ariankhalfani commited on
Commit
f7d6dc4
·
verified ·
1 Parent(s): 04b1ad0

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +225 -0
app.py ADDED
@@ -0,0 +1,225 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os
3
+ import numpy as np
4
+ from cataract import combined_prediction, save_cataract_prediction_to_db, predict_object_detection
5
+ from glaucoma import combined_prediction_glaucoma, submit_to_db, predict_image
6
+ from database import get_db_data, format_db_data, get_context_db_data
7
+ from chatbot import chatbot, update_patient_history, generate_voice_response
8
+ from PIL import Image
9
+
10
+ # Define the custom theme
11
+ theme = gr.themes.Soft(
12
+ primary_hue="neutral",
13
+ secondary_hue="neutral",
14
+ neutral_hue="gray",
15
+ font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif']
16
+ ).set(
17
+ body_background_fill="#ffffff",
18
+ block_background_fill="#0a2b42",
19
+ block_border_width="1px",
20
+ block_title_background_fill="#0a2b42",
21
+ input_background_fill="#ffffff",
22
+ button_secondary_background_fill="#0a2b42",
23
+ border_color_primary="#800080",
24
+ background_fill_secondary="#ffffff",
25
+ color_accent_soft="transparent"
26
+ )
27
+
28
+ # Define custom CSS
29
+ css = """
30
+ body {
31
+ color: #0a2b42; /* Dark blue font */
32
+ }
33
+ .light body {
34
+ color: #0a2b42; /* Dark blue font */
35
+ }
36
+ input, textarea {
37
+ background-color: #ffffff !important; /* White background for text boxes */
38
+ color: #0a2b42 !important; /* Dark blue font for text boxes */
39
+ }
40
+ """
41
+
42
+ logo_url = "https://huggingface.co/spaces/Nexus-Community/Nexus-App/resolve/main/Wellness-Nexus.png"
43
+ db_path_cataract = "cataract_results.db"
44
+ db_path_glaucoma = "glaucoma_results.db"
45
+
46
+ def display_db_data():
47
+ """Fetch and format the data from the database for display."""
48
+ glaucoma_data, cataract_data = get_db_data(db_path_glaucoma, db_path_cataract)
49
+ context_data = get_context_db_data(db_path_context)
50
+ formatted_data = format_db_data(glaucoma_data, cataract_data, context_data)
51
+ return formatted_data
52
+
53
+ def check_db_status():
54
+ """Check the status of the databases and return a status message."""
55
+ cataract_status = "Loaded" if os.path.exists(db_path_cataract) else "Not Loaded"
56
+ glaucoma_status = "Loaded" if os.path.exists(db_path_glaucoma) else "Not Loaded"
57
+ context_status = "Loaded" if os.path.exists(db_path_context) else "Not Loaded"
58
+ return f"Cataract Database: {cataract_status}\nGlaucoma Database: {glaucoma_status}\nContext Database: {context_status}"
59
+
60
+ def toggle_input_visibility(input_type):
61
+ if input_type == "Voice":
62
+ return gr.update(visible=True), gr.update(visible=False)
63
+ else:
64
+ return gr.update(visible=False), gr.update(visible=True)
65
+
66
+ def process_image(image):
67
+ # Run the analyzer model
68
+ blended_image, red_quantity, green_quantity, blue_quantity, raw_response, stage, save_message, debug_info = combined_prediction(image)
69
+
70
+ # Run the object detection model
71
+ predicted_image_od, raw_response_od = predict_object_detection(image)
72
+
73
+ return blended_image, red_quantity, green_quantity, blue_quantity, raw_response, stage, save_message, debug_info, predicted_image_od, raw_response_od
74
+
75
+ with gr.Blocks(theme=theme) as demo:
76
+ gr.HTML(f"<img src='{logo_url}' alt='Logo' width='150'/>")
77
+ gr.Markdown("## Wellness-Nexus V.1.0")
78
+ gr.Markdown("This app helps people to diagnose their cataract and glaucoma, both respectively #1 and #2 cause of blindness in the world")
79
+
80
+ with gr.Tab("Cataract Screener and Analyzer"):
81
+ with gr.Row():
82
+ image_input = gr.Image(type="numpy", label="Upload an Image")
83
+ submit_btn = gr.Button("Submit")
84
+
85
+ with gr.Row():
86
+ segmented_image_cataract = gr.Image(type="numpy", label="Segmented Image")
87
+ predicted_image_od = gr.Image(type="numpy", label="Predicted Image")
88
+
89
+ with gr.Column():
90
+ red_quantity_cataract = gr.Slider(label="Red Quantity", minimum=0, maximum=255, interactive=False)
91
+ green_quantity_cataract = gr.Slider(label="Green Quantity", minimum=0, maximum=255, interactive=False)
92
+ blue_quantity_cataract = gr.Slider(label="Blue Quantity", minimum=0, maximum=255, interactive=False)
93
+
94
+ with gr.Row():
95
+ cataract_stage = gr.Textbox(label="Cataract Stage", interactive=False)
96
+ raw_response_cataract = gr.Textbox(label="Raw Response", interactive=False)
97
+ submit_value_btn_cataract = gr.Button("Submit Values to Database")
98
+ db_response_cataract = gr.Textbox(label="Database Response")
99
+ debug_cataract = gr.Textbox(label="Debug Message", interactive=False)
100
+
101
+ submit_btn.click(
102
+ process_image,
103
+ inputs=image_input,
104
+ outputs=[
105
+ segmented_image_cataract, red_quantity_cataract, green_quantity_cataract, blue_quantity_cataract, raw_response_cataract, cataract_stage, db_response_cataract, debug_cataract, predicted_image_od
106
+ ]
107
+ )
108
+
109
+ submit_value_btn_cataract.click(
110
+ lambda img, red, green, blue, stage: save_cataract_prediction_to_db(Image.fromarray(img), red, green, blue, stage),
111
+ inputs=[segmented_image_cataract, red_quantity_cataract, green_quantity_cataract, blue_quantity_cataract, cataract_stage],
112
+ outputs=[db_response_cataract, debug_cataract]
113
+ )
114
+
115
+ with gr.Tab("Glaucoma Analyzer and Screener"):
116
+ with gr.Row():
117
+ image_input = gr.Image(type="numpy", label="Upload an Image")
118
+ mask_threshold_slider = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.5, label="Mask Threshold")
119
+
120
+ with gr.Row():
121
+ submit_btn_segmentation = gr.Button("Submit Segmentation")
122
+ submit_btn_od = gr.Button("Submit Object Detection")
123
+
124
+ with gr.Row():
125
+ segmented_image = gr.Image(type="numpy", label="Segmented Image")
126
+ predicted_image_od = gr.Image(type="numpy", label="Predicted Image")
127
+
128
+ with gr.Row():
129
+ raw_response_od = gr.Textbox(label="Raw Result")
130
+
131
+ with gr.Column():
132
+ cup_area = gr.Textbox(label="Cup Area")
133
+ disk_area = gr.Textbox(label="Disk Area")
134
+ rim_area = gr.Textbox(label="Rim Area")
135
+ rim_to_disc_ratio = gr.Textbox(label="Rim to Disc Ratio")
136
+ ddls_stage = gr.Textbox(label="DDLS Stage")
137
+
138
+ with gr.Column():
139
+ submit_value_btn = gr.Button("Submit Values to Database")
140
+ db_response = gr.Textbox(label="Database Response")
141
+ debug_glaucoma = gr.Textbox(label="Debug Message", interactive=False)
142
+
143
+ def process_segmentation_image(img, mask_thresh):
144
+ # Run the segmentation model
145
+ return combined_prediction_glaucoma(img, mask_thresh)
146
+
147
+ def process_od_image(img):
148
+ # Run the object detection model
149
+ image_with_boxes, raw_predictions = predict_image(img)
150
+ return image_with_boxes, raw_predictions
151
+
152
+ submit_btn_segmentation.click(
153
+ fn=process_segmentation_image,
154
+ inputs=[image_input, mask_threshold_slider],
155
+ outputs=[
156
+ segmented_image, cup_area, disk_area, rim_area, rim_to_disc_ratio, ddls_stage
157
+ ]
158
+ )
159
+
160
+ submit_btn_od.click(
161
+ fn=process_od_image,
162
+ inputs=[image_input],
163
+ outputs=[
164
+ predicted_image_od, raw_response_od
165
+ ]
166
+ )
167
+
168
+ submit_value_btn.click(
169
+ lambda img, cup, disk, rim, ratio, stage: submit_to_db(img, cup, disk, rim, ratio, stage),
170
+ inputs=[image_input, cup_area, disk_area, rim_area, rim_to_disc_ratio, ddls_stage],
171
+ outputs=[db_response, debug_glaucoma]
172
+ )
173
+
174
+ with gr.Tab("Chatbot"):
175
+ with gr.Row():
176
+ input_type_dropdown = gr.Dropdown(label="Input Type", choices=["Voice", "Text"], value="Voice")
177
+ tts_model_dropdown = gr.Dropdown(label="TTS Model", choices=["Ryan (ESPnet)", "Nithu (Custom)"], value="Nithu (Custom)")
178
+ submit_btn_chatbot = gr.Button("Submit")
179
+
180
+ with gr.Row():
181
+ audio_input = gr.Audio(type="filepath", label="Record your voice", visible=True)
182
+ text_input = gr.Textbox(label="Type your question", visible=False)
183
+
184
+ with gr.Row():
185
+ answer_textbox = gr.Textbox(label="Answer")
186
+ answer_audio = gr.Audio(label="Answer as Speech", type="filepath")
187
+ generate_voice_btn = gr.Button("Generate Voice Response")
188
+
189
+ with gr.Row():
190
+ log_messages_textbox = gr.Textbox(label="Log Messages", lines=10)
191
+ db_status_textbox = gr.Textbox(label="Database Status", interactive=False)
192
+
193
+ input_type_dropdown.change(
194
+ fn=toggle_input_visibility,
195
+ inputs=[input_type_dropdown],
196
+ outputs=[audio_input, text_input]
197
+ )
198
+
199
+ submit_btn_chatbot.click(
200
+ fn=chatbot,
201
+ inputs=[audio_input, input_type_dropdown, text_input],
202
+ outputs=[answer_textbox, db_status_textbox]
203
+ )
204
+
205
+ generate_voice_btn.click(
206
+ fn=generate_voice_response,
207
+ inputs=[tts_model_dropdown, answer_textbox],
208
+ outputs=[answer_audio, db_status_textbox]
209
+ )
210
+
211
+ fetch_db_btn = gr.Button("Fetch Database")
212
+ fetch_db_btn.click(
213
+ fn=update_patient_history,
214
+ inputs=[],
215
+ outputs=[db_status_textbox]
216
+ )
217
+
218
+ with gr.Tab("Database Upload and View"):
219
+ gr.Markdown("### Store and Retrieve Context Information")
220
+
221
+ db_display = gr.HTML()
222
+ load_db_btn = gr.Button("Load Database Content")
223
+ load_db_btn.click(display_db_data, outputs=db_display)
224
+
225
+ demo.launch()