Spaces:
Sleeping
Sleeping
File size: 10,500 Bytes
6344cc8 0119dc3 6344cc8 7c98099 6344cc8 7c98099 9c72adb 6344cc8 b4df677 6344cc8 b4df677 6344cc8 7c98099 6344cc8 7c98099 ab8ff28 7c98099 ab8ff28 7c98099 ab8ff28 7c98099 0119dc3 ab8ff28 7c98099 6344cc8 0119dc3 ab8ff28 6344cc8 29db71d 6344cc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import os
import requests
import logging
import gradio as gr
from dotenv import load_dotenv
from pydub import AudioSegment
from io import BytesIO
import time
import sqlite3
import re
# Configure logging
logging.basicConfig(level=logging.DEBUG)
# Load environment variables
load_dotenv()
# Configure Hugging Face API URL and headers for Meta-Llama-3-70B-Instruct
api_url = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-70B-Instruct"
huggingface_api_key = os.getenv("HF_API_TOKEN")
headers = {"Authorization": f"Bearer {huggingface_api_key}"}
# Function to query the Hugging Face model
def query_huggingface(payload):
logging.debug(f"Querying model with payload: {payload}")
response = requests.post(api_url, headers=headers, json=payload)
logging.debug(f"Received response: {response.status_code} {response.text}")
return response.json()
# Function to query the Whisper model for audio transcription
def query_whisper(audio_path):
API_URL_WHISPER = "https://api-inference.huggingface.co/models/openai/whisper-large-v2"
headers = {"Authorization": f"Bearer {huggingface_api_key}"}
MAX_RETRIES = 5
RETRY_DELAY = 1 # seconds
for attempt in range(MAX_RETRIES):
try:
if not os.path.exists(audio_path):
raise FileNotFoundError(f"Audio file does not exist: {audio_path}")
with open(audio_path, "rb") as f:
data = f.read()
response = requests.post(API_URL_WHISPER, headers=headers, data=data)
response.raise_for_status()
return response.json()
except Exception as e:
if attempt < MAX_RETRIES - 1:
time.sleep(RETRY_DELAY)
else:
return {"error": str(e)}
# Function to generate speech from text using Nithu TTS
def generate_speech_nithu(answer):
API_URL_TTS_Nithu = "https://api-inference.huggingface.co/models/Nithu/text-to-speech"
headers = {"Authorization": f"Bearer {huggingface_api_key}"}
payload = {"inputs": answer}
MAX_RETRIES = 5
RETRY_DELAY = 1 # seconds
for attempt in range(MAX_RETRIES):
try:
response = requests.post(API_URL_TTS_Nithu, headers=headers, json=payload)
response.raise_for_status()
audio_segment = AudioSegment.from_file(BytesIO(response.content), format="flac")
audio_file_path = "/tmp/answer_nithu.wav"
audio_segment.export(audio_file_path, format="wav")
return audio_file_path
except Exception as e:
if attempt < MAX_RETRIES - 1:
time.sleep(RETRY_DELAY)
else:
return {"error": str(e)}
# Function to generate speech from text using Ryan TTS
def generate_speech_ryan(answer):
API_URL_TTS_Ryan = "https://api-inference.huggingface.co/models/espnet/english_male_ryanspeech_fastspeech2"
headers = {"Authorization": f"Bearer {huggingface_api_key}"}
payload = {"inputs": answer}
MAX_RETRIES = 5
RETRY_DELAY = 1 # seconds
for attempt in range(MAX_RETRIES):
try:
response = requests.post(API_URL_TTS_Ryan, headers=headers, json=payload)
response.raise_for_status()
response_json = response.json()
audio = response_json.get("audio", None)
sampling_rate = response_json.get("sampling_rate", None)
if audio and sampling_rate:
audio_segment = AudioSegment.from_file(BytesIO(audio), format="wav")
audio_file_path = "/tmp/answer_ryan.wav"
audio_segment.export(audio_file_path, format="wav")
return audio_file_path
else:
raise ValueError("Invalid response format from Ryan TTS API")
except Exception as e:
if attempt < MAX_RETRIES - 1:
time.sleep(RETRY_DELAY)
else:
return {"error": str(e)}
# Function to fetch patient data from both databases
def fetch_patient_data(cataract_db_path, glaucoma_db_path):
patient_data = {}
# Fetch data from cataract_results table
try:
conn = sqlite3.connect(cataract_db_path)
cursor = conn.cursor()
cursor.execute("SELECT * FROM cataract_results")
cataract_data = cursor.fetchall()
conn.close()
patient_data['cataract_results'] = cataract_data
except Exception as e:
patient_data['cataract_results'] = f"Error fetching cataract results: {str(e)}"
# Fetch data from results table (glaucoma)
try:
conn = sqlite3.connect(glaucoma_db_path)
cursor = conn.cursor()
cursor.execute("SELECT * FROM results")
glaucoma_data = cursor.fetchall()
conn.close()
patient_data['results'] = glaucoma_data
except Exception as e:
patient_data['results'] = f"Error fetching glaucoma results: {str(e)}"
return patient_data
# Function to transform fetched data into a readable format
def transform_patient_data(patient_data):
readable_data = "Readable Patient Data:\n\n"
if 'cataract_results' in patient_data:
if isinstance(patient_data['cataract_results'], str):
readable_data += patient_data['cataract_results'] + "\n"
else:
readable_data += "Cataract Results:\n"
for row in patient_data['cataract_results']:
if len(row) >= 6:
readable_data += f"Patient ID: {row[0]}, Red Quantity: {row[2]}, Green Quantity: {row[3]}, Blue Quantity: {row[4]}, Stage: {row[5]}\n"
else:
readable_data += "Error: Incomplete data row in cataract results\n"
readable_data += "\n"
if 'results' in patient_data:
if isinstance(patient_data['results'], str):
readable_data += patient_data['results'] + "\n"
else:
readable_data += "Glaucoma Results:\n"
for row in patient_data['results']:
if len(row) >= 7:
readable_data += f"Patient ID: {row[0]}, Cup Area: {row[2]}, Disk Area: {row[3]}, Rim Area: {row[4]}, Rim to Disc Line Ratio: {row[5]}, DDLS Stage: {row[6]}\n"
else:
readable_data += "Error: Incomplete data row in glaucoma results\n"
readable_data += "\n"
return readable_data
# Paths to your databases
cataract_db_path = 'cataract_results.db'
glaucoma_db_path = 'glaucoma_results.db'
# Fetch and transform patient data
patient_data = fetch_patient_data(cataract_db_path, glaucoma_db_path)
readable_patient_data = transform_patient_data(patient_data)
# Function to extract details from the input prompt
def extract_details_from_prompt(prompt):
pattern = re.compile(r"(Glaucoma|Cataract) (\d+)", re.IGNORECASE)
matches = pattern.findall(prompt)
return [(match[0].capitalize(), int(match[1])) for match in matches]
# Function to fetch specific patient data based on the condition and ID
def get_specific_patient_data(patient_data, condition, patient_id):
specific_data = ""
if condition == "Cataract":
specific_data = "Cataract Results:\n"
for row in patient_data.get('cataract_results', []):
if isinstance(row, tuple) and row[0] == patient_id:
specific_data += f"Patient ID: {row[0]}, Red Quantity: {row[2]}, Green Quantity: {row[3]}, Blue Quantity: {row[4]}, Stage: {row[5]}\n"
break
elif condition == "Glaucoma":
specific_data = "Glaucoma Results:\n"
for row in patient_data.get('results', []):
if isinstance(row, tuple) and row[0] == patient_id:
specific_data += f"Patient ID: {row[0]}, Cup Area: {row[2]}, Disk Area: {row[3]}, Rim Area: {row[4]}, Rim to Disc Line Ratio: {row[5]}, DDLS Stage: {row[6]}\n"
break
return specific_data
# Function to aggregate patient history for all mentioned IDs in the question
def get_aggregated_patient_history(patient_data, details):
history = ""
for condition, patient_id in details:
history += get_specific_patient_data(patient_data, condition, patient_id) + "\n"
return history.strip()
# Toggle visibility of input elements based on input type
def toggle_visibility(input_type):
if input_type == "Voice":
return gr.update(visible=True), gr.update(visible(False))
else:
return gr.update(visible=False), gr.update(visible(True))
def cleanup_response(response):
# Extract only the part after "Answer:" and remove any trailing spaces
answer_start = response.find("Answer:")
if answer_start != -1:
response = response[answer_start + len("Answer:"):].strip()
return response
def chatbot(audio, input_type, text):
if input_type == "Voice":
transcription = query_whisper(audio.name)
if "error" in transcription:
return "Error transcribing audio: " + transcription["error"], None
query = transcription['text']
else:
query = text
# Extract details from the prompt
details = extract_details_from_prompt(query)
# Get aggregated patient history based on the extracted details
patient_history = get_aggregated_patient_history(patient_data, details)
# Create the payload with the patient history and the user's query
payload = {
"inputs": f"role: ophthalmologist assistant patient history: {patient_history} question: {query}"
}
logging.debug(f"Raw input to the LLM: {payload['inputs']}")
# Query the Hugging Face model with the payload
response = query_huggingface(payload)
if isinstance(response, list):
raw_response = response[0].get("generated_text", "Sorry, I couldn't generate a response.")
else:
raw_response = response.get("generated_text", "Sorry, I couldn't generate a response.")
logging.debug(f"Raw output from the LLM: {raw_response}")
return raw_response, None
# Gradio interface for generating voice response
def generate_voice_response(tts_model, text_response):
if tts_model == "Nithu (Custom)":
audio_file_path = generate_speech_nithu(text_response)
return audio_file_path, None
elif tts_model == "Ryan (ESPnet)":
audio_file_path = generate_speech_ryan(text_response)
return audio_file_path, None
else:
return None, None
# Function to update patient history in the interface
def update_patient_history():
return readable_patient_data |