ariankhalfani commited on
Commit
68c4c07
1 Parent(s): ea7d15b

Create glaucoma.py

Browse files
Files changed (1) hide show
  1. glaucoma.py +216 -0
glaucoma.py ADDED
@@ -0,0 +1,216 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from PIL import Image, ImageDraw, ImageFont
3
+ import cv2
4
+ from ultralytics import YOLO
5
+ from database import save_prediction_to_db
6
+
7
+ # Load YOLO models
8
+ try:
9
+ yolo_model_glaucoma = YOLO('best-glaucoma-seg.pt')
10
+ yolo_model_od = YOLO("best-glaucoma-od.pt")
11
+ print("YOLO models loaded successfully.")
12
+ except Exception as e:
13
+ print(f"Error loading YOLO models: {e}")
14
+
15
+ def calculate_area(mask):
16
+ area = np.sum(mask > 0.5)
17
+ print(f"Calculated area: {area}")
18
+ return area
19
+
20
+ def classify_ddls(rim_to_disc_ratio):
21
+ if rim_to_disc_ratio >= 0.5:
22
+ stage = 0 # Non Glaucomatous
23
+ elif 0.4 <= rim_to_disc_ratio < 0.5:
24
+ stage = 1
25
+ elif 0.3 <= rim_to_disc_ratio < 0.4:
26
+ stage = 2
27
+ elif 0.2 <= rim_to_disc_ratio < 0.3:
28
+ stage = 3
29
+ elif 0.1 <= rim_to_disc_ratio < 0.2:
30
+ stage = 4
31
+ elif 0.0 < rim_to_disc_ratio < 0.1:
32
+ stage = 5
33
+ else:
34
+ stage = 6
35
+ print(f"Classified DDLS stage: {stage}")
36
+ return stage
37
+
38
+ def add_watermark(image):
39
+ try:
40
+ logo = Image.open('image-logo.png').convert("RGBA")
41
+ image = image.convert("RGBA")
42
+
43
+ # Resize logo
44
+ basewidth = 100
45
+ wpercent = (basewidth / float(logo.size[0]))
46
+ hsize = int((float(wpercent) * logo.size[1]))
47
+ logo = logo.resize((basewidth, hsize), Image.LANCZOS)
48
+
49
+ # Position logo
50
+ position = (image.width - logo.width - 10, image.height - logo.height - 10)
51
+
52
+ # Composite image
53
+ transparent = Image.new('RGBA', (image.width, image.height), (0, 0, 0, 0))
54
+ transparent.paste(image, (0, 0))
55
+ transparent.paste(logo, position, mask=logo)
56
+
57
+ return transparent.convert("RGB")
58
+ except Exception as e:
59
+ print(f"Error adding watermark: {e}")
60
+ return image
61
+
62
+ def predict_and_visualize_glaucoma(image, mask_threshold=0.5):
63
+ try:
64
+ pil_image = Image.fromarray(image)
65
+ orig_size = pil_image.size
66
+ results = yolo_model_glaucoma(pil_image)
67
+
68
+ raw_response = str(results)
69
+ print(f"YOLO results: {raw_response}")
70
+ masked_image = np.array(pil_image)
71
+ mask_image = np.zeros_like(masked_image)
72
+
73
+ cup_mask, disk_mask = None, None
74
+
75
+ if len(results) > 0:
76
+ result = results[0]
77
+ if hasattr(result, 'masks') and result.masks is not None and len(result.masks) > 0:
78
+ for mask_data in result.masks.data:
79
+ mask = np.array(mask_data.cpu().squeeze().numpy())
80
+ mask_resized = cv2.resize(mask, orig_size, interpolation=cv2.INTER_NEAREST)
81
+
82
+ if np.sum(mask_resized) > np.sum(disk_mask if disk_mask is not None else 0):
83
+ cup_mask = disk_mask
84
+ disk_mask = mask_resized
85
+ else:
86
+ cup_mask = mask_resized
87
+
88
+ if cup_mask is not None and disk_mask is not None:
89
+ area_cup = calculate_area(cup_mask)
90
+ area_disk = calculate_area(disk_mask)
91
+ rim_area = area_disk - area_cup
92
+ print(f"Area cup: {area_cup}, Area disk: {area_disk}, Rim area: {rim_area}")
93
+
94
+ rim_to_disc_ratio = rim_area / area_disk if area_disk > 0 else 0
95
+ print(f"Rim to disc ratio: {rim_to_disc_ratio}")
96
+ ddls_stage = classify_ddls(rim_to_disc_ratio)
97
+
98
+ combined_image = np.array(pil_image)
99
+
100
+ # Create RGBA version of the original image
101
+ combined_image_rgba = cv2.cvtColor(combined_image, cv2.COLOR_RGB2RGBA)
102
+
103
+ # Create transparent masks
104
+ cup_mask_rgba = np.zeros_like(combined_image_rgba)
105
+ cup_mask_rgba[:, :, 0] = 0 # Red channel
106
+ cup_mask_rgba[:, :, 1] = 0 # Green channel
107
+ cup_mask_rgba[:, :, 2] = 255 # Blue channel
108
+ cup_mask_rgba[:, :, 3] = 128 # Alpha channel (50% transparency)
109
+
110
+ disk_mask_rgba = np.zeros_like(combined_image_rgba)
111
+ disk_mask_rgba[:, :, 0] = 255 # Red channel
112
+ disk_mask_rgba[:, :, 1] = 0 # Green channel
113
+ disk_mask_rgba[:, :, 2] = 0 # Blue channel
114
+ disk_mask_rgba[:, :, 3] = 128 # Alpha channel (50% transparency)
115
+
116
+ # Apply masks to the original image with transparency
117
+ cup_mask_indices = cup_mask > mask_threshold
118
+ disk_mask_indices = disk_mask > mask_threshold
119
+
120
+ combined_image_rgba[cup_mask_indices] = (0.5 * combined_image_rgba[cup_mask_indices] + 0.5 * cup_mask_rgba[cup_mask_indices]).astype(np.uint8)
121
+ combined_image_rgba[disk_mask_indices] = (0.5 * combined_image_rgba[disk_mask_indices] + 0.5 * disk_mask_rgba[disk_mask_indices]).astype(np.uint8)
122
+
123
+ # Convert to PIL image for drawing
124
+ combined_pil_image = Image.fromarray(combined_image_rgba)
125
+
126
+ # Add text to the image
127
+ draw = ImageDraw.Draw(combined_pil_image)
128
+
129
+ # Load a larger font (adjust the size as needed)
130
+ font_size = 48 # Example font size
131
+ try:
132
+ font = ImageFont.truetype("font.ttf", size=font_size)
133
+ except IOError:
134
+ font = ImageFont.load_default()
135
+ print("Error: cannot open resource, using default font.")
136
+
137
+ text = f"Area cup: {area_cup}\nArea disk: {area_disk}\nRim area: {rim_area}\nRim to disc ratio: {rim_to_disc_ratio:.2f}\nDDLS stage: {ddls_stage}"
138
+ text_x = 20
139
+ text_y = 40
140
+
141
+ draw.text((text_x, text_y), text, fill=(255, 255, 255, 255), font=font)
142
+
143
+ # Add watermark
144
+ combined_pil_image = add_watermark(combined_pil_image)
145
+
146
+ return np.array(combined_pil_image), area_cup, area_disk, rim_area, rim_to_disc_ratio, ddls_stage
147
+
148
+ print("No detected regions")
149
+ return np.zeros_like(image), 0, 0, 0, 0, "No detected regions"
150
+ except Exception as e:
151
+ print("Error:", e)
152
+ return np.zeros_like(image), 0, 0, 0, 0, str(e)
153
+
154
+ def combined_prediction_glaucoma(image, mask_threshold):
155
+ segmented_image, cup_area, disk_area, rim_area, rim_to_disc_ratio, ddls_stage = predict_and_visualize_glaucoma(image, mask_threshold)
156
+ print(f"Segmented image: {segmented_image.shape}")
157
+ print(f"Cup area: {cup_area}, Disk area: {disk_area}, Rim area: {rim_area}")
158
+ print(f"Rim to disc ratio: {rim_to_disc_ratio}, DDLS stage: {ddls_stage}")
159
+
160
+ return segmented_image, cup_area, disk_area, rim_area, rim_to_disc_ratio, ddls_stage
161
+
162
+ def submit_to_db(image, cup_area, disk_area, rim_area, rim_to_disc_ratio, ddls_stage):
163
+ try:
164
+ # Convert the image from numpy array to PIL image
165
+ pil_image = Image.fromarray(np.uint8(image))
166
+ save_prediction_to_db(pil_image, cup_area, disk_area, rim_area, rim_to_disc_ratio, ddls_stage)
167
+ return "Values successfully saved to database.", ""
168
+ except Exception as e:
169
+ print(f"Error saving to database: {e}")
170
+ return f"Error saving to database: {e}", ""
171
+
172
+ def predict_image(input_image):
173
+ # Convert Gradio input image (PIL Image) to numpy array
174
+ image_np = np.array(input_image)
175
+
176
+ # Ensure the image is in the correct format
177
+ if len(image_np.shape) == 2: # grayscale to RGB
178
+ image_np = cv2.cvtColor(image_np, cv2.COLOR_GRAY2RGB)
179
+ elif image_np.shape[2] == 4: # RGBA to RGB
180
+ image_np = cv2.cvtColor(image_np, cv2.COLOR_RGBA2RGB)
181
+
182
+ # Perform prediction
183
+ results = yolo_model_od(image_np)
184
+
185
+ # Draw bounding boxes on the image
186
+ image_with_boxes = image_np.copy()
187
+ raw_predictions = []
188
+ for result in results[0].boxes:
189
+ confidence = result.conf.item() # Convert tensor to standard Python type
190
+ label = "Glaucoma" if confidence > 0.5 else "Normal" # Set label based on confidence
191
+
192
+ xmin, ymin, xmax, ymax = map(int, result.xyxy[0])
193
+
194
+ # Draw black rectangle as background for text
195
+ text = f'{label} {confidence:.2f}'
196
+ font_scale = 1.0 # Increased font scale
197
+ font_thickness = 2 # Increased font thickness
198
+ (w, h), baseline = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, font_scale, font_thickness)
199
+ cv2.rectangle(image_with_boxes, (xmin, ymin - h - baseline), (xmin + w, ymin), (0, 0, 0), -1)
200
+
201
+ cv2.putText(image_with_boxes, text, (xmin, ymin - baseline), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), font_thickness)
202
+
203
+ # Draw thicker bounding box
204
+ box_thickness = 3 # Increased box thickness
205
+ cv2.rectangle(image_with_boxes, (xmin, ymin), (xmax, ymax), (0, 255, 0), box_thickness)
206
+
207
+ raw_predictions.append(f"Label: {label}, Confidence: {confidence:.2f}, Box: [{xmin}, {ymin}, {xmax}, {ymax}]")
208
+
209
+ raw_predictions_str = "\n".join(raw_predictions)
210
+
211
+ # Add watermark to the final image with boxes
212
+ pil_image_with_boxes = Image.fromarray(image_with_boxes)
213
+ pil_image_with_boxes = add_watermark(pil_image_with_boxes)
214
+ image_with_boxes = np.array(pil_image_with_boxes)
215
+
216
+ return image_with_boxes, raw_predictions_str