Spaces:
Sleeping
Sleeping
File size: 9,077 Bytes
68c4c07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import cv2
from ultralytics import YOLO
from database import save_prediction_to_db
# Load YOLO models
try:
yolo_model_glaucoma = YOLO('best-glaucoma-seg.pt')
yolo_model_od = YOLO("best-glaucoma-od.pt")
print("YOLO models loaded successfully.")
except Exception as e:
print(f"Error loading YOLO models: {e}")
def calculate_area(mask):
area = np.sum(mask > 0.5)
print(f"Calculated area: {area}")
return area
def classify_ddls(rim_to_disc_ratio):
if rim_to_disc_ratio >= 0.5:
stage = 0 # Non Glaucomatous
elif 0.4 <= rim_to_disc_ratio < 0.5:
stage = 1
elif 0.3 <= rim_to_disc_ratio < 0.4:
stage = 2
elif 0.2 <= rim_to_disc_ratio < 0.3:
stage = 3
elif 0.1 <= rim_to_disc_ratio < 0.2:
stage = 4
elif 0.0 < rim_to_disc_ratio < 0.1:
stage = 5
else:
stage = 6
print(f"Classified DDLS stage: {stage}")
return stage
def add_watermark(image):
try:
logo = Image.open('image-logo.png').convert("RGBA")
image = image.convert("RGBA")
# Resize logo
basewidth = 100
wpercent = (basewidth / float(logo.size[0]))
hsize = int((float(wpercent) * logo.size[1]))
logo = logo.resize((basewidth, hsize), Image.LANCZOS)
# Position logo
position = (image.width - logo.width - 10, image.height - logo.height - 10)
# Composite image
transparent = Image.new('RGBA', (image.width, image.height), (0, 0, 0, 0))
transparent.paste(image, (0, 0))
transparent.paste(logo, position, mask=logo)
return transparent.convert("RGB")
except Exception as e:
print(f"Error adding watermark: {e}")
return image
def predict_and_visualize_glaucoma(image, mask_threshold=0.5):
try:
pil_image = Image.fromarray(image)
orig_size = pil_image.size
results = yolo_model_glaucoma(pil_image)
raw_response = str(results)
print(f"YOLO results: {raw_response}")
masked_image = np.array(pil_image)
mask_image = np.zeros_like(masked_image)
cup_mask, disk_mask = None, None
if len(results) > 0:
result = results[0]
if hasattr(result, 'masks') and result.masks is not None and len(result.masks) > 0:
for mask_data in result.masks.data:
mask = np.array(mask_data.cpu().squeeze().numpy())
mask_resized = cv2.resize(mask, orig_size, interpolation=cv2.INTER_NEAREST)
if np.sum(mask_resized) > np.sum(disk_mask if disk_mask is not None else 0):
cup_mask = disk_mask
disk_mask = mask_resized
else:
cup_mask = mask_resized
if cup_mask is not None and disk_mask is not None:
area_cup = calculate_area(cup_mask)
area_disk = calculate_area(disk_mask)
rim_area = area_disk - area_cup
print(f"Area cup: {area_cup}, Area disk: {area_disk}, Rim area: {rim_area}")
rim_to_disc_ratio = rim_area / area_disk if area_disk > 0 else 0
print(f"Rim to disc ratio: {rim_to_disc_ratio}")
ddls_stage = classify_ddls(rim_to_disc_ratio)
combined_image = np.array(pil_image)
# Create RGBA version of the original image
combined_image_rgba = cv2.cvtColor(combined_image, cv2.COLOR_RGB2RGBA)
# Create transparent masks
cup_mask_rgba = np.zeros_like(combined_image_rgba)
cup_mask_rgba[:, :, 0] = 0 # Red channel
cup_mask_rgba[:, :, 1] = 0 # Green channel
cup_mask_rgba[:, :, 2] = 255 # Blue channel
cup_mask_rgba[:, :, 3] = 128 # Alpha channel (50% transparency)
disk_mask_rgba = np.zeros_like(combined_image_rgba)
disk_mask_rgba[:, :, 0] = 255 # Red channel
disk_mask_rgba[:, :, 1] = 0 # Green channel
disk_mask_rgba[:, :, 2] = 0 # Blue channel
disk_mask_rgba[:, :, 3] = 128 # Alpha channel (50% transparency)
# Apply masks to the original image with transparency
cup_mask_indices = cup_mask > mask_threshold
disk_mask_indices = disk_mask > mask_threshold
combined_image_rgba[cup_mask_indices] = (0.5 * combined_image_rgba[cup_mask_indices] + 0.5 * cup_mask_rgba[cup_mask_indices]).astype(np.uint8)
combined_image_rgba[disk_mask_indices] = (0.5 * combined_image_rgba[disk_mask_indices] + 0.5 * disk_mask_rgba[disk_mask_indices]).astype(np.uint8)
# Convert to PIL image for drawing
combined_pil_image = Image.fromarray(combined_image_rgba)
# Add text to the image
draw = ImageDraw.Draw(combined_pil_image)
# Load a larger font (adjust the size as needed)
font_size = 48 # Example font size
try:
font = ImageFont.truetype("font.ttf", size=font_size)
except IOError:
font = ImageFont.load_default()
print("Error: cannot open resource, using default font.")
text = f"Area cup: {area_cup}\nArea disk: {area_disk}\nRim area: {rim_area}\nRim to disc ratio: {rim_to_disc_ratio:.2f}\nDDLS stage: {ddls_stage}"
text_x = 20
text_y = 40
draw.text((text_x, text_y), text, fill=(255, 255, 255, 255), font=font)
# Add watermark
combined_pil_image = add_watermark(combined_pil_image)
return np.array(combined_pil_image), area_cup, area_disk, rim_area, rim_to_disc_ratio, ddls_stage
print("No detected regions")
return np.zeros_like(image), 0, 0, 0, 0, "No detected regions"
except Exception as e:
print("Error:", e)
return np.zeros_like(image), 0, 0, 0, 0, str(e)
def combined_prediction_glaucoma(image, mask_threshold):
segmented_image, cup_area, disk_area, rim_area, rim_to_disc_ratio, ddls_stage = predict_and_visualize_glaucoma(image, mask_threshold)
print(f"Segmented image: {segmented_image.shape}")
print(f"Cup area: {cup_area}, Disk area: {disk_area}, Rim area: {rim_area}")
print(f"Rim to disc ratio: {rim_to_disc_ratio}, DDLS stage: {ddls_stage}")
return segmented_image, cup_area, disk_area, rim_area, rim_to_disc_ratio, ddls_stage
def submit_to_db(image, cup_area, disk_area, rim_area, rim_to_disc_ratio, ddls_stage):
try:
# Convert the image from numpy array to PIL image
pil_image = Image.fromarray(np.uint8(image))
save_prediction_to_db(pil_image, cup_area, disk_area, rim_area, rim_to_disc_ratio, ddls_stage)
return "Values successfully saved to database.", ""
except Exception as e:
print(f"Error saving to database: {e}")
return f"Error saving to database: {e}", ""
def predict_image(input_image):
# Convert Gradio input image (PIL Image) to numpy array
image_np = np.array(input_image)
# Ensure the image is in the correct format
if len(image_np.shape) == 2: # grayscale to RGB
image_np = cv2.cvtColor(image_np, cv2.COLOR_GRAY2RGB)
elif image_np.shape[2] == 4: # RGBA to RGB
image_np = cv2.cvtColor(image_np, cv2.COLOR_RGBA2RGB)
# Perform prediction
results = yolo_model_od(image_np)
# Draw bounding boxes on the image
image_with_boxes = image_np.copy()
raw_predictions = []
for result in results[0].boxes:
confidence = result.conf.item() # Convert tensor to standard Python type
label = "Glaucoma" if confidence > 0.5 else "Normal" # Set label based on confidence
xmin, ymin, xmax, ymax = map(int, result.xyxy[0])
# Draw black rectangle as background for text
text = f'{label} {confidence:.2f}'
font_scale = 1.0 # Increased font scale
font_thickness = 2 # Increased font thickness
(w, h), baseline = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, font_scale, font_thickness)
cv2.rectangle(image_with_boxes, (xmin, ymin - h - baseline), (xmin + w, ymin), (0, 0, 0), -1)
cv2.putText(image_with_boxes, text, (xmin, ymin - baseline), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), font_thickness)
# Draw thicker bounding box
box_thickness = 3 # Increased box thickness
cv2.rectangle(image_with_boxes, (xmin, ymin), (xmax, ymax), (0, 255, 0), box_thickness)
raw_predictions.append(f"Label: {label}, Confidence: {confidence:.2f}, Box: [{xmin}, {ymin}, {xmax}, {ymax}]")
raw_predictions_str = "\n".join(raw_predictions)
# Add watermark to the final image with boxes
pil_image_with_boxes = Image.fromarray(image_with_boxes)
pil_image_with_boxes = add_watermark(pil_image_with_boxes)
image_with_boxes = np.array(pil_image_with_boxes)
return image_with_boxes, raw_predictions_str |