nexus-main / glaucoma.py
ariankhalfani's picture
Create glaucoma.py
68c4c07 verified
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import cv2
from ultralytics import YOLO
from database import save_prediction_to_db
# Load YOLO models
try:
yolo_model_glaucoma = YOLO('best-glaucoma-seg.pt')
yolo_model_od = YOLO("best-glaucoma-od.pt")
print("YOLO models loaded successfully.")
except Exception as e:
print(f"Error loading YOLO models: {e}")
def calculate_area(mask):
area = np.sum(mask > 0.5)
print(f"Calculated area: {area}")
return area
def classify_ddls(rim_to_disc_ratio):
if rim_to_disc_ratio >= 0.5:
stage = 0 # Non Glaucomatous
elif 0.4 <= rim_to_disc_ratio < 0.5:
stage = 1
elif 0.3 <= rim_to_disc_ratio < 0.4:
stage = 2
elif 0.2 <= rim_to_disc_ratio < 0.3:
stage = 3
elif 0.1 <= rim_to_disc_ratio < 0.2:
stage = 4
elif 0.0 < rim_to_disc_ratio < 0.1:
stage = 5
else:
stage = 6
print(f"Classified DDLS stage: {stage}")
return stage
def add_watermark(image):
try:
logo = Image.open('image-logo.png').convert("RGBA")
image = image.convert("RGBA")
# Resize logo
basewidth = 100
wpercent = (basewidth / float(logo.size[0]))
hsize = int((float(wpercent) * logo.size[1]))
logo = logo.resize((basewidth, hsize), Image.LANCZOS)
# Position logo
position = (image.width - logo.width - 10, image.height - logo.height - 10)
# Composite image
transparent = Image.new('RGBA', (image.width, image.height), (0, 0, 0, 0))
transparent.paste(image, (0, 0))
transparent.paste(logo, position, mask=logo)
return transparent.convert("RGB")
except Exception as e:
print(f"Error adding watermark: {e}")
return image
def predict_and_visualize_glaucoma(image, mask_threshold=0.5):
try:
pil_image = Image.fromarray(image)
orig_size = pil_image.size
results = yolo_model_glaucoma(pil_image)
raw_response = str(results)
print(f"YOLO results: {raw_response}")
masked_image = np.array(pil_image)
mask_image = np.zeros_like(masked_image)
cup_mask, disk_mask = None, None
if len(results) > 0:
result = results[0]
if hasattr(result, 'masks') and result.masks is not None and len(result.masks) > 0:
for mask_data in result.masks.data:
mask = np.array(mask_data.cpu().squeeze().numpy())
mask_resized = cv2.resize(mask, orig_size, interpolation=cv2.INTER_NEAREST)
if np.sum(mask_resized) > np.sum(disk_mask if disk_mask is not None else 0):
cup_mask = disk_mask
disk_mask = mask_resized
else:
cup_mask = mask_resized
if cup_mask is not None and disk_mask is not None:
area_cup = calculate_area(cup_mask)
area_disk = calculate_area(disk_mask)
rim_area = area_disk - area_cup
print(f"Area cup: {area_cup}, Area disk: {area_disk}, Rim area: {rim_area}")
rim_to_disc_ratio = rim_area / area_disk if area_disk > 0 else 0
print(f"Rim to disc ratio: {rim_to_disc_ratio}")
ddls_stage = classify_ddls(rim_to_disc_ratio)
combined_image = np.array(pil_image)
# Create RGBA version of the original image
combined_image_rgba = cv2.cvtColor(combined_image, cv2.COLOR_RGB2RGBA)
# Create transparent masks
cup_mask_rgba = np.zeros_like(combined_image_rgba)
cup_mask_rgba[:, :, 0] = 0 # Red channel
cup_mask_rgba[:, :, 1] = 0 # Green channel
cup_mask_rgba[:, :, 2] = 255 # Blue channel
cup_mask_rgba[:, :, 3] = 128 # Alpha channel (50% transparency)
disk_mask_rgba = np.zeros_like(combined_image_rgba)
disk_mask_rgba[:, :, 0] = 255 # Red channel
disk_mask_rgba[:, :, 1] = 0 # Green channel
disk_mask_rgba[:, :, 2] = 0 # Blue channel
disk_mask_rgba[:, :, 3] = 128 # Alpha channel (50% transparency)
# Apply masks to the original image with transparency
cup_mask_indices = cup_mask > mask_threshold
disk_mask_indices = disk_mask > mask_threshold
combined_image_rgba[cup_mask_indices] = (0.5 * combined_image_rgba[cup_mask_indices] + 0.5 * cup_mask_rgba[cup_mask_indices]).astype(np.uint8)
combined_image_rgba[disk_mask_indices] = (0.5 * combined_image_rgba[disk_mask_indices] + 0.5 * disk_mask_rgba[disk_mask_indices]).astype(np.uint8)
# Convert to PIL image for drawing
combined_pil_image = Image.fromarray(combined_image_rgba)
# Add text to the image
draw = ImageDraw.Draw(combined_pil_image)
# Load a larger font (adjust the size as needed)
font_size = 48 # Example font size
try:
font = ImageFont.truetype("font.ttf", size=font_size)
except IOError:
font = ImageFont.load_default()
print("Error: cannot open resource, using default font.")
text = f"Area cup: {area_cup}\nArea disk: {area_disk}\nRim area: {rim_area}\nRim to disc ratio: {rim_to_disc_ratio:.2f}\nDDLS stage: {ddls_stage}"
text_x = 20
text_y = 40
draw.text((text_x, text_y), text, fill=(255, 255, 255, 255), font=font)
# Add watermark
combined_pil_image = add_watermark(combined_pil_image)
return np.array(combined_pil_image), area_cup, area_disk, rim_area, rim_to_disc_ratio, ddls_stage
print("No detected regions")
return np.zeros_like(image), 0, 0, 0, 0, "No detected regions"
except Exception as e:
print("Error:", e)
return np.zeros_like(image), 0, 0, 0, 0, str(e)
def combined_prediction_glaucoma(image, mask_threshold):
segmented_image, cup_area, disk_area, rim_area, rim_to_disc_ratio, ddls_stage = predict_and_visualize_glaucoma(image, mask_threshold)
print(f"Segmented image: {segmented_image.shape}")
print(f"Cup area: {cup_area}, Disk area: {disk_area}, Rim area: {rim_area}")
print(f"Rim to disc ratio: {rim_to_disc_ratio}, DDLS stage: {ddls_stage}")
return segmented_image, cup_area, disk_area, rim_area, rim_to_disc_ratio, ddls_stage
def submit_to_db(image, cup_area, disk_area, rim_area, rim_to_disc_ratio, ddls_stage):
try:
# Convert the image from numpy array to PIL image
pil_image = Image.fromarray(np.uint8(image))
save_prediction_to_db(pil_image, cup_area, disk_area, rim_area, rim_to_disc_ratio, ddls_stage)
return "Values successfully saved to database.", ""
except Exception as e:
print(f"Error saving to database: {e}")
return f"Error saving to database: {e}", ""
def predict_image(input_image):
# Convert Gradio input image (PIL Image) to numpy array
image_np = np.array(input_image)
# Ensure the image is in the correct format
if len(image_np.shape) == 2: # grayscale to RGB
image_np = cv2.cvtColor(image_np, cv2.COLOR_GRAY2RGB)
elif image_np.shape[2] == 4: # RGBA to RGB
image_np = cv2.cvtColor(image_np, cv2.COLOR_RGBA2RGB)
# Perform prediction
results = yolo_model_od(image_np)
# Draw bounding boxes on the image
image_with_boxes = image_np.copy()
raw_predictions = []
for result in results[0].boxes:
confidence = result.conf.item() # Convert tensor to standard Python type
label = "Glaucoma" if confidence > 0.5 else "Normal" # Set label based on confidence
xmin, ymin, xmax, ymax = map(int, result.xyxy[0])
# Draw black rectangle as background for text
text = f'{label} {confidence:.2f}'
font_scale = 1.0 # Increased font scale
font_thickness = 2 # Increased font thickness
(w, h), baseline = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, font_scale, font_thickness)
cv2.rectangle(image_with_boxes, (xmin, ymin - h - baseline), (xmin + w, ymin), (0, 0, 0), -1)
cv2.putText(image_with_boxes, text, (xmin, ymin - baseline), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), font_thickness)
# Draw thicker bounding box
box_thickness = 3 # Increased box thickness
cv2.rectangle(image_with_boxes, (xmin, ymin), (xmax, ymax), (0, 255, 0), box_thickness)
raw_predictions.append(f"Label: {label}, Confidence: {confidence:.2f}, Box: [{xmin}, {ymin}, {xmax}, {ymax}]")
raw_predictions_str = "\n".join(raw_predictions)
# Add watermark to the final image with boxes
pil_image_with_boxes = Image.fromarray(image_with_boxes)
pil_image_with_boxes = add_watermark(pil_image_with_boxes)
image_with_boxes = np.array(pil_image_with_boxes)
return image_with_boxes, raw_predictions_str