File size: 12,079 Bytes
ea7d15b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import os
import cv2
import numpy as np
from PIL import Image, ImageDraw, ImageFont
from ultralytics import YOLO
import sqlite3
from io import BytesIO
from scipy.stats import norm

# Load YOLO models
try:
    yolo_model_cataract = YOLO('best-cataract-seg.pt')
    yolo_model_object_detection = YOLO('best-cataract-od.pt')
    print("YOLO models loaded successfully.")
except Exception as e:
    print(f"Error loading YOLO models: {e}")

def calculate_ratios(red_values, green_values, blue_values, total_pixels):
    if total_pixels == 0:
        return 0, 0, 0

    red_ratio = np.sum(red_values) / total_pixels
    green_ratio = np.sum(green_values) / total_pixels
    blue_ratio = np.sum(blue_values) / total_pixels

    total_ratio = red_ratio + green_ratio + blue_ratio

    if total_ratio > 0:
        red_quantity = (red_ratio / total_ratio) * 255
        green_quantity = (green_ratio / total_ratio) * 255
        blue_quantity = (blue_ratio / total_ratio) * 255
    else:
        red_quantity, green_quantity, blue_quantity = 0, 0, 0

    return red_quantity, green_quantity, blue_quantity

def cataract_staging(red_quantity, green_quantity, blue_quantity):
    # Assuming you have already defined your mean and std for each class and each RGB channel
    # Example mean and std based on earlier discussion
    mean_mature_red = 73.37
    std_mature_red = (90.12 - 41.49) / 4
    mean_mature_green = 89.48
    std_mature_green = (97.67 - 83.39) / 4
    mean_mature_blue = 92.15
    std_mature_blue = (117.82 - 75.37) / 4
    
    mean_normal_red = 67.84
    std_normal_red = (107.02 - 56.19) / 4
    mean_normal_green = 84.85
    std_normal_green = (89.89 - 80.74) / 4
    mean_normal_blue = 102.31
    std_normal_blue = (111.34 - 65.58) / 4
    
    mean_immature_red = 68.83
    std_immature_red = (85.95 - 41.49) / 4
    mean_immature_green = 89.43
    std_immature_green = (97.67 - 83.39) / 4
    mean_immature_blue = 96.74
    std_immature_blue = (117.82 - 78.41) / 4

    # Calculate likelihoods for each class
    likelihood_mature = (
        norm.pdf(red_quantity, mean_mature_red, std_mature_red) *
        norm.pdf(green_quantity, mean_mature_green, std_mature_green) *
        norm.pdf(blue_quantity, mean_mature_blue, std_mature_blue)
    )
    
    likelihood_normal = (
        norm.pdf(red_quantity, mean_normal_red, std_normal_red) *
        norm.pdf(green_quantity, mean_normal_green, std_normal_green) *
        norm.pdf(blue_quantity, mean_normal_blue, std_normal_blue)
    )
    
    likelihood_immature = (
        norm.pdf(red_quantity, mean_immature_red, std_immature_red) *
        norm.pdf(green_quantity, mean_immature_green, std_immature_green) *
        norm.pdf(blue_quantity, mean_immature_blue, std_immature_blue)
    )

    # Define prior probabilities (assuming equal prior for simplicity)
    prior_mature = 1/3
    prior_normal = 1/3
    prior_immature = 1/3

    # Apply Bayes' theorem to compute posterior probabilities
    posterior_mature = likelihood_mature * prior_mature
    posterior_normal = likelihood_normal * prior_normal
    posterior_immature = likelihood_immature * prior_immature

    # Determine the stage based on maximum posterior probability
    stages = {
        posterior_mature: "Mature",
        posterior_normal: "Normal",
        posterior_immature: "Immature"
    }
    max_posterior = max(posterior_mature, posterior_normal, posterior_immature)
    stage = stages[max_posterior]

    return stage

def add_watermark(image):
    try:
        logo = Image.open('image-logo.png').convert("RGBA")
        image = image.convert("RGBA")
        
        # Resize logo
        basewidth = 100
        wpercent = (basewidth / float(logo.size[0]))
        hsize = int((float(wpercent) * logo.size[1]))
        logo = logo.resize((basewidth, hsize), Image.LANCZOS)
        
        # Position logo
        position = (image.width - logo.width - 10, image.height - logo.height - 10)
        
        # Composite image
        transparent = Image.new('RGBA', (image.width, image.height), (0, 0, 0, 0))
        transparent.paste(image, (0, 0))
        transparent.paste(logo, position, mask=logo)
        
        return transparent.convert("RGB")
    except Exception as e:
        print(f"Error adding watermark: {e}")
        return image


def predict_and_visualize(image):
    try:
        pil_image = Image.fromarray(image.astype('uint8'), 'RGB')
        orig_size = pil_image.size
        results = yolo_model_cataract(pil_image)

        raw_response = str(results)
        masked_image = np.array(pil_image)
        mask_image = np.zeros_like(masked_image)

        red_quantity, green_quantity, blue_quantity = 0, 0, 0
        total_pixels = 0

        if len(results) > 0:
            result = results[0]
            if hasattr(result, 'masks') and result.masks is not None and len(result.masks) > 0:
                mask = np.array(result.masks.data.cpu().squeeze().numpy())
                mask_resized = np.array(Image.fromarray(mask).resize(orig_size, Image.NEAREST))

                red_mask = np.zeros_like(masked_image)
                red_mask[mask_resized > 0.5] = [255, 0, 0]
                alpha = 0.5
                blended_image = cv2.addWeighted(masked_image, 1 - alpha, red_mask, alpha, 0)

                pupil_pixels = np.array(pil_image)[mask_resized > 0.5]
                total_pixels = pupil_pixels.shape[0]

                red_values = pupil_pixels[:, 0]
                green_values = pupil_pixels[:, 1]
                blue_values = pupil_pixels[:, 2]

                red_quantity, green_quantity, blue_quantity = calculate_ratios(red_values, green_values, blue_values, total_pixels)
                stage = cataract_staging(red_quantity, green_quantity, blue_quantity)

                # Add text to the blended image
                combined_pil_image = Image.fromarray(blended_image)
                draw = ImageDraw.Draw(combined_pil_image)
                
                # Load a larger font (adjust the size as needed)
                font_size = 48  # Example font size
                try:
                    font = ImageFont.truetype("font.ttf", size=font_size)
                except IOError:
                    font = ImageFont.load_default()
                    print("Error: cannot open resource, using default font.")

                text = f"Red quantity: {red_quantity:.2f}\nGreen quantity: {green_quantity:.2f}\nBlue quantity: {blue_quantity:.2f}\nStage: {stage}"
                
                # Calculate text bounding box
                text_bbox = draw.textbbox((0, 0), text, font=font)
                text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]
                text_x = 20
                text_y = 40
                padding = 10

                # Draw a filled rectangle for the background
                draw.rectangle(
                    [text_x - padding, text_y - padding, text_x + text_width + padding, text_y + text_height + padding],
                    fill="black"
                )
                
                # Draw text on top of the rectangle
                draw.text((text_x, text_y), text, fill=(255, 255, 255, 255), font=font)

                # Add watermark to the image
                combined_pil_image_with_watermark = add_watermark(combined_pil_image)

                return np.array(combined_pil_image_with_watermark), red_quantity, green_quantity, blue_quantity, raw_response, stage

        return image, 0, 0, 0, "No mask detected.", "Unknown"
    
    except Exception as e:
        print("Error:", e)
        return np.zeros_like(image), 0, 0, 0, str(e), "Error"

def check_duplicate_entry(conn, red_quantity, green_quantity, blue_quantity, stage):
    cursor = conn.cursor()
    query = '''SELECT COUNT(*) FROM cataract_results WHERE red_quantity=? AND green_quantity=? AND blue_quantity=? AND stage=?'''
    cursor.execute(query, (red_quantity, green_quantity, blue_quantity, stage))
    count = cursor.fetchone()[0]
    return count > 0

def save_cataract_prediction_to_db(image, red_quantity, green_quantity, blue_quantity, stage):
    database = "cataract_results.db"
    conn = create_connection(database)
    if conn:
        create_cataract_table(conn)
        
        # Check for duplicate entries
        if check_duplicate_entry(conn, red_quantity, green_quantity, blue_quantity, stage):
            conn.close()
            return "Duplicate entry found, not saving.", "Duplicate entry detected."
        
        sql = '''INSERT INTO cataract_results(image, red_quantity, green_quantity, blue_quantity, stage) VALUES(?,?,?,?,?)'''
        cur = conn.cursor()
        
        # Convert the image to bytes
        buffered = BytesIO()
        image.save(buffered, format="PNG")
        img_bytes = buffered.getvalue()
        
        cur.execute(sql, (img_bytes, red_quantity, green_quantity, blue_quantity, stage))
        conn.commit()
        conn.close()
        return "Data saved successfully", f"Red: {red_quantity}, Green: {green_quantity}, Blue: {blue_quantity}, Stage: {stage}"

    return "Failed to save data", "No connection to the database."

def combined_prediction(image):
    blended_image, red_quantity, green_quantity, blue_quantity, raw_response, stage = predict_and_visualize(image)
    save_message, debug_info = save_cataract_prediction_to_db(Image.fromarray(blended_image), red_quantity, green_quantity, blue_quantity, stage)
    return blended_image, red_quantity, green_quantity, blue_quantity, raw_response, stage, save_message, debug_info

def create_connection(db_file):
    """ Create a database connection to the SQLite database """
    conn = None
    try:
        conn = sqlite3.connect(db_file)
        return conn
    except sqlite3.Error as e:
        print(e)
    return conn

def create_cataract_table(conn):
    """ Create the cataract results table if it does not exist """
    create_table_sql = """ CREATE TABLE IF NOT EXISTS cataract_results (
                            id integer PRIMARY KEY,
                            image blob,
                            red_quantity real,
                            green_quantity real,
                            blue_quantity real,
                            stage text
                        ); """
    try:
        cursor = conn.cursor()
        cursor.execute(create_table_sql)
    except sqlite3.Error as e:
        print(e)

def predict_object_detection(image):
    try:
        image_np = np.array(image)
        results = yolo_model_object_detection(image_np)

        image_with_boxes = image_np.copy()
        raw_predictions = []
        for result in results[0].boxes:
            label = "Normal" if result.cls.item() == 1 else "Cataract"
            confidence = result.conf.item()
            xmin, ymin, xmax, ymax = map(int, result.xyxy[0])
            cv2.rectangle(image_with_boxes, (xmin, ymin), (xmax, ymax), (255, 0, 0), 2)
            
            font_scale = 1.0
            thickness = 2
            text = f'{label} {confidence:.2f}'
            (text_width, text_height), baseline = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, font_scale, thickness)
            cv2.rectangle(image_with_boxes, (xmin, ymin - text_height - baseline), (xmin + text_width, ymin), (0, 0, 0), cv2.FILLED)
            cv2.putText(image_with_boxes, text, (xmin, ymin - baseline), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), thickness)
            
            raw_predictions.append(f"Label: {label}, Confidence: {confidence:.2f}, Box: [{xmin}, {ymin}, {xmax}, {ymax}]")

        raw_predictions_str = "\n".join(raw_predictions)

        # Convert image_with_boxes to PIL image and add watermark
        image_with_boxes_pil = Image.fromarray(image_with_boxes)
        image_with_boxes_pil_with_watermark = add_watermark(image_with_boxes_pil)

        return np.array(image_with_boxes_pil_with_watermark), raw_predictions_str
    except Exception as e:
        print("Error in object detection:", e)
        return np.zeros_like(image), str(e)