nick088](https://linktr.ee/Nick088)",
    examples=examples,
).launch(show_api=False, share=True)

# return os.path.join(f"output_minecraft_skins/{output_image_name}")