Spaces:
Runtime error
Runtime error
ariankhalfani
commited on
Create cataract.py
Browse files- cataract.py +296 -0
cataract.py
ADDED
@@ -0,0 +1,296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image, ImageDraw, ImageFont
|
5 |
+
from ultralytics import YOLO
|
6 |
+
import sqlite3
|
7 |
+
from io import BytesIO
|
8 |
+
from scipy.stats import norm
|
9 |
+
|
10 |
+
# Load YOLO models
|
11 |
+
try:
|
12 |
+
yolo_model_cataract = YOLO('best-cataract-seg.pt')
|
13 |
+
yolo_model_object_detection = YOLO('best-cataract-od.pt')
|
14 |
+
print("YOLO models loaded successfully.")
|
15 |
+
except Exception as e:
|
16 |
+
print(f"Error loading YOLO models: {e}")
|
17 |
+
|
18 |
+
def calculate_ratios(red_values, green_values, blue_values, total_pixels):
|
19 |
+
if total_pixels == 0:
|
20 |
+
return 0, 0, 0
|
21 |
+
|
22 |
+
red_ratio = np.sum(red_values) / total_pixels
|
23 |
+
green_ratio = np.sum(green_values) / total_pixels
|
24 |
+
blue_ratio = np.sum(blue_values) / total_pixels
|
25 |
+
|
26 |
+
total_ratio = red_ratio + green_ratio + blue_ratio
|
27 |
+
|
28 |
+
if total_ratio > 0:
|
29 |
+
red_quantity = (red_ratio / total_ratio) * 255
|
30 |
+
green_quantity = (green_ratio / total_ratio) * 255
|
31 |
+
blue_quantity = (blue_ratio / total_ratio) * 255
|
32 |
+
else:
|
33 |
+
red_quantity, green_quantity, blue_quantity = 0, 0, 0
|
34 |
+
|
35 |
+
return red_quantity, green_quantity, blue_quantity
|
36 |
+
|
37 |
+
def cataract_staging(red_quantity, green_quantity, blue_quantity):
|
38 |
+
# Assuming you have already defined your mean and std for each class and each RGB channel
|
39 |
+
# Example mean and std based on earlier discussion
|
40 |
+
mean_mature_red = 73.37
|
41 |
+
std_mature_red = (90.12 - 41.49) / 4
|
42 |
+
mean_mature_green = 89.48
|
43 |
+
std_mature_green = (97.67 - 83.39) / 4
|
44 |
+
mean_mature_blue = 92.15
|
45 |
+
std_mature_blue = (117.82 - 75.37) / 4
|
46 |
+
|
47 |
+
mean_normal_red = 67.84
|
48 |
+
std_normal_red = (107.02 - 56.19) / 4
|
49 |
+
mean_normal_green = 84.85
|
50 |
+
std_normal_green = (89.89 - 80.74) / 4
|
51 |
+
mean_normal_blue = 102.31
|
52 |
+
std_normal_blue = (111.34 - 65.58) / 4
|
53 |
+
|
54 |
+
mean_immature_red = 68.83
|
55 |
+
std_immature_red = (85.95 - 41.49) / 4
|
56 |
+
mean_immature_green = 89.43
|
57 |
+
std_immature_green = (97.67 - 83.39) / 4
|
58 |
+
mean_immature_blue = 96.74
|
59 |
+
std_immature_blue = (117.82 - 78.41) / 4
|
60 |
+
|
61 |
+
# Calculate likelihoods for each class
|
62 |
+
likelihood_mature = (
|
63 |
+
norm.pdf(red_quantity, mean_mature_red, std_mature_red) *
|
64 |
+
norm.pdf(green_quantity, mean_mature_green, std_mature_green) *
|
65 |
+
norm.pdf(blue_quantity, mean_mature_blue, std_mature_blue)
|
66 |
+
)
|
67 |
+
|
68 |
+
likelihood_normal = (
|
69 |
+
norm.pdf(red_quantity, mean_normal_red, std_normal_red) *
|
70 |
+
norm.pdf(green_quantity, mean_normal_green, std_normal_green) *
|
71 |
+
norm.pdf(blue_quantity, mean_normal_blue, std_normal_blue)
|
72 |
+
)
|
73 |
+
|
74 |
+
likelihood_immature = (
|
75 |
+
norm.pdf(red_quantity, mean_immature_red, std_immature_red) *
|
76 |
+
norm.pdf(green_quantity, mean_immature_green, std_immature_green) *
|
77 |
+
norm.pdf(blue_quantity, mean_immature_blue, std_immature_blue)
|
78 |
+
)
|
79 |
+
|
80 |
+
# Define prior probabilities (assuming equal prior for simplicity)
|
81 |
+
prior_mature = 1/3
|
82 |
+
prior_normal = 1/3
|
83 |
+
prior_immature = 1/3
|
84 |
+
|
85 |
+
# Apply Bayes' theorem to compute posterior probabilities
|
86 |
+
posterior_mature = likelihood_mature * prior_mature
|
87 |
+
posterior_normal = likelihood_normal * prior_normal
|
88 |
+
posterior_immature = likelihood_immature * prior_immature
|
89 |
+
|
90 |
+
# Determine the stage based on maximum posterior probability
|
91 |
+
stages = {
|
92 |
+
posterior_mature: "Mature",
|
93 |
+
posterior_normal: "Normal",
|
94 |
+
posterior_immature: "Immature"
|
95 |
+
}
|
96 |
+
max_posterior = max(posterior_mature, posterior_normal, posterior_immature)
|
97 |
+
stage = stages[max_posterior]
|
98 |
+
|
99 |
+
return stage
|
100 |
+
|
101 |
+
def add_watermark(image):
|
102 |
+
try:
|
103 |
+
logo = Image.open('image-logo.png').convert("RGBA")
|
104 |
+
image = image.convert("RGBA")
|
105 |
+
|
106 |
+
# Resize logo
|
107 |
+
basewidth = 100
|
108 |
+
wpercent = (basewidth / float(logo.size[0]))
|
109 |
+
hsize = int((float(wpercent) * logo.size[1]))
|
110 |
+
logo = logo.resize((basewidth, hsize), Image.LANCZOS)
|
111 |
+
|
112 |
+
# Position logo
|
113 |
+
position = (image.width - logo.width - 10, image.height - logo.height - 10)
|
114 |
+
|
115 |
+
# Composite image
|
116 |
+
transparent = Image.new('RGBA', (image.width, image.height), (0, 0, 0, 0))
|
117 |
+
transparent.paste(image, (0, 0))
|
118 |
+
transparent.paste(logo, position, mask=logo)
|
119 |
+
|
120 |
+
return transparent.convert("RGB")
|
121 |
+
except Exception as e:
|
122 |
+
print(f"Error adding watermark: {e}")
|
123 |
+
return image
|
124 |
+
|
125 |
+
|
126 |
+
def predict_and_visualize(image):
|
127 |
+
try:
|
128 |
+
pil_image = Image.fromarray(image.astype('uint8'), 'RGB')
|
129 |
+
orig_size = pil_image.size
|
130 |
+
results = yolo_model_cataract(pil_image)
|
131 |
+
|
132 |
+
raw_response = str(results)
|
133 |
+
masked_image = np.array(pil_image)
|
134 |
+
mask_image = np.zeros_like(masked_image)
|
135 |
+
|
136 |
+
red_quantity, green_quantity, blue_quantity = 0, 0, 0
|
137 |
+
total_pixels = 0
|
138 |
+
|
139 |
+
if len(results) > 0:
|
140 |
+
result = results[0]
|
141 |
+
if hasattr(result, 'masks') and result.masks is not None and len(result.masks) > 0:
|
142 |
+
mask = np.array(result.masks.data.cpu().squeeze().numpy())
|
143 |
+
mask_resized = np.array(Image.fromarray(mask).resize(orig_size, Image.NEAREST))
|
144 |
+
|
145 |
+
red_mask = np.zeros_like(masked_image)
|
146 |
+
red_mask[mask_resized > 0.5] = [255, 0, 0]
|
147 |
+
alpha = 0.5
|
148 |
+
blended_image = cv2.addWeighted(masked_image, 1 - alpha, red_mask, alpha, 0)
|
149 |
+
|
150 |
+
pupil_pixels = np.array(pil_image)[mask_resized > 0.5]
|
151 |
+
total_pixels = pupil_pixels.shape[0]
|
152 |
+
|
153 |
+
red_values = pupil_pixels[:, 0]
|
154 |
+
green_values = pupil_pixels[:, 1]
|
155 |
+
blue_values = pupil_pixels[:, 2]
|
156 |
+
|
157 |
+
red_quantity, green_quantity, blue_quantity = calculate_ratios(red_values, green_values, blue_values, total_pixels)
|
158 |
+
stage = cataract_staging(red_quantity, green_quantity, blue_quantity)
|
159 |
+
|
160 |
+
# Add text to the blended image
|
161 |
+
combined_pil_image = Image.fromarray(blended_image)
|
162 |
+
draw = ImageDraw.Draw(combined_pil_image)
|
163 |
+
|
164 |
+
# Load a larger font (adjust the size as needed)
|
165 |
+
font_size = 48 # Example font size
|
166 |
+
try:
|
167 |
+
font = ImageFont.truetype("font.ttf", size=font_size)
|
168 |
+
except IOError:
|
169 |
+
font = ImageFont.load_default()
|
170 |
+
print("Error: cannot open resource, using default font.")
|
171 |
+
|
172 |
+
text = f"Red quantity: {red_quantity:.2f}\nGreen quantity: {green_quantity:.2f}\nBlue quantity: {blue_quantity:.2f}\nStage: {stage}"
|
173 |
+
|
174 |
+
# Calculate text bounding box
|
175 |
+
text_bbox = draw.textbbox((0, 0), text, font=font)
|
176 |
+
text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]
|
177 |
+
text_x = 20
|
178 |
+
text_y = 40
|
179 |
+
padding = 10
|
180 |
+
|
181 |
+
# Draw a filled rectangle for the background
|
182 |
+
draw.rectangle(
|
183 |
+
[text_x - padding, text_y - padding, text_x + text_width + padding, text_y + text_height + padding],
|
184 |
+
fill="black"
|
185 |
+
)
|
186 |
+
|
187 |
+
# Draw text on top of the rectangle
|
188 |
+
draw.text((text_x, text_y), text, fill=(255, 255, 255, 255), font=font)
|
189 |
+
|
190 |
+
# Add watermark to the image
|
191 |
+
combined_pil_image_with_watermark = add_watermark(combined_pil_image)
|
192 |
+
|
193 |
+
return np.array(combined_pil_image_with_watermark), red_quantity, green_quantity, blue_quantity, raw_response, stage
|
194 |
+
|
195 |
+
return image, 0, 0, 0, "No mask detected.", "Unknown"
|
196 |
+
|
197 |
+
except Exception as e:
|
198 |
+
print("Error:", e)
|
199 |
+
return np.zeros_like(image), 0, 0, 0, str(e), "Error"
|
200 |
+
|
201 |
+
def check_duplicate_entry(conn, red_quantity, green_quantity, blue_quantity, stage):
|
202 |
+
cursor = conn.cursor()
|
203 |
+
query = '''SELECT COUNT(*) FROM cataract_results WHERE red_quantity=? AND green_quantity=? AND blue_quantity=? AND stage=?'''
|
204 |
+
cursor.execute(query, (red_quantity, green_quantity, blue_quantity, stage))
|
205 |
+
count = cursor.fetchone()[0]
|
206 |
+
return count > 0
|
207 |
+
|
208 |
+
def save_cataract_prediction_to_db(image, red_quantity, green_quantity, blue_quantity, stage):
|
209 |
+
database = "cataract_results.db"
|
210 |
+
conn = create_connection(database)
|
211 |
+
if conn:
|
212 |
+
create_cataract_table(conn)
|
213 |
+
|
214 |
+
# Check for duplicate entries
|
215 |
+
if check_duplicate_entry(conn, red_quantity, green_quantity, blue_quantity, stage):
|
216 |
+
conn.close()
|
217 |
+
return "Duplicate entry found, not saving.", "Duplicate entry detected."
|
218 |
+
|
219 |
+
sql = '''INSERT INTO cataract_results(image, red_quantity, green_quantity, blue_quantity, stage) VALUES(?,?,?,?,?)'''
|
220 |
+
cur = conn.cursor()
|
221 |
+
|
222 |
+
# Convert the image to bytes
|
223 |
+
buffered = BytesIO()
|
224 |
+
image.save(buffered, format="PNG")
|
225 |
+
img_bytes = buffered.getvalue()
|
226 |
+
|
227 |
+
cur.execute(sql, (img_bytes, red_quantity, green_quantity, blue_quantity, stage))
|
228 |
+
conn.commit()
|
229 |
+
conn.close()
|
230 |
+
return "Data saved successfully", f"Red: {red_quantity}, Green: {green_quantity}, Blue: {blue_quantity}, Stage: {stage}"
|
231 |
+
|
232 |
+
return "Failed to save data", "No connection to the database."
|
233 |
+
|
234 |
+
def combined_prediction(image):
|
235 |
+
blended_image, red_quantity, green_quantity, blue_quantity, raw_response, stage = predict_and_visualize(image)
|
236 |
+
save_message, debug_info = save_cataract_prediction_to_db(Image.fromarray(blended_image), red_quantity, green_quantity, blue_quantity, stage)
|
237 |
+
return blended_image, red_quantity, green_quantity, blue_quantity, raw_response, stage, save_message, debug_info
|
238 |
+
|
239 |
+
def create_connection(db_file):
|
240 |
+
""" Create a database connection to the SQLite database """
|
241 |
+
conn = None
|
242 |
+
try:
|
243 |
+
conn = sqlite3.connect(db_file)
|
244 |
+
return conn
|
245 |
+
except sqlite3.Error as e:
|
246 |
+
print(e)
|
247 |
+
return conn
|
248 |
+
|
249 |
+
def create_cataract_table(conn):
|
250 |
+
""" Create the cataract results table if it does not exist """
|
251 |
+
create_table_sql = """ CREATE TABLE IF NOT EXISTS cataract_results (
|
252 |
+
id integer PRIMARY KEY,
|
253 |
+
image blob,
|
254 |
+
red_quantity real,
|
255 |
+
green_quantity real,
|
256 |
+
blue_quantity real,
|
257 |
+
stage text
|
258 |
+
); """
|
259 |
+
try:
|
260 |
+
cursor = conn.cursor()
|
261 |
+
cursor.execute(create_table_sql)
|
262 |
+
except sqlite3.Error as e:
|
263 |
+
print(e)
|
264 |
+
|
265 |
+
def predict_object_detection(image):
|
266 |
+
try:
|
267 |
+
image_np = np.array(image)
|
268 |
+
results = yolo_model_object_detection(image_np)
|
269 |
+
|
270 |
+
image_with_boxes = image_np.copy()
|
271 |
+
raw_predictions = []
|
272 |
+
for result in results[0].boxes:
|
273 |
+
label = "Normal" if result.cls.item() == 1 else "Cataract"
|
274 |
+
confidence = result.conf.item()
|
275 |
+
xmin, ymin, xmax, ymax = map(int, result.xyxy[0])
|
276 |
+
cv2.rectangle(image_with_boxes, (xmin, ymin), (xmax, ymax), (255, 0, 0), 2)
|
277 |
+
|
278 |
+
font_scale = 1.0
|
279 |
+
thickness = 2
|
280 |
+
text = f'{label} {confidence:.2f}'
|
281 |
+
(text_width, text_height), baseline = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, font_scale, thickness)
|
282 |
+
cv2.rectangle(image_with_boxes, (xmin, ymin - text_height - baseline), (xmin + text_width, ymin), (0, 0, 0), cv2.FILLED)
|
283 |
+
cv2.putText(image_with_boxes, text, (xmin, ymin - baseline), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), thickness)
|
284 |
+
|
285 |
+
raw_predictions.append(f"Label: {label}, Confidence: {confidence:.2f}, Box: [{xmin}, {ymin}, {xmax}, {ymax}]")
|
286 |
+
|
287 |
+
raw_predictions_str = "\n".join(raw_predictions)
|
288 |
+
|
289 |
+
# Convert image_with_boxes to PIL image and add watermark
|
290 |
+
image_with_boxes_pil = Image.fromarray(image_with_boxes)
|
291 |
+
image_with_boxes_pil_with_watermark = add_watermark(image_with_boxes_pil)
|
292 |
+
|
293 |
+
return np.array(image_with_boxes_pil_with_watermark), raw_predictions_str
|
294 |
+
except Exception as e:
|
295 |
+
print("Error in object detection:", e)
|
296 |
+
return np.zeros_like(image), str(e)
|