Spaces:
Runtime error
Runtime error
ariankhalfani
commited on
Create glaucoma.py
Browse files- glaucoma.py +216 -0
glaucoma.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from PIL import Image, ImageDraw, ImageFont
|
3 |
+
import cv2
|
4 |
+
from ultralytics import YOLO
|
5 |
+
from database import save_prediction_to_db
|
6 |
+
|
7 |
+
# Load YOLO models
|
8 |
+
try:
|
9 |
+
yolo_model_glaucoma = YOLO('best-glaucoma-seg.pt')
|
10 |
+
yolo_model_od = YOLO("best-glaucoma-od.pt")
|
11 |
+
print("YOLO models loaded successfully.")
|
12 |
+
except Exception as e:
|
13 |
+
print(f"Error loading YOLO models: {e}")
|
14 |
+
|
15 |
+
def calculate_area(mask):
|
16 |
+
area = np.sum(mask > 0.5)
|
17 |
+
print(f"Calculated area: {area}")
|
18 |
+
return area
|
19 |
+
|
20 |
+
def classify_ddls(rim_to_disc_ratio):
|
21 |
+
if rim_to_disc_ratio >= 0.5:
|
22 |
+
stage = 0 # Non Glaucomatous
|
23 |
+
elif 0.4 <= rim_to_disc_ratio < 0.5:
|
24 |
+
stage = 1
|
25 |
+
elif 0.3 <= rim_to_disc_ratio < 0.4:
|
26 |
+
stage = 2
|
27 |
+
elif 0.2 <= rim_to_disc_ratio < 0.3:
|
28 |
+
stage = 3
|
29 |
+
elif 0.1 <= rim_to_disc_ratio < 0.2:
|
30 |
+
stage = 4
|
31 |
+
elif 0.0 < rim_to_disc_ratio < 0.1:
|
32 |
+
stage = 5
|
33 |
+
else:
|
34 |
+
stage = 6
|
35 |
+
print(f"Classified DDLS stage: {stage}")
|
36 |
+
return stage
|
37 |
+
|
38 |
+
def add_watermark(image):
|
39 |
+
try:
|
40 |
+
logo = Image.open('image-logo.png').convert("RGBA")
|
41 |
+
image = image.convert("RGBA")
|
42 |
+
|
43 |
+
# Resize logo
|
44 |
+
basewidth = 100
|
45 |
+
wpercent = (basewidth / float(logo.size[0]))
|
46 |
+
hsize = int((float(wpercent) * logo.size[1]))
|
47 |
+
logo = logo.resize((basewidth, hsize), Image.LANCZOS)
|
48 |
+
|
49 |
+
# Position logo
|
50 |
+
position = (image.width - logo.width - 10, image.height - logo.height - 10)
|
51 |
+
|
52 |
+
# Composite image
|
53 |
+
transparent = Image.new('RGBA', (image.width, image.height), (0, 0, 0, 0))
|
54 |
+
transparent.paste(image, (0, 0))
|
55 |
+
transparent.paste(logo, position, mask=logo)
|
56 |
+
|
57 |
+
return transparent.convert("RGB")
|
58 |
+
except Exception as e:
|
59 |
+
print(f"Error adding watermark: {e}")
|
60 |
+
return image
|
61 |
+
|
62 |
+
def predict_and_visualize_glaucoma(image, mask_threshold=0.5):
|
63 |
+
try:
|
64 |
+
pil_image = Image.fromarray(image)
|
65 |
+
orig_size = pil_image.size
|
66 |
+
results = yolo_model_glaucoma(pil_image)
|
67 |
+
|
68 |
+
raw_response = str(results)
|
69 |
+
print(f"YOLO results: {raw_response}")
|
70 |
+
masked_image = np.array(pil_image)
|
71 |
+
mask_image = np.zeros_like(masked_image)
|
72 |
+
|
73 |
+
cup_mask, disk_mask = None, None
|
74 |
+
|
75 |
+
if len(results) > 0:
|
76 |
+
result = results[0]
|
77 |
+
if hasattr(result, 'masks') and result.masks is not None and len(result.masks) > 0:
|
78 |
+
for mask_data in result.masks.data:
|
79 |
+
mask = np.array(mask_data.cpu().squeeze().numpy())
|
80 |
+
mask_resized = cv2.resize(mask, orig_size, interpolation=cv2.INTER_NEAREST)
|
81 |
+
|
82 |
+
if np.sum(mask_resized) > np.sum(disk_mask if disk_mask is not None else 0):
|
83 |
+
cup_mask = disk_mask
|
84 |
+
disk_mask = mask_resized
|
85 |
+
else:
|
86 |
+
cup_mask = mask_resized
|
87 |
+
|
88 |
+
if cup_mask is not None and disk_mask is not None:
|
89 |
+
area_cup = calculate_area(cup_mask)
|
90 |
+
area_disk = calculate_area(disk_mask)
|
91 |
+
rim_area = area_disk - area_cup
|
92 |
+
print(f"Area cup: {area_cup}, Area disk: {area_disk}, Rim area: {rim_area}")
|
93 |
+
|
94 |
+
rim_to_disc_ratio = rim_area / area_disk if area_disk > 0 else 0
|
95 |
+
print(f"Rim to disc ratio: {rim_to_disc_ratio}")
|
96 |
+
ddls_stage = classify_ddls(rim_to_disc_ratio)
|
97 |
+
|
98 |
+
combined_image = np.array(pil_image)
|
99 |
+
|
100 |
+
# Create RGBA version of the original image
|
101 |
+
combined_image_rgba = cv2.cvtColor(combined_image, cv2.COLOR_RGB2RGBA)
|
102 |
+
|
103 |
+
# Create transparent masks
|
104 |
+
cup_mask_rgba = np.zeros_like(combined_image_rgba)
|
105 |
+
cup_mask_rgba[:, :, 0] = 0 # Red channel
|
106 |
+
cup_mask_rgba[:, :, 1] = 0 # Green channel
|
107 |
+
cup_mask_rgba[:, :, 2] = 255 # Blue channel
|
108 |
+
cup_mask_rgba[:, :, 3] = 128 # Alpha channel (50% transparency)
|
109 |
+
|
110 |
+
disk_mask_rgba = np.zeros_like(combined_image_rgba)
|
111 |
+
disk_mask_rgba[:, :, 0] = 255 # Red channel
|
112 |
+
disk_mask_rgba[:, :, 1] = 0 # Green channel
|
113 |
+
disk_mask_rgba[:, :, 2] = 0 # Blue channel
|
114 |
+
disk_mask_rgba[:, :, 3] = 128 # Alpha channel (50% transparency)
|
115 |
+
|
116 |
+
# Apply masks to the original image with transparency
|
117 |
+
cup_mask_indices = cup_mask > mask_threshold
|
118 |
+
disk_mask_indices = disk_mask > mask_threshold
|
119 |
+
|
120 |
+
combined_image_rgba[cup_mask_indices] = (0.5 * combined_image_rgba[cup_mask_indices] + 0.5 * cup_mask_rgba[cup_mask_indices]).astype(np.uint8)
|
121 |
+
combined_image_rgba[disk_mask_indices] = (0.5 * combined_image_rgba[disk_mask_indices] + 0.5 * disk_mask_rgba[disk_mask_indices]).astype(np.uint8)
|
122 |
+
|
123 |
+
# Convert to PIL image for drawing
|
124 |
+
combined_pil_image = Image.fromarray(combined_image_rgba)
|
125 |
+
|
126 |
+
# Add text to the image
|
127 |
+
draw = ImageDraw.Draw(combined_pil_image)
|
128 |
+
|
129 |
+
# Load a larger font (adjust the size as needed)
|
130 |
+
font_size = 48 # Example font size
|
131 |
+
try:
|
132 |
+
font = ImageFont.truetype("font.ttf", size=font_size)
|
133 |
+
except IOError:
|
134 |
+
font = ImageFont.load_default()
|
135 |
+
print("Error: cannot open resource, using default font.")
|
136 |
+
|
137 |
+
text = f"Area cup: {area_cup}\nArea disk: {area_disk}\nRim area: {rim_area}\nRim to disc ratio: {rim_to_disc_ratio:.2f}\nDDLS stage: {ddls_stage}"
|
138 |
+
text_x = 20
|
139 |
+
text_y = 40
|
140 |
+
|
141 |
+
draw.text((text_x, text_y), text, fill=(255, 255, 255, 255), font=font)
|
142 |
+
|
143 |
+
# Add watermark
|
144 |
+
combined_pil_image = add_watermark(combined_pil_image)
|
145 |
+
|
146 |
+
return np.array(combined_pil_image), area_cup, area_disk, rim_area, rim_to_disc_ratio, ddls_stage
|
147 |
+
|
148 |
+
print("No detected regions")
|
149 |
+
return np.zeros_like(image), 0, 0, 0, 0, "No detected regions"
|
150 |
+
except Exception as e:
|
151 |
+
print("Error:", e)
|
152 |
+
return np.zeros_like(image), 0, 0, 0, 0, str(e)
|
153 |
+
|
154 |
+
def combined_prediction_glaucoma(image, mask_threshold):
|
155 |
+
segmented_image, cup_area, disk_area, rim_area, rim_to_disc_ratio, ddls_stage = predict_and_visualize_glaucoma(image, mask_threshold)
|
156 |
+
print(f"Segmented image: {segmented_image.shape}")
|
157 |
+
print(f"Cup area: {cup_area}, Disk area: {disk_area}, Rim area: {rim_area}")
|
158 |
+
print(f"Rim to disc ratio: {rim_to_disc_ratio}, DDLS stage: {ddls_stage}")
|
159 |
+
|
160 |
+
return segmented_image, cup_area, disk_area, rim_area, rim_to_disc_ratio, ddls_stage
|
161 |
+
|
162 |
+
def submit_to_db(image, cup_area, disk_area, rim_area, rim_to_disc_ratio, ddls_stage):
|
163 |
+
try:
|
164 |
+
# Convert the image from numpy array to PIL image
|
165 |
+
pil_image = Image.fromarray(np.uint8(image))
|
166 |
+
save_prediction_to_db(pil_image, cup_area, disk_area, rim_area, rim_to_disc_ratio, ddls_stage)
|
167 |
+
return "Values successfully saved to database.", ""
|
168 |
+
except Exception as e:
|
169 |
+
print(f"Error saving to database: {e}")
|
170 |
+
return f"Error saving to database: {e}", ""
|
171 |
+
|
172 |
+
def predict_image(input_image):
|
173 |
+
# Convert Gradio input image (PIL Image) to numpy array
|
174 |
+
image_np = np.array(input_image)
|
175 |
+
|
176 |
+
# Ensure the image is in the correct format
|
177 |
+
if len(image_np.shape) == 2: # grayscale to RGB
|
178 |
+
image_np = cv2.cvtColor(image_np, cv2.COLOR_GRAY2RGB)
|
179 |
+
elif image_np.shape[2] == 4: # RGBA to RGB
|
180 |
+
image_np = cv2.cvtColor(image_np, cv2.COLOR_RGBA2RGB)
|
181 |
+
|
182 |
+
# Perform prediction
|
183 |
+
results = yolo_model_od(image_np)
|
184 |
+
|
185 |
+
# Draw bounding boxes on the image
|
186 |
+
image_with_boxes = image_np.copy()
|
187 |
+
raw_predictions = []
|
188 |
+
for result in results[0].boxes:
|
189 |
+
confidence = result.conf.item() # Convert tensor to standard Python type
|
190 |
+
label = "Glaucoma" if confidence > 0.5 else "Normal" # Set label based on confidence
|
191 |
+
|
192 |
+
xmin, ymin, xmax, ymax = map(int, result.xyxy[0])
|
193 |
+
|
194 |
+
# Draw black rectangle as background for text
|
195 |
+
text = f'{label} {confidence:.2f}'
|
196 |
+
font_scale = 1.0 # Increased font scale
|
197 |
+
font_thickness = 2 # Increased font thickness
|
198 |
+
(w, h), baseline = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, font_scale, font_thickness)
|
199 |
+
cv2.rectangle(image_with_boxes, (xmin, ymin - h - baseline), (xmin + w, ymin), (0, 0, 0), -1)
|
200 |
+
|
201 |
+
cv2.putText(image_with_boxes, text, (xmin, ymin - baseline), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), font_thickness)
|
202 |
+
|
203 |
+
# Draw thicker bounding box
|
204 |
+
box_thickness = 3 # Increased box thickness
|
205 |
+
cv2.rectangle(image_with_boxes, (xmin, ymin), (xmax, ymax), (0, 255, 0), box_thickness)
|
206 |
+
|
207 |
+
raw_predictions.append(f"Label: {label}, Confidence: {confidence:.2f}, Box: [{xmin}, {ymin}, {xmax}, {ymax}]")
|
208 |
+
|
209 |
+
raw_predictions_str = "\n".join(raw_predictions)
|
210 |
+
|
211 |
+
# Add watermark to the final image with boxes
|
212 |
+
pil_image_with_boxes = Image.fromarray(image_with_boxes)
|
213 |
+
pil_image_with_boxes = add_watermark(pil_image_with_boxes)
|
214 |
+
image_with_boxes = np.array(pil_image_with_boxes)
|
215 |
+
|
216 |
+
return image_with_boxes, raw_predictions_str
|