Nick088 commited on
Commit
4ebdfdd
β€’
1 Parent(s): 5e2f771

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -28
app.py CHANGED
@@ -14,38 +14,24 @@ else:
14
  subprocess.run(["git", "clone", "https://github.com/Nick088Official/Stable_Diffusion_Finetuned_Minecraft_Skin_Generator.git"])
15
  os.chdir("Stable_Diffusion_Finetuned_Minecraft_Skin_Generator")
16
 
17
-
18
- def generate(
19
- prompt,
20
- stable_diffusion_model,
21
- num_inference_steps,
22
- guidance_scale,
23
- num_images_per_prompt,
24
- model_precision_type,
25
- seed,
26
- output_image_name,
27
- verbose
28
- ):
29
- if verbose:
30
- verbose_opt = '--verbose'
31
  else:
32
- verbose_opt = ''
33
-
34
- if stable_diffusion_model == 'xl':
35
  sd_model = "minecraft-skins-sdxl"
36
- else:
37
- sd_model = "minecraft-skins"
38
 
39
- subprocess.run(["python", f"Python_Script/{sd_model}.py", prompt, num_inference_steps, guidance_scale, num_images_per_prompt, model_precision_type, seed, output_image_name, verbose_opt])
 
 
40
 
41
- return os.path.join(f"output_minecraft_skins/{output_image_name}")
42
 
43
 
44
  prompt = gr.Textbox(label="Prompt", interactive=True)
45
 
46
  stable_diffusion_model = gr.Dropdown(["2", "xl"], interactive=True, label="Stable Diffusion Model", value="xl", info="Choose which Stable Diffusion Model to use, xl understands prompts better")
47
 
48
- num_inference_steps = gr.Number(value=50, minimum=1, interactive=True, label="Inference Steps", info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference")
49
 
50
  guidance_scale = gr.Number(value=7.5, minimum=0.1, interactive=True, label="Guidance Scale", info="How closely the generated image adheres to the prompt")
51
 
@@ -59,6 +45,17 @@ output_image_name = gr.Textbox(label="Name of Generated Skin Output", interactiv
59
 
60
  verbose = gr.Checkbox(label="Verbose Output", interactive=True, value=False, info="Produce verbose output while running")
61
 
 
 
 
 
 
 
 
 
 
 
 
62
  examples = [
63
  [
64
  "A man in a purple suit wearing a tophat.",
@@ -73,12 +70,23 @@ examples = [
73
  ]
74
  ]
75
 
 
76
  gr.Interface(
77
- fn=generate,
78
- inputs=[prompt, stable_diffusion_model, num_inference_steps, guidance_scale, num_images_per_prompt, model_precision_type, output_image_name, seed, verbose],
79
- outputs=gr.Image(label="Generated Minecraft Skin"),
80
- title="Stable Diffusion Finetuned Minecraft Skin Generator",
 
 
 
 
 
 
 
 
 
81
  description="Make AI generated Minecraft Skins by a Finetuned Stable Diffusion Version!<br>Model used: https://github.com/Nick088Official/Stable_Diffusion_Finetuned_Minecraft_Skin_Generator<br>Hugging Face Space made by [Nick088](https://linktr.ee/Nick088)",
82
  examples=examples,
83
- concurrency_limit=20,
84
- ).launch(show_api=False)
 
 
14
  subprocess.run(["git", "clone", "https://github.com/Nick088Official/Stable_Diffusion_Finetuned_Minecraft_Skin_Generator.git"])
15
  os.chdir("Stable_Diffusion_Finetuned_Minecraft_Skin_Generator")
16
 
17
+ def run_inference(prompt, stable_diffusion_model, num_inference_steps, guidance_scale, num_images_per_prompt, model_precision_type, output_image_name, verbose):
18
+ if stable_diffusion_model == '2':
19
+ sd_model = "minecraft-skins"
 
 
 
 
 
 
 
 
 
 
 
20
  else:
 
 
 
21
  sd_model = "minecraft-skins-sdxl"
 
 
22
 
23
+ command = f"Python_Scripts/{sd_model}.py '{prompt}' {num_inference_steps} {guidance_scale} {num_images_per_prompt} {model_precision_type} {output_image_name} {'--verbose' if verbose else ''}"
24
+
25
+ subprocess.run(["python", command], shell=True, check=True)
26
 
27
+ return output_image_name
28
 
29
 
30
  prompt = gr.Textbox(label="Prompt", interactive=True)
31
 
32
  stable_diffusion_model = gr.Dropdown(["2", "xl"], interactive=True, label="Stable Diffusion Model", value="xl", info="Choose which Stable Diffusion Model to use, xl understands prompts better")
33
 
34
+ num_inference_steps = gr.Number(value=50, minimum=1, interactive=True, label="Inference Steps",)
35
 
36
  guidance_scale = gr.Number(value=7.5, minimum=0.1, interactive=True, label="Guidance Scale", info="How closely the generated image adheres to the prompt")
37
 
 
45
 
46
  verbose = gr.Checkbox(label="Verbose Output", interactive=True, value=False, info="Produce verbose output while running")
47
 
48
+
49
+ # Define Gradio UI components
50
+ prompt_input = gr.Textbox(label="Your Prompt", info="What the Minecraft Skin should look like")
51
+ stable_diffusion_model_input = gr.Dropdown(['2', 'xl'], label="Stable Diffusion Model", info="Choose which Stable Diffusion Model to use, xl understands prompts better")
52
+ num_inference_steps_input = gr.Number(label="Number of Inference Steps", precision=0, value=25)
53
+ guidance_scale_input = gr.Number(minimum=0.1, value=7.5, label="Guidance Scale", info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference")
54
+ num_images_per_prompt_input = gr.inputs.Number(minimum=1, value=1, precision=0, label="Number of Images per Prompt", info="The number of images to make with the prompt")
55
+ model_precision_type_input = gr.Dropdown(["fp16", "fp32"], value="fp16", label="Model Precision Type", info="The precision type to load the model, like fp16 which is faster, or fp32 which gives better results")
56
+ output_image_name_input = gr.Textbox(label="Output Image Name", info="The name of the file of the output image skin, keep the .png", value="output-skin.png")
57
+ verbose_input = gr.Checkbox(label="Verbose Output", info="Produce more detailed output while running", value=False)
58
+
59
  examples = [
60
  [
61
  "A man in a purple suit wearing a tophat.",
 
70
  ]
71
  ]
72
 
73
+ # Create the Gradio interface
74
  gr.Interface(
75
+ fn=run_inference,
76
+ inputs=[
77
+ prompt_input,
78
+ stable_diffusion_model_input,
79
+ num_inference_steps_input,
80
+ guidance_scale_input,
81
+ num_images_per_prompt_input,
82
+ model_precision_type_input,
83
+ output_image_name_input,
84
+ verbose_input
85
+ ],
86
+ outputs=gr.outputs.Image(label="Generated Image"),
87
+ title="Minecraft Skin Generator",
88
  description="Make AI generated Minecraft Skins by a Finetuned Stable Diffusion Version!<br>Model used: https://github.com/Nick088Official/Stable_Diffusion_Finetuned_Minecraft_Skin_Generator<br>Hugging Face Space made by [Nick088](https://linktr.ee/Nick088)",
89
  examples=examples,
90
+ ).launch(show_api=False, share=True)
91
+
92
+ # return os.path.join(f"output_minecraft_skins/{output_image_name}")