Spaces:
Runtime error
Runtime error
ariankhalfani
commited on
Create chatbot.py
Browse files- chatbot.py +259 -0
chatbot.py
ADDED
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
import logging
|
4 |
+
import gradio as gr
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
from pydub import AudioSegment
|
7 |
+
from io import BytesIO
|
8 |
+
import time
|
9 |
+
import sqlite3
|
10 |
+
import re
|
11 |
+
|
12 |
+
# Configure logging
|
13 |
+
logging.basicConfig(level=logging.DEBUG)
|
14 |
+
|
15 |
+
# Configure Hugging Face API URL and headers for Meta-Llama-3-70B-Instruct
|
16 |
+
api_url = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-70B-Instruct"
|
17 |
+
huggingface_api_key = os.getenv("HF_API_TOKEN")
|
18 |
+
headers = {"Authorization": f"Bearer {huggingface_api_key}"}
|
19 |
+
|
20 |
+
# Function to query the Hugging Face model
|
21 |
+
def query_huggingface(payload):
|
22 |
+
logging.debug(f"Querying model with payload: {payload}")
|
23 |
+
response = requests.post(api_url, headers=headers, json=payload)
|
24 |
+
logging.debug(f"Received response: {response.status_code} {response.text}")
|
25 |
+
return response.json()
|
26 |
+
|
27 |
+
# Function to query the Whisper model for audio transcription
|
28 |
+
def query_whisper(audio_path):
|
29 |
+
API_URL_WHISPER = "https://api-inference.huggingface.co/models/openai/whisper-large-v2"
|
30 |
+
headers = {"Authorization": f"Bearer {huggingface_api_key}"}
|
31 |
+
MAX_RETRIES = 5
|
32 |
+
RETRY_DELAY = 1 # seconds
|
33 |
+
|
34 |
+
for attempt in range(MAX_RETRIES):
|
35 |
+
try:
|
36 |
+
if not os.path.exists(audio_path):
|
37 |
+
raise FileNotFoundError(f"Audio file does not exist: {audio_path}")
|
38 |
+
|
39 |
+
with open(audio_path, "rb") as f:
|
40 |
+
data = f.read()
|
41 |
+
|
42 |
+
response = requests.post(API_URL_WHISPER, headers=headers, data=data)
|
43 |
+
response.raise_for_status()
|
44 |
+
return response.json()
|
45 |
+
except Exception as e:
|
46 |
+
if attempt < MAX_RETRIES - 1:
|
47 |
+
time.sleep(RETRY_DELAY)
|
48 |
+
else:
|
49 |
+
return {"error": str(e)}
|
50 |
+
|
51 |
+
# Function to generate speech from text using Nithu TTS
|
52 |
+
def generate_speech_nithu(answer):
|
53 |
+
API_URL_TTS_Nithu = "https://api-inference.huggingface.co/models/Nithu/text-to-speech"
|
54 |
+
headers = {"Authorization": f"Bearer {huggingface_api_key}"}
|
55 |
+
payload = {"inputs": answer}
|
56 |
+
MAX_RETRIES = 5
|
57 |
+
RETRY_DELAY = 1 # seconds
|
58 |
+
|
59 |
+
for attempt in range(MAX_RETRIES):
|
60 |
+
try:
|
61 |
+
response = requests.post(API_URL_TTS_Nithu, headers=headers, json=payload)
|
62 |
+
response.raise_for_status()
|
63 |
+
audio_segment = AudioSegment.from_file(BytesIO(response.content), format="flac")
|
64 |
+
audio_file_path = "/tmp/answer_nithu.wav"
|
65 |
+
audio_segment.export(audio_file_path, format="wav")
|
66 |
+
return audio_file_path
|
67 |
+
except Exception as e:
|
68 |
+
if attempt < MAX_RETRIES - 1:
|
69 |
+
time.sleep(RETRY_DELAY)
|
70 |
+
else:
|
71 |
+
return {"error": str(e)}
|
72 |
+
|
73 |
+
# Function to generate speech from text using Ryan TTS
|
74 |
+
def generate_speech_ryan(answer):
|
75 |
+
API_URL_TTS_Ryan = "https://api-inference.huggingface.co/models/espnet/english_male_ryanspeech_fastspeech2"
|
76 |
+
headers = {"Authorization": f"Bearer {huggingface_api_key}"}
|
77 |
+
payload = {"inputs": answer}
|
78 |
+
MAX_RETRIES = 5
|
79 |
+
RETRY_DELAY = 1 # seconds
|
80 |
+
|
81 |
+
for attempt in range(MAX_RETRIES):
|
82 |
+
try:
|
83 |
+
response = requests.post(API_URL_TTS_Ryan, headers=headers, json=payload)
|
84 |
+
response.raise_for_status()
|
85 |
+
response_json = response.json()
|
86 |
+
audio = response_json.get("audio", None)
|
87 |
+
sampling_rate = response_json.get("sampling_rate", None)
|
88 |
+
if audio and sampling_rate:
|
89 |
+
audio_segment = AudioSegment.from_file(BytesIO(audio), format="wav")
|
90 |
+
audio_file_path = "/tmp/answer_ryan.wav"
|
91 |
+
audio_segment.export(audio_file_path, format="wav")
|
92 |
+
return audio_file_path
|
93 |
+
else:
|
94 |
+
raise ValueError("Invalid response format from Ryan TTS API")
|
95 |
+
except Exception as e:
|
96 |
+
if attempt < MAX_RETRIES - 1:
|
97 |
+
time.sleep(RETRY_DELAY)
|
98 |
+
else:
|
99 |
+
return {"error": str(e)}
|
100 |
+
|
101 |
+
# Function to fetch patient data from both databases
|
102 |
+
def fetch_patient_data(cataract_db_path, glaucoma_db_path):
|
103 |
+
patient_data = {}
|
104 |
+
|
105 |
+
# Fetch data from cataract_results table
|
106 |
+
try:
|
107 |
+
conn = sqlite3.connect(cataract_db_path)
|
108 |
+
cursor = conn.cursor()
|
109 |
+
cursor.execute("SELECT * FROM cataract_results")
|
110 |
+
cataract_data = cursor.fetchall()
|
111 |
+
conn.close()
|
112 |
+
patient_data['cataract_results'] = cataract_data
|
113 |
+
except Exception as e:
|
114 |
+
patient_data['cataract_results'] = f"Error fetching cataract results: {str(e)}"
|
115 |
+
|
116 |
+
# Fetch data from results table (glaucoma)
|
117 |
+
try:
|
118 |
+
conn = sqlite3.connect(glaucoma_db_path)
|
119 |
+
cursor = conn.cursor()
|
120 |
+
cursor.execute("SELECT * FROM results")
|
121 |
+
glaucoma_data = cursor.fetchall()
|
122 |
+
conn.close()
|
123 |
+
patient_data['results'] = glaucoma_data
|
124 |
+
except Exception as e:
|
125 |
+
patient_data['results'] = f"Error fetching glaucoma results: {str(e)}"
|
126 |
+
|
127 |
+
return patient_data
|
128 |
+
|
129 |
+
# Function to transform fetched data into a readable format
|
130 |
+
def transform_patient_data(patient_data):
|
131 |
+
readable_data = "Readable Patient Data:\n\n"
|
132 |
+
|
133 |
+
if 'cataract_results' in patient_data:
|
134 |
+
if isinstance(patient_data['cataract_results'], str):
|
135 |
+
readable_data += patient_data['cataract_results'] + "\n"
|
136 |
+
else:
|
137 |
+
readable_data += "Cataract Results:\n"
|
138 |
+
for row in patient_data['cataract_results']:
|
139 |
+
if len(row) >= 6:
|
140 |
+
readable_data += f"Patient ID: {row[0]}, Red Quantity: {row[2]}, Green Quantity: {row[3]}, Blue Quantity: {row[4]}, Stage: {row[5]}\n"
|
141 |
+
else:
|
142 |
+
readable_data += "Error: Incomplete data row in cataract results\n"
|
143 |
+
readable_data += "\n"
|
144 |
+
|
145 |
+
if 'results' in patient_data:
|
146 |
+
if isinstance(patient_data['results'], str):
|
147 |
+
readable_data += patient_data['results'] + "\n"
|
148 |
+
else:
|
149 |
+
readable_data += "Glaucoma Results:\n"
|
150 |
+
for row in patient_data['results']:
|
151 |
+
if len(row) >= 7:
|
152 |
+
readable_data += f"Patient ID: {row[0]}, Cup Area: {row[2]}, Disk Area: {row[3]}, Rim Area: {row[4]}, Rim to Disc Line Ratio: {row[5]}, DDLS Stage: {row[6]}\n"
|
153 |
+
else:
|
154 |
+
readable_data += "Error: Incomplete data row in glaucoma results\n"
|
155 |
+
readable_data += "\n"
|
156 |
+
|
157 |
+
return readable_data
|
158 |
+
|
159 |
+
# Paths to your databases
|
160 |
+
cataract_db_path = 'cataract_results.db'
|
161 |
+
glaucoma_db_path = 'glaucoma_results.db'
|
162 |
+
|
163 |
+
# Fetch and transform patient data
|
164 |
+
patient_data = fetch_patient_data(cataract_db_path, glaucoma_db_path)
|
165 |
+
readable_patient_data = transform_patient_data(patient_data)
|
166 |
+
|
167 |
+
# Function to extract details from the input prompt
|
168 |
+
def extract_details_from_prompt(prompt):
|
169 |
+
pattern = re.compile(r"(Glaucoma|Cataract) (\d+)", re.IGNORECASE)
|
170 |
+
match = pattern.search(prompt)
|
171 |
+
if match:
|
172 |
+
condition = match.group(1).capitalize()
|
173 |
+
patient_id = int(match.group(2))
|
174 |
+
return condition, patient_id
|
175 |
+
return None, None
|
176 |
+
|
177 |
+
# Function to fetch specific patient data based on the condition and ID
|
178 |
+
def get_specific_patient_data(patient_data, condition, patient_id):
|
179 |
+
specific_data = ""
|
180 |
+
if condition == "Cataract":
|
181 |
+
specific_data = "Cataract Results:\n"
|
182 |
+
for row in patient_data.get('cataract_results', []):
|
183 |
+
if isinstance(row, tuple) and row[0] == patient_id:
|
184 |
+
specific_data += f"Patient ID: {row[0]}, Red Quantity: {row[2]}, Green Quantity: {row[3]}, Blue Quantity: {row[4]}, Stage: {row[5]}\n"
|
185 |
+
break
|
186 |
+
elif condition == "Glaucoma":
|
187 |
+
specific_data = "Glaucoma Results:\n"
|
188 |
+
for row in patient_data.get('results', []):
|
189 |
+
if isinstance(row, tuple) and row[0] == patient_id:
|
190 |
+
specific_data += f"Patient ID: {row[0]}, Cup Area: {row[2]}, Disk Area: {row[3]}, Rim Area: {row[4]}, Rim to Disc Line Ratio: {row[5]}, DDLS Stage: {row[6]}\n"
|
191 |
+
break
|
192 |
+
return specific_data
|
193 |
+
|
194 |
+
# Toggle visibility of input fields based on the selected input type
|
195 |
+
def toggle_input_visibility(input_type):
|
196 |
+
if input_type == "Voice":
|
197 |
+
return gr.update(visible=True), gr.update(visible=False)
|
198 |
+
else:
|
199 |
+
return gr.update(visible=False), gr.update(visible=True)
|
200 |
+
|
201 |
+
# Function to clean up the response text
|
202 |
+
def cleanup_response(response):
|
203 |
+
# Extract only the part after "Answer:" and remove any trailing spaces
|
204 |
+
answer_start = response.find("Answer:")
|
205 |
+
if answer_start != -1:
|
206 |
+
response = response[answer_start + len("Answer:"):].strip()
|
207 |
+
return response
|
208 |
+
|
209 |
+
# Gradio interface for the chatbot
|
210 |
+
def chatbot(audio, input_type, text):
|
211 |
+
if input_type == "Voice":
|
212 |
+
transcription = query_whisper(audio.name)
|
213 |
+
if "error" in transcription:
|
214 |
+
return "Error transcribing audio: " + transcription["error"], None
|
215 |
+
query = transcription['text']
|
216 |
+
condition, patient_id = extract_details_from_prompt(query)
|
217 |
+
if condition and patient_id:
|
218 |
+
patient_history = get_specific_patient_data(patient_data, condition, patient_id)
|
219 |
+
payload = {
|
220 |
+
"inputs": f"role: ophthalmologist assistant patient history: {patient_history} question: {query}"
|
221 |
+
}
|
222 |
+
response = query_huggingface(payload)
|
223 |
+
if isinstance(response, list):
|
224 |
+
raw_response = response[0].get("generated_text", "Sorry, I couldn't generate a response.")
|
225 |
+
else:
|
226 |
+
raw_response = response.get("generated_text", "Sorry, I couldn't generate a response.")
|
227 |
+
|
228 |
+
clean_response = cleanup_response(raw_response)
|
229 |
+
return clean_response, None
|
230 |
+
|
231 |
+
elif input_type == "Text":
|
232 |
+
condition, patient_id = extract_details_from_prompt(text)
|
233 |
+
if condition and patient_id:
|
234 |
+
patient_history = get_specific_patient_data(patient_data, condition, patient_id)
|
235 |
+
payload = {
|
236 |
+
"inputs": f"role: ophthalmologist assistant patient history: {patient_history} question: {text}"
|
237 |
+
}
|
238 |
+
response = query_huggingface(payload)
|
239 |
+
if isinstance(response, list):
|
240 |
+
raw_response = response[0].get("generated_text", "Sorry, I couldn't generate a response.")
|
241 |
+
else:
|
242 |
+
raw_response = response.get("generated_text", "Sorry, I couldn't generate a response.")
|
243 |
+
|
244 |
+
clean_response = cleanup_response(raw_response)
|
245 |
+
return clean_response, None
|
246 |
+
|
247 |
+
# Gradio interface for generating voice response
|
248 |
+
def generate_voice_response(tts_model, text_response):
|
249 |
+
if tts_model == "Nithu (Custom)":
|
250 |
+
audio_file_path = generate_speech_nithu(text_response)
|
251 |
+
return audio_file_path, None
|
252 |
+
elif tts_model == "Ryan (ESPnet)":
|
253 |
+
audio_file_path = generate_speech_ryan(text_response)
|
254 |
+
return audio_file_path, None
|
255 |
+
else:
|
256 |
+
return None, None
|
257 |
+
|
258 |
+
def update_patient_history():
|
259 |
+
return readable_patient_data
|