File size: 9,416 Bytes
f7d6dc4
 
 
 
 
5110ffd
f7d6dc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80959f4
f7d6dc4
 
 
 
 
 
c7b8556
f7d6dc4
 
 
 
 
 
bc649a0
f7d6dc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import gradio as gr
import os
import numpy as np
from cataract import combined_prediction, save_cataract_prediction_to_db, predict_object_detection
from glaucoma import combined_prediction_glaucoma, submit_to_db, predict_image
from database import get_db_data, format_db_data
from chatbot import chatbot, update_patient_history, generate_voice_response 
from PIL import Image

# Define the custom theme
theme = gr.themes.Soft(
    primary_hue="neutral",
    secondary_hue="neutral",
    neutral_hue="gray",
    font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif']
).set(
    body_background_fill="#ffffff",
    block_background_fill="#0a2b42",
    block_border_width="1px",
    block_title_background_fill="#0a2b42",
    input_background_fill="#ffffff",
    button_secondary_background_fill="#0a2b42",
    border_color_primary="#800080",
    background_fill_secondary="#ffffff",
    color_accent_soft="transparent"
)

# Define custom CSS
css = """
body {
    color: #0a2b42;  /* Dark blue font */
}
.light body {
    color: #0a2b42;  /* Dark blue font */
}
input, textarea {
    background-color: #ffffff !important;  /* White background for text boxes */
    color: #0a2b42 !important;  /* Dark blue font for text boxes */
}
"""

logo_url = "https://huggingface.co/spaces/Nexus-Community/nexus-main/resolve/main/Nexus-Hub.png"
db_path_cataract = "cataract_results.db"
db_path_glaucoma = "glaucoma_results.db"

def display_db_data():
    """Fetch and format the data from the database for display."""
    glaucoma_data, cataract_data = get_db_data(db_path_glaucoma, db_path_cataract)
    formatted_data = format_db_data(glaucoma_data, cataract_data)
    return formatted_data

def check_db_status():
    """Check the status of the databases and return a status message."""
    cataract_status = "Loaded" if os.path.exists(db_path_cataract) else "Not Loaded"
    glaucoma_status = "Loaded" if os.path.exists(db_path_glaucoma) else "Not Loaded"
    return f"Cataract Database: {cataract_status}\nGlaucoma Database: {glaucoma_status}"

def toggle_input_visibility(input_type):
    if input_type == "Voice":
        return gr.update(visible=True), gr.update(visible=False)
    else:
        return gr.update(visible=False), gr.update(visible=True)
        
def process_image(image):
    # Run the analyzer model
    blended_image, red_quantity, green_quantity, blue_quantity, raw_response, stage, save_message, debug_info = combined_prediction(image)
    
    # Run the object detection model
    predicted_image_od, raw_response_od = predict_object_detection(image)
    
    return blended_image, red_quantity, green_quantity, blue_quantity, raw_response, stage, save_message, debug_info, predicted_image_od, raw_response_od

with gr.Blocks(theme=theme) as demo:
    gr.HTML(f"<img src='{logo_url}' alt='Logo' width='150'/>")  
    gr.Markdown("## Wellness-Nexus V.1.0")
    gr.Markdown("This app helps people to diagnose their cataract and glaucoma, both respectively #1 and #2 cause of blindness in the world")

    with gr.Tab("Cataract Screener and Analyzer"):
        with gr.Row():
            image_input = gr.Image(type="numpy", label="Upload an Image")
            submit_btn = gr.Button("Submit")

        with gr.Row():
            segmented_image_cataract = gr.Image(type="numpy", label="Segmented Image")
            predicted_image_od = gr.Image(type="numpy", label="Predicted Image")
        
        with gr.Column():
            red_quantity_cataract = gr.Slider(label="Red Quantity", minimum=0, maximum=255, interactive=False)
            green_quantity_cataract = gr.Slider(label="Green Quantity", minimum=0, maximum=255, interactive=False)
            blue_quantity_cataract = gr.Slider(label="Blue Quantity", minimum=0, maximum=255, interactive=False)

        with gr.Row():
            cataract_stage = gr.Textbox(label="Cataract Stage", interactive=False)
            raw_response_cataract = gr.Textbox(label="Raw Response", interactive=False)
            submit_value_btn_cataract = gr.Button("Submit Values to Database")
            db_response_cataract = gr.Textbox(label="Database Response")
            debug_cataract = gr.Textbox(label="Debug Message", interactive=False)

        submit_btn.click(
            process_image,
            inputs=image_input,
            outputs=[
                segmented_image_cataract, red_quantity_cataract, green_quantity_cataract, blue_quantity_cataract, raw_response_cataract, cataract_stage, db_response_cataract, debug_cataract, predicted_image_od
            ]
        )

        submit_value_btn_cataract.click(
            lambda img, red, green, blue, stage: save_cataract_prediction_to_db(Image.fromarray(img), red, green, blue, stage),
            inputs=[segmented_image_cataract, red_quantity_cataract, green_quantity_cataract, blue_quantity_cataract, cataract_stage],
            outputs=[db_response_cataract, debug_cataract]
        )

    with gr.Tab("Glaucoma Analyzer and Screener"):
        with gr.Row():
            image_input = gr.Image(type="numpy", label="Upload an Image")
            mask_threshold_slider = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.5, label="Mask Threshold")
            
        with gr.Row():
            submit_btn_segmentation = gr.Button("Submit Segmentation")
            submit_btn_od = gr.Button("Submit Object Detection")
    
        with gr.Row():
            segmented_image = gr.Image(type="numpy", label="Segmented Image")
            predicted_image_od = gr.Image(type="numpy", label="Predicted Image")
    
        with gr.Row():
            raw_response_od = gr.Textbox(label="Raw Result")
            
        with gr.Column():
            cup_area = gr.Textbox(label="Cup Area")
            disk_area = gr.Textbox(label="Disk Area")
            rim_area = gr.Textbox(label="Rim Area")
            rim_to_disc_ratio = gr.Textbox(label="Rim to Disc Ratio")
            ddls_stage = gr.Textbox(label="DDLS Stage")
            
        with gr.Column():
            submit_value_btn = gr.Button("Submit Values to Database")
            db_response = gr.Textbox(label="Database Response")
            debug_glaucoma = gr.Textbox(label="Debug Message", interactive=False)
    
        def process_segmentation_image(img, mask_thresh):
            # Run the segmentation model
            return combined_prediction_glaucoma(img, mask_thresh)
    
        def process_od_image(img):
            # Run the object detection model
            image_with_boxes, raw_predictions = predict_image(img)
            return image_with_boxes, raw_predictions
    
        submit_btn_segmentation.click(
            fn=process_segmentation_image,
            inputs=[image_input, mask_threshold_slider],
            outputs=[
                segmented_image, cup_area, disk_area, rim_area, rim_to_disc_ratio, ddls_stage
            ]
        )

        submit_btn_od.click(
            fn=process_od_image,
            inputs=[image_input],
            outputs=[
                predicted_image_od, raw_response_od
            ]
        )

        submit_value_btn.click(
            lambda img, cup, disk, rim, ratio, stage: submit_to_db(img, cup, disk, rim, ratio, stage),
            inputs=[image_input, cup_area, disk_area, rim_area, rim_to_disc_ratio, ddls_stage],
            outputs=[db_response, debug_glaucoma]
        )

    with gr.Tab("Chatbot"):
        with gr.Row():
            input_type_dropdown = gr.Dropdown(label="Input Type", choices=["Voice", "Text"], value="Voice")
            tts_model_dropdown = gr.Dropdown(label="TTS Model", choices=["Ryan (ESPnet)", "Nithu (Custom)"], value="Nithu (Custom)")
            submit_btn_chatbot = gr.Button("Submit")

        with gr.Row():
            audio_input = gr.Audio(type="filepath", label="Record your voice", visible=True)
            text_input = gr.Textbox(label="Type your question", visible=False)

        with gr.Row():
            answer_textbox = gr.Textbox(label="Answer")
            answer_audio = gr.Audio(label="Answer as Speech", type="filepath")
            generate_voice_btn = gr.Button("Generate Voice Response")

        with gr.Row():
            log_messages_textbox = gr.Textbox(label="Log Messages", lines=10)
            db_status_textbox = gr.Textbox(label="Database Status", interactive=False)

        input_type_dropdown.change(
            fn=toggle_input_visibility,
            inputs=[input_type_dropdown],
            outputs=[audio_input, text_input]
        )

        submit_btn_chatbot.click(
            fn=chatbot,
            inputs=[audio_input, input_type_dropdown, text_input],
            outputs=[answer_textbox, db_status_textbox]
        )

        generate_voice_btn.click(
            fn=generate_voice_response,
            inputs=[tts_model_dropdown, answer_textbox],
            outputs=[answer_audio, db_status_textbox]
        )

        fetch_db_btn = gr.Button("Fetch Database")
        fetch_db_btn.click(
            fn=update_patient_history,
            inputs=[],
            outputs=[db_status_textbox]
        )
        
    with gr.Tab("Database Upload and View"):
        gr.Markdown("### Store and Retrieve Context Information")

        db_display = gr.HTML()
        load_db_btn = gr.Button("Load Database Content")
        load_db_btn.click(display_db_data, outputs=db_display)

    demo.launch()