Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Commit
·
eb50697
1
Parent(s):
d392fbe
Add utility functions for model submission and retrieval in Gradio interface
Browse files
app.py
CHANGED
@@ -4,6 +4,8 @@ import numpy as np
|
|
4 |
import pandas as pd
|
5 |
import gradio as gr
|
6 |
from huggingface_hub import HfApi, hf_hub_download
|
|
|
|
|
7 |
|
8 |
|
9 |
OWNER = "Navid-AI"
|
@@ -19,19 +21,19 @@ HEADER = """<div style="text-align: center; margin-bottom: 20px;">
|
|
19 |
ABOUT_SECTION = """
|
20 |
## About
|
21 |
|
22 |
-
The
|
23 |
|
24 |
-
### Why Focus on
|
25 |
|
26 |
-
|
27 |
|
28 |
### How to Submit Your Model?
|
29 |
|
30 |
-
Navigate to the submission section below to submit your
|
31 |
|
32 |
### Contact
|
33 |
|
34 |
-
For any inquiries or assistance, feel free to reach out through the community tab at [
|
35 |
"""
|
36 |
|
37 |
CITATION_BUTTON_LABEL = """
|
@@ -40,286 +42,18 @@ Copy the following snippet to cite these results
|
|
40 |
|
41 |
CITATION_BUTTON_TEXT = """
|
42 |
@misc{AraGen,
|
43 |
-
author = {
|
44 |
-
title = {
|
45 |
-
year = {
|
46 |
-
publisher = {
|
47 |
-
howpublished = "url{https://huggingface.co/spaces/
|
48 |
}
|
49 |
"""
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
# Get the current directory of the script and construct the path to results.json
|
54 |
-
current_dir = os.path.dirname(os.path.abspath(__file__))
|
55 |
-
results_file = os.path.join(current_dir, "assets", "results", "results.json")
|
56 |
-
|
57 |
-
# Load the JSON data from the specified file
|
58 |
-
with open(results_file, 'r') as f:
|
59 |
-
data = json.load(f)
|
60 |
-
|
61 |
-
# Filter out any entries that only contain '_last_sync_timestamp'
|
62 |
-
filtered_data = []
|
63 |
-
for entry in data:
|
64 |
-
# If '_last_sync_timestamp' is the only key, skip it
|
65 |
-
if len(entry.keys()) == 1 and "_last_sync_timestamp" in entry:
|
66 |
-
continue
|
67 |
-
filtered_data.append(entry)
|
68 |
-
|
69 |
-
data = filtered_data
|
70 |
-
|
71 |
-
# Lists to collect data
|
72 |
-
data_3c3h = []
|
73 |
-
data_tasks = []
|
74 |
-
|
75 |
-
for model_data in data:
|
76 |
-
# Extract model meta data
|
77 |
-
meta = model_data.get('Meta', {})
|
78 |
-
model_name = meta.get('Model Name', 'UNK')
|
79 |
-
revision = meta.get('Revision', 'UNK')
|
80 |
-
precision = meta.get('Precision', 'UNK')
|
81 |
-
params = meta.get('Params', 'UNK')
|
82 |
-
license = meta.get('License', 'UNK')
|
83 |
-
|
84 |
-
# Convert "Model Size" to numeric, treating "UNK" as infinity
|
85 |
-
try:
|
86 |
-
model_size_numeric = float(params)
|
87 |
-
except (ValueError, TypeError):
|
88 |
-
model_size_numeric = np.inf
|
89 |
-
|
90 |
-
# 3C3H Scores
|
91 |
-
scores_data = model_data.get('claude-3.5-sonnet Scores', {})
|
92 |
-
scores_3c3h = scores_data.get('3C3H Scores', {})
|
93 |
-
scores_tasks = scores_data.get('Tasks Scores', {})
|
94 |
-
|
95 |
-
# Multiply scores by 100 to get percentages (keep them as numeric values)
|
96 |
-
formatted_scores_3c3h = {k: v*100 for k, v in scores_3c3h.items()}
|
97 |
-
formatted_scores_tasks = {k: v*100 for k, v in scores_tasks.items()}
|
98 |
-
|
99 |
-
# For 3C3H Scores DataFrame
|
100 |
-
data_entry_3c3h = {
|
101 |
-
'Model Name': model_name,
|
102 |
-
'Revision': revision,
|
103 |
-
'License': license,
|
104 |
-
'Precision': precision,
|
105 |
-
'Model Size': model_size_numeric, # Numeric value for sorting
|
106 |
-
'3C3H Score': formatted_scores_3c3h.get("3C3H Score", np.nan),
|
107 |
-
'Correctness': formatted_scores_3c3h.get("Correctness", np.nan),
|
108 |
-
'Completeness': formatted_scores_3c3h.get("Completeness", np.nan),
|
109 |
-
'Conciseness': formatted_scores_3c3h.get("Conciseness", np.nan),
|
110 |
-
'Helpfulness': formatted_scores_3c3h.get("Helpfulness", np.nan),
|
111 |
-
'Honesty': formatted_scores_3c3h.get("Honesty", np.nan),
|
112 |
-
'Harmlessness': formatted_scores_3c3h.get("Harmlessness", np.nan),
|
113 |
-
}
|
114 |
-
data_3c3h.append(data_entry_3c3h)
|
115 |
-
|
116 |
-
# For Tasks Scores DataFrame
|
117 |
-
data_entry_tasks = {
|
118 |
-
'Model Name': model_name,
|
119 |
-
'Revision': revision,
|
120 |
-
'License': license,
|
121 |
-
'Precision': precision,
|
122 |
-
'Model Size': model_size_numeric, # Numeric value for sorting
|
123 |
-
**formatted_scores_tasks
|
124 |
-
}
|
125 |
-
data_tasks.append(data_entry_tasks)
|
126 |
-
|
127 |
-
df_3c3h = pd.DataFrame(data_3c3h)
|
128 |
-
df_tasks = pd.DataFrame(data_tasks)
|
129 |
-
|
130 |
-
# Round the numeric score columns to 4 decimal places
|
131 |
-
score_columns_3c3h = ['3C3H Score', 'Correctness', 'Completeness', 'Conciseness', 'Helpfulness', 'Honesty', 'Harmlessness']
|
132 |
-
df_3c3h[score_columns_3c3h] = df_3c3h[score_columns_3c3h].round(4)
|
133 |
-
|
134 |
-
# Replace np.inf with a large number in 'Model Size Filter' for filtering
|
135 |
-
max_model_size_value = 1000 # Define a maximum value
|
136 |
-
df_3c3h['Model Size Filter'] = df_3c3h['Model Size'].replace(np.inf, max_model_size_value)
|
137 |
-
|
138 |
-
# Sort df_3c3h by '3C3H Score' descending if column exists
|
139 |
-
if '3C3H Score' in df_3c3h.columns:
|
140 |
-
df_3c3h = df_3c3h.sort_values(by='3C3H Score', ascending=False)
|
141 |
-
df_3c3h.insert(0, 'Rank', range(1, len(df_3c3h) + 1)) # Add Rank column starting from 1
|
142 |
-
else:
|
143 |
-
df_3c3h.insert(0, 'Rank', range(1, len(df_3c3h) + 1))
|
144 |
-
|
145 |
-
# Extract task columns
|
146 |
-
task_columns = [col for col in df_tasks.columns if col not in ['Model Name', 'Revision', 'License', 'Precision', 'Model Size', 'Model Size Filter']]
|
147 |
-
|
148 |
-
# Round the task score columns to 4 decimal places
|
149 |
-
if task_columns:
|
150 |
-
df_tasks[task_columns] = df_tasks[task_columns].round(4)
|
151 |
-
|
152 |
-
# Replace np.inf with a large number in 'Model Size Filter' for filtering
|
153 |
-
df_tasks['Model Size Filter'] = df_tasks['Model Size'].replace(np.inf, max_model_size_value)
|
154 |
-
|
155 |
-
# Sort df_tasks by the first task column if it exists
|
156 |
-
if task_columns:
|
157 |
-
first_task = task_columns[0]
|
158 |
-
df_tasks = df_tasks.sort_values(by=first_task, ascending=False)
|
159 |
-
df_tasks.insert(0, 'Rank', range(1, len(df_tasks) + 1)) # Add Rank column starting from 1
|
160 |
-
else:
|
161 |
-
df_tasks = df_tasks.sort_values(by='Model Name', ascending=True)
|
162 |
-
df_tasks.insert(0, 'Rank', range(1, len(df_tasks) + 1))
|
163 |
-
|
164 |
-
return df_3c3h, df_tasks, task_columns
|
165 |
-
|
166 |
-
def load_requests(status_folder):
|
167 |
-
api = HfApi()
|
168 |
-
requests_data = []
|
169 |
-
folder_path_in_repo = status_folder # 'pending', 'finished', or 'failed'
|
170 |
-
|
171 |
-
hf_api_token = os.environ.get('HF_API_TOKEN', None)
|
172 |
-
|
173 |
-
try:
|
174 |
-
# List files in the dataset repository
|
175 |
-
files_info = api.list_repo_files(
|
176 |
-
repo_id=DATASET_REPO_ID,
|
177 |
-
repo_type="dataset",
|
178 |
-
token=hf_api_token
|
179 |
-
)
|
180 |
-
except Exception as e:
|
181 |
-
print(f"Error accessing dataset repository: {e}")
|
182 |
-
return pd.DataFrame() # Return empty DataFrame if repository not found or inaccessible
|
183 |
-
|
184 |
-
# Filter files in the desired folder
|
185 |
-
files_in_folder = [f for f in files_info if f.startswith(f"{folder_path_in_repo}/") and f.endswith('.json')]
|
186 |
-
|
187 |
-
for file_path in files_in_folder:
|
188 |
-
try:
|
189 |
-
# Download the JSON file
|
190 |
-
local_file_path = hf_hub_download(
|
191 |
-
repo_id=DATASET_REPO_ID,
|
192 |
-
filename=file_path,
|
193 |
-
repo_type="dataset",
|
194 |
-
token=hf_api_token
|
195 |
-
)
|
196 |
-
# Load JSON data
|
197 |
-
with open(local_file_path, 'r') as f:
|
198 |
-
request = json.load(f)
|
199 |
-
requests_data.append(request)
|
200 |
-
except Exception as e:
|
201 |
-
print(f"Error loading file {file_path}: {e}")
|
202 |
-
continue # Skip files that can't be loaded
|
203 |
-
|
204 |
-
df = pd.DataFrame(requests_data)
|
205 |
-
return df
|
206 |
-
|
207 |
-
def submit_model(model_name, revision, precision, params, license):
|
208 |
-
# Load existing evaluations
|
209 |
-
df_3c3h, df_tasks, _ = load_results()
|
210 |
-
existing_models_results = df_3c3h[['Model Name', 'Revision', 'Precision']]
|
211 |
-
|
212 |
-
# Handle 'Missing' precision
|
213 |
-
if precision == 'Missing':
|
214 |
-
precision = None
|
215 |
-
else:
|
216 |
-
precision = precision.strip().lower()
|
217 |
-
|
218 |
-
# Load pending and finished requests from the dataset repository
|
219 |
-
df_pending = load_requests('pending')
|
220 |
-
df_finished = load_requests('finished')
|
221 |
-
|
222 |
-
# Check if model is already evaluated
|
223 |
-
model_exists_in_results = ((existing_models_results['Model Name'] == model_name) &
|
224 |
-
(existing_models_results['Revision'] == revision) &
|
225 |
-
(existing_models_results['Precision'] == precision)).any()
|
226 |
-
if model_exists_in_results:
|
227 |
-
return f"**Model '{model_name}' with revision '{revision}' and precision '{precision}' has already been evaluated.**"
|
228 |
-
|
229 |
-
# Check if model is in pending requests
|
230 |
-
if not df_pending.empty:
|
231 |
-
existing_models_pending = df_pending[['model_name', 'revision', 'precision']]
|
232 |
-
model_exists_in_pending = ((existing_models_pending['model_name'] == model_name) &
|
233 |
-
(existing_models_pending['revision'] == revision) &
|
234 |
-
(existing_models_pending['precision'] == precision)).any()
|
235 |
-
if model_exists_in_pending:
|
236 |
-
return f"**Model '{model_name}' with revision '{revision}' and precision '{precision}' is already in the pending evaluations.**"
|
237 |
-
|
238 |
-
# Check if model is in finished requests
|
239 |
-
if not df_finished.empty:
|
240 |
-
existing_models_finished = df_finished[['model_name', 'revision', 'precision']]
|
241 |
-
model_exists_in_finished = ((existing_models_finished['model_name'] == model_name) &
|
242 |
-
(existing_models_finished['revision'] == revision) &
|
243 |
-
(existing_models_finished['precision'] == precision)).any()
|
244 |
-
if model_exists_in_finished:
|
245 |
-
return f"**Model '{model_name}' with revision '{revision}' and precision '{precision}' has already been evaluated.**"
|
246 |
-
|
247 |
-
# Check if model exists on HuggingFace Hub
|
248 |
-
api = HfApi()
|
249 |
-
try:
|
250 |
-
model_info = api.model_info(model_name)
|
251 |
-
except Exception as e:
|
252 |
-
return f"**Error: Could not find model '{model_name}' on HuggingFace Hub. Please ensure the model name is correct and the model is public.**"
|
253 |
-
|
254 |
-
# Proceed with submission
|
255 |
-
status = "PENDING"
|
256 |
-
|
257 |
-
# Prepare the submission data
|
258 |
-
submission = {
|
259 |
-
"model_name": model_name,
|
260 |
-
"license": license,
|
261 |
-
"revision": revision,
|
262 |
-
"precision": precision,
|
263 |
-
"status": status,
|
264 |
-
"params": params
|
265 |
-
}
|
266 |
-
|
267 |
-
# Serialize the submission to JSON
|
268 |
-
submission_json = json.dumps(submission, indent=2)
|
269 |
-
|
270 |
-
# Define the file path in the repository
|
271 |
-
org_model = model_name.split('/')
|
272 |
-
if len(org_model) != 2:
|
273 |
-
return "**Please enter the full model name including the organization or username, e.g., 'inceptionai/jais-family-30b-8k'**"
|
274 |
-
org, model_id = org_model
|
275 |
-
precision_str = precision if precision else 'Missing'
|
276 |
-
file_path_in_repo = f"pending/{org}/{model_id}_eval_request_{revision}_{precision_str}.json"
|
277 |
-
|
278 |
-
# Upload the submission to the dataset repository
|
279 |
-
try:
|
280 |
-
hf_api_token = os.environ.get('HF_API_TOKEN', None)
|
281 |
-
api.upload_file(
|
282 |
-
path_or_fileobj=submission_json.encode('utf-8'),
|
283 |
-
path_in_repo=file_path_in_repo,
|
284 |
-
repo_id=DATASET_REPO_ID,
|
285 |
-
repo_type="dataset",
|
286 |
-
token=hf_api_token
|
287 |
-
)
|
288 |
-
except Exception as e:
|
289 |
-
return f"**Error: Could not submit the model. {str(e)}**"
|
290 |
-
|
291 |
-
return f"**Model '{model_name}' has been submitted for evaluation.**"
|
292 |
|
293 |
def main():
|
294 |
-
df_3c3h, df_tasks, task_columns = load_results()
|
295 |
-
|
296 |
-
# Extract unique Precision and License values for filters
|
297 |
-
precision_options_3c3h = sorted(df_3c3h['Precision'].dropna().unique().tolist())
|
298 |
-
precision_options_3c3h = [p for p in precision_options_3c3h if p != 'UNK']
|
299 |
-
precision_options_3c3h.append('Missing')
|
300 |
-
|
301 |
-
license_options_3c3h = sorted(df_3c3h['License'].dropna().unique().tolist())
|
302 |
-
license_options_3c3h = [l for l in license_options_3c3h if l != 'UNK']
|
303 |
-
license_options_3c3h.append('Missing')
|
304 |
-
|
305 |
-
precision_options_tasks = sorted(df_tasks['Precision'].dropna().unique().tolist())
|
306 |
-
precision_options_tasks = [p for p in precision_options_tasks if p != 'UNK']
|
307 |
-
precision_options_tasks.append('Missing')
|
308 |
-
|
309 |
-
license_options_tasks = sorted(df_tasks['License'].dropna().unique().tolist())
|
310 |
-
license_options_tasks = [l for l in license_options_tasks if l != 'UNK']
|
311 |
-
license_options_tasks.append('Missing')
|
312 |
-
|
313 |
-
# Get min and max model sizes for sliders, handling 'inf' values
|
314 |
-
min_model_size_3c3h = int(df_3c3h['Model Size Filter'].min())
|
315 |
-
max_model_size_3c3h = int(df_3c3h['Model Size Filter'].max())
|
316 |
-
|
317 |
-
min_model_size_tasks = int(df_tasks['Model Size Filter'].min())
|
318 |
-
max_model_size_tasks = int(df_tasks['Model Size Filter'].max())
|
319 |
-
|
320 |
-
# Exclude 'Model Size Filter' from column selectors
|
321 |
-
column_choices_3c3h = [col for col in df_3c3h.columns if col != 'Model Size Filter']
|
322 |
-
column_choices_tasks = [col for col in df_tasks.columns if col != 'Model Size Filter']
|
323 |
|
324 |
with gr.Blocks() as demo:
|
325 |
gr.Markdown(HEADER)
|
@@ -335,176 +69,107 @@ def main():
|
|
335 |
interactive=True
|
336 |
)
|
337 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
with gr.Row():
|
339 |
license_filter_retrieval = gr.CheckboxGroup(
|
340 |
-
choices=
|
341 |
-
value=
|
342 |
label="Filter by License",
|
343 |
)
|
344 |
precision_filter_retrieval = gr.CheckboxGroup(
|
345 |
-
choices=
|
346 |
-
value=
|
347 |
label="Filter by Precision",
|
348 |
)
|
349 |
-
with gr.Row():
|
350 |
-
model_size_min_filter_3c3h = gr.Slider(
|
351 |
-
minimum=min_model_size_3c3h,
|
352 |
-
maximum=max_model_size_3c3h,
|
353 |
-
value=min_model_size_3c3h,
|
354 |
-
step=1,
|
355 |
-
label="Minimum Model Size",
|
356 |
-
interactive=True
|
357 |
-
)
|
358 |
-
model_size_max_filter_3c3h = gr.Slider(
|
359 |
-
minimum=min_model_size_3c3h,
|
360 |
-
maximum=max_model_size_3c3h,
|
361 |
-
value=max_model_size_3c3h,
|
362 |
-
step=1,
|
363 |
-
label="Maximum Model Size",
|
364 |
-
interactive=True
|
365 |
-
)
|
366 |
|
367 |
-
|
368 |
-
|
369 |
-
'Conciseness', 'Helpfulness', 'Honesty', 'Harmlessness']],
|
370 |
interactive=False
|
371 |
)
|
372 |
|
373 |
-
def filter_df_3c3h(search_query, selected_cols, precision_filters, license_filters
|
374 |
-
|
375 |
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
|
424 |
-
|
425 |
-
|
426 |
|
427 |
-
|
428 |
|
429 |
-
# Bind the filter function to the appropriate events
|
430 |
-
filter_inputs_3c3h = [
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
outputs=leaderboard_3c3h
|
441 |
-
)
|
442 |
|
443 |
-
# Bind change events for CheckboxGroups and sliders
|
444 |
-
for component in filter_inputs_3c3h:
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
|
451 |
-
|
452 |
-
|
453 |
-
model_name_input = gr.Textbox(
|
454 |
-
label="Model",
|
455 |
-
placeholder="Enter the full model name from HuggingFace Hub (e.g., inceptionai/jais-family-30b-8k)"
|
456 |
-
)
|
457 |
-
revision_input = gr.Textbox(
|
458 |
-
label="Revision",
|
459 |
-
placeholder="main",
|
460 |
-
value="main"
|
461 |
-
)
|
462 |
-
precision_input = gr.Dropdown(
|
463 |
-
choices=["float16", "float32", "bfloat16", "8bit", "4bit"],
|
464 |
-
label="Precision",
|
465 |
-
value="float16"
|
466 |
-
)
|
467 |
-
params_input = gr.Textbox(
|
468 |
-
label="Params",
|
469 |
-
placeholder="Enter the approximate number of parameters as Integer (e.g., 7, 13, 30, 70 ...)"
|
470 |
-
)
|
471 |
-
# Changed from Dropdown to Textbox with default value "Open"
|
472 |
-
license_input = gr.Textbox(
|
473 |
-
label="License",
|
474 |
-
placeholder="Enter the license type (Generic one is 'Open' in case no License is provided)",
|
475 |
-
value="Open"
|
476 |
-
)
|
477 |
-
submit_button = gr.Button("Submit Model")
|
478 |
-
submission_result = gr.Markdown()
|
479 |
-
|
480 |
-
submit_button.click(
|
481 |
-
submit_model,
|
482 |
-
inputs=[model_name_input, revision_input, precision_input, params_input, license_input],
|
483 |
-
outputs=submission_result
|
484 |
-
)
|
485 |
-
|
486 |
-
# Load pending, finished, and failed requests
|
487 |
-
df_pending = load_requests('pending')
|
488 |
-
df_finished = load_requests('finished')
|
489 |
-
df_failed = load_requests('failed')
|
490 |
-
|
491 |
-
# Display the tables
|
492 |
-
gr.Markdown("## Evaluation Status")
|
493 |
-
with gr.Accordion(f"Pending Evaluations ({len(df_pending)})", open=False):
|
494 |
-
if not df_pending.empty:
|
495 |
-
gr.Dataframe(df_pending)
|
496 |
-
else:
|
497 |
-
gr.Markdown("No pending evaluations.")
|
498 |
-
with gr.Accordion(f"Finished Evaluations ({len(df_finished)})", open=False):
|
499 |
-
if not df_finished.empty:
|
500 |
-
gr.Dataframe(df_finished)
|
501 |
-
else:
|
502 |
-
gr.Markdown("No finished evaluations.")
|
503 |
-
with gr.Accordion(f"Failed Evaluations ({len(df_failed)})", open=False):
|
504 |
-
if not df_failed.empty:
|
505 |
-
gr.Dataframe(df_failed)
|
506 |
-
else:
|
507 |
-
gr.Markdown("No failed evaluations.")
|
508 |
|
509 |
with gr.Tab("Reranking"):
|
510 |
with gr.Tabs():
|
@@ -518,133 +183,134 @@ def main():
|
|
518 |
)
|
519 |
with gr.Row():
|
520 |
column_selector_tasks = gr.CheckboxGroup(
|
521 |
-
choices=
|
522 |
-
value=['Rank', 'Model Name']
|
523 |
label="Select columns to display",
|
524 |
)
|
525 |
with gr.Row():
|
526 |
license_filter_tasks = gr.CheckboxGroup(
|
527 |
-
choices=
|
528 |
-
value=
|
529 |
label="Filter by License",
|
530 |
)
|
531 |
precision_filter_tasks = gr.CheckboxGroup(
|
532 |
-
choices=
|
533 |
-
value=
|
534 |
label="Filter by Precision",
|
535 |
)
|
536 |
-
with gr.Row():
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
|
554 |
leaderboard_tasks = gr.Dataframe(
|
555 |
-
|
556 |
-
|
|
|
|
|
557 |
)
|
558 |
|
559 |
-
def filter_df_tasks(search_query, selected_cols, precision_filters, license_filters, min_size, max_size):
|
560 |
-
|
561 |
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
|
617 |
-
|
618 |
-
|
619 |
|
620 |
-
|
621 |
|
622 |
-
# Bind the filter function to the appropriate events
|
623 |
-
filter_inputs_tasks = [
|
624 |
-
|
625 |
-
|
626 |
-
|
627 |
-
|
628 |
-
|
629 |
-
|
630 |
-
]
|
631 |
-
search_box_tasks.submit(
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
)
|
636 |
|
637 |
-
# Bind change events for CheckboxGroups and sliders
|
638 |
-
for component in filter_inputs_tasks:
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
with gr.Tab("LLM Context Answering"):
|
649 |
with gr.Tabs():
|
650 |
with gr.Tab("Leaderboard"):
|
@@ -654,7 +320,7 @@ def main():
|
|
654 |
|
655 |
with gr.Row():
|
656 |
with gr.Accordion("📙 Citation", open=False):
|
657 |
-
|
658 |
value=CITATION_BUTTON_TEXT,
|
659 |
label=CITATION_BUTTON_LABEL,
|
660 |
lines=20,
|
|
|
4 |
import pandas as pd
|
5 |
import gradio as gr
|
6 |
from huggingface_hub import HfApi, hf_hub_download
|
7 |
+
from pathlib import Path
|
8 |
+
from utils import submit_gradio_module, load_retrieval_results
|
9 |
|
10 |
|
11 |
OWNER = "Navid-AI"
|
|
|
21 |
ABOUT_SECTION = """
|
22 |
## About
|
23 |
|
24 |
+
The Arabic RAG Leaderboard is designed to evaluate and compare the performance of Retrieval-Augmented Generation (RAG) models on a set of retrieval and generative tasks. By leveraging a comprehensive evaluation framework, the leaderboard provides a detailed assessment of a model's ability to retrieve relevant information and generate accurate, coherent, and contextually appropriate responses.
|
25 |
|
26 |
+
### Why Focus on RAG Models?
|
27 |
|
28 |
+
The Arabic RAG Leaderboard is specifically designed to assess **RAG models**, which combine retrieval mechanisms with generative capabilities to enhance the quality and relevance of generated content. These models are particularly useful in scenarios where access to up-to-date and contextually relevant information is crucial. While foundational models can be evaluated, the primary focus is on RAG models that excel in both retrieval and generation tasks.
|
29 |
|
30 |
### How to Submit Your Model?
|
31 |
|
32 |
+
Navigate to the submission section below to submit your RAG model from the HuggingFace Hub for evaluation. Ensure that your model is public and the submitted metadata (precision, revision, #params) is accurate.
|
33 |
|
34 |
### Contact
|
35 |
|
36 |
+
For any inquiries or assistance, feel free to reach out through the community tab at [Navid-AI Community](https://huggingface.co/spaces/Navid-AI/The-Arabic-Rag-Leaderboard/discussions) or via [email](mailto:support@navid-ai.com).
|
37 |
"""
|
38 |
|
39 |
CITATION_BUTTON_LABEL = """
|
|
|
42 |
|
43 |
CITATION_BUTTON_TEXT = """
|
44 |
@misc{AraGen,
|
45 |
+
author = {Mohaned A. Rashad, Hamza Shahid},
|
46 |
+
title = {The Arabic RAG Leaderboard},
|
47 |
+
year = {2025},
|
48 |
+
publisher = {Navid-AI},
|
49 |
+
howpublished = "url{https://huggingface.co/spaces/Navid-AI/The-Arabic-Rag-Leaderboard}"
|
50 |
}
|
51 |
"""
|
52 |
|
53 |
+
df = load_retrieval_results()
|
54 |
+
print(df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
def main():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
with gr.Blocks() as demo:
|
59 |
gr.Markdown(HEADER)
|
|
|
69 |
interactive=True
|
70 |
)
|
71 |
|
72 |
+
with gr.Row():
|
73 |
+
column_selector_tasks = gr.CheckboxGroup(
|
74 |
+
choices=[],
|
75 |
+
value=['Rank', 'Model Name'],
|
76 |
+
label="Select columns to display",
|
77 |
+
)
|
78 |
+
|
79 |
with gr.Row():
|
80 |
license_filter_retrieval = gr.CheckboxGroup(
|
81 |
+
choices=[],
|
82 |
+
value=[], # Default all selected
|
83 |
label="Filter by License",
|
84 |
)
|
85 |
precision_filter_retrieval = gr.CheckboxGroup(
|
86 |
+
choices=[],
|
87 |
+
value=[], # Default all selected
|
88 |
label="Filter by Precision",
|
89 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
+
retrieval_leaderboard = gr.Dataframe(
|
92 |
+
df,
|
|
|
93 |
interactive=False
|
94 |
)
|
95 |
|
96 |
+
# def filter_df_3c3h(search_query, selected_cols, precision_filters, license_filters):
|
97 |
+
# filtered_df = df_3c3h.copy()
|
98 |
|
99 |
+
# # Ensure min_size <= max_size
|
100 |
+
# if min_size > max_size:
|
101 |
+
# min_size, max_size = max_size, min_size
|
102 |
|
103 |
+
# # Apply search filter
|
104 |
+
# if search_query:
|
105 |
+
# filtered_df = filtered_df[filtered_df['Model Name'].str.contains(search_query, case=False, na=False)]
|
106 |
|
107 |
+
# # Apply Precision filter
|
108 |
+
# if precision_filters:
|
109 |
+
# include_missing = 'Missing' in precision_filters
|
110 |
+
# selected_precisions = [p for p in precision_filters if p != 'Missing']
|
111 |
+
# if include_missing:
|
112 |
+
# filtered_df = filtered_df[
|
113 |
+
# (filtered_df['Precision'].isin(selected_precisions)) |
|
114 |
+
# (filtered_df['Precision'] == 'UNK') |
|
115 |
+
# (filtered_df['Precision'].isna())
|
116 |
+
# ]
|
117 |
+
# else:
|
118 |
+
# filtered_df = filtered_df[filtered_df['Precision'].isin(selected_precisions)]
|
119 |
|
120 |
+
# # Apply License filter
|
121 |
+
# if license_filters:
|
122 |
+
# include_missing = 'Missing' in license_filters
|
123 |
+
# selected_licenses = [l for l in license_filters if l != 'Missing']
|
124 |
+
# if include_missing:
|
125 |
+
# filtered_df = filtered_df[
|
126 |
+
# (filtered_df['License'].isin(selected_licenses)) |
|
127 |
+
# (filtered_df['License'] == 'UNK') |
|
128 |
+
# (filtered_df['License'].isna())
|
129 |
+
# ]
|
130 |
+
# else:
|
131 |
+
# filtered_df = filtered_df[filtered_df['License'].isin(selected_licenses)]
|
132 |
|
133 |
+
# # Apply Model Size filter
|
134 |
+
# filtered_df = filtered_df[
|
135 |
+
# (filtered_df['Model Size Filter'] >= min_size) &
|
136 |
+
# (filtered_df['Model Size Filter'] <= max_size)
|
137 |
+
# ]
|
138 |
|
139 |
+
# # Remove existing 'Rank' column if present
|
140 |
+
# if 'Rank' in filtered_df.columns:
|
141 |
+
# filtered_df = filtered_df.drop(columns=['Rank'])
|
142 |
|
143 |
+
# # Recalculate Rank after filtering
|
144 |
+
# filtered_df = filtered_df.reset_index(drop=True)
|
145 |
+
# filtered_df.insert(0, 'Rank', range(1, len(filtered_df) + 1))
|
146 |
|
147 |
+
# # Ensure selected columns are present
|
148 |
+
# selected_cols = [col for col in selected_cols if col in filtered_df.columns]
|
149 |
|
150 |
+
# return filtered_df[selected_cols]
|
151 |
|
152 |
+
# # Bind the filter function to the appropriate events
|
153 |
+
# filter_inputs_3c3h = [
|
154 |
+
# search_box_retrieval,
|
155 |
+
# precision_filter_retrieval,
|
156 |
+
# license_filter_retrieval,
|
157 |
+
# ]
|
158 |
+
# search_box_retrieval.submit(
|
159 |
+
# filter_df_3c3h,
|
160 |
+
# inputs=filter_inputs_3c3h,
|
161 |
+
# outputs=leaderboard_3c3h
|
162 |
+
# )
|
|
|
|
|
163 |
|
164 |
+
# # Bind change events for CheckboxGroups and sliders
|
165 |
+
# for component in filter_inputs_3c3h:
|
166 |
+
# component.change(
|
167 |
+
# filter_df_3c3h,
|
168 |
+
# inputs=filter_inputs_3c3h,
|
169 |
+
# outputs=leaderboard_3c3h
|
170 |
+
# )
|
171 |
|
172 |
+
submit_gradio_module()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
with gr.Tab("Reranking"):
|
175 |
with gr.Tabs():
|
|
|
183 |
)
|
184 |
with gr.Row():
|
185 |
column_selector_tasks = gr.CheckboxGroup(
|
186 |
+
choices=[],
|
187 |
+
value=['Rank', 'Model Name'],
|
188 |
label="Select columns to display",
|
189 |
)
|
190 |
with gr.Row():
|
191 |
license_filter_tasks = gr.CheckboxGroup(
|
192 |
+
choices=[],
|
193 |
+
value=[], # Default all selected
|
194 |
label="Filter by License",
|
195 |
)
|
196 |
precision_filter_tasks = gr.CheckboxGroup(
|
197 |
+
choices=[],
|
198 |
+
value=[], # Default all selected
|
199 |
label="Filter by Precision",
|
200 |
)
|
201 |
+
# with gr.Row():
|
202 |
+
# model_size_min_filter_tasks = gr.Slider(
|
203 |
+
# minimum=min_model_size_tasks,
|
204 |
+
# maximum=max_model_size_tasks,
|
205 |
+
# value=min_model_size_tasks,
|
206 |
+
# step=1,
|
207 |
+
# label="Minimum Model Size",
|
208 |
+
# interactive=True
|
209 |
+
# )
|
210 |
+
# model_size_max_filter_tasks = gr.Slider(
|
211 |
+
# minimum=min_model_size_tasks,
|
212 |
+
# maximum=max_model_size_tasks,
|
213 |
+
# value=max_model_size_tasks,
|
214 |
+
# step=1,
|
215 |
+
# label="Maximum Model Size",
|
216 |
+
# interactive=True
|
217 |
+
# )
|
218 |
|
219 |
leaderboard_tasks = gr.Dataframe(
|
220 |
+
df,
|
221 |
+
# headers="auto", # Automatically use DataFrame's headers
|
222 |
+
# label="MultiIndex DataFrame",
|
223 |
+
# interactive=False,
|
224 |
)
|
225 |
|
226 |
+
# def filter_df_tasks(search_query, selected_cols, precision_filters, license_filters, min_size, max_size):
|
227 |
+
# filtered_df = df_tasks.copy()
|
228 |
|
229 |
+
# # Ensure min_size <= max_size
|
230 |
+
# if min_size > max_size:
|
231 |
+
# min_size, max_size = max_size, min_size
|
232 |
|
233 |
+
# # Apply search filter
|
234 |
+
# if search_query:
|
235 |
+
# filtered_df = filtered_df[filtered_df['Model Name'].str.contains(search_query, case=False, na=False)]
|
236 |
|
237 |
+
# # Apply Precision filter
|
238 |
+
# if precision_filters:
|
239 |
+
# include_missing = 'Missing' in precision_filters
|
240 |
+
# selected_precisions = [p for p in precision_filters if p != 'Missing']
|
241 |
+
# if include_missing:
|
242 |
+
# filtered_df = filtered_df[
|
243 |
+
# (filtered_df['Precision'].isin(selected_precisions)) |
|
244 |
+
# (filtered_df['Precision'] == 'UNK') |
|
245 |
+
# (filtered_df['Precision'].isna())
|
246 |
+
# ]
|
247 |
+
# else:
|
248 |
+
# filtered_df = filtered_df[filtered_df['Precision'].isin(selected_precisions)]
|
249 |
|
250 |
+
# # Apply License filter
|
251 |
+
# if license_filters:
|
252 |
+
# include_missing = 'Missing' in license_filters
|
253 |
+
# selected_licenses = [l for l in license_filters if l != 'Missing']
|
254 |
+
# if include_missing:
|
255 |
+
# filtered_df = filtered_df[
|
256 |
+
# (filtered_df['License'].isin(selected_licenses)) |
|
257 |
+
# (filtered_df['License'] == 'UNK') |
|
258 |
+
# (filtered_df['License'].isna())
|
259 |
+
# ]
|
260 |
+
# else:
|
261 |
+
# filtered_df = filtered_df[filtered_df['License'].isin(selected_licenses)]
|
262 |
|
263 |
+
# # Apply Model Size filter
|
264 |
+
# filtered_df = filtered_df[
|
265 |
+
# (filtered_df['Model Size Filter'] >= min_size) &
|
266 |
+
# (filtered_df['Model Size Filter'] <= max_size)
|
267 |
+
# ]
|
268 |
|
269 |
+
# # Remove existing 'Rank' column if present
|
270 |
+
# if 'Rank' in filtered_df.columns:
|
271 |
+
# filtered_df = filtered_df.drop(columns=['Rank'])
|
272 |
|
273 |
+
# # Sort by the first task column if it exists
|
274 |
+
# if task_columns:
|
275 |
+
# first_task = task_columns[0]
|
276 |
+
# filtered_df = filtered_df.sort_values(by=first_task, ascending=False)
|
277 |
+
# else:
|
278 |
+
# filtered_df = filtered_df.sort_values(by='Model Name', ascending=True)
|
279 |
|
280 |
+
# # Recalculate Rank after filtering
|
281 |
+
# filtered_df = filtered_df.reset_index(drop=True)
|
282 |
+
# filtered_df.insert(0, 'Rank', range(1, len(filtered_df) + 1))
|
283 |
|
284 |
+
# # Ensure selected columns are present
|
285 |
+
# selected_cols = [col for col in selected_cols if col in filtered_df.columns]
|
286 |
|
287 |
+
# return filtered_df[selected_cols]
|
288 |
|
289 |
+
# # Bind the filter function to the appropriate events
|
290 |
+
# filter_inputs_tasks = [
|
291 |
+
# search_box_tasks,
|
292 |
+
# column_selector_tasks,
|
293 |
+
# precision_filter_tasks,
|
294 |
+
# license_filter_tasks,
|
295 |
+
# model_size_min_filter_tasks,
|
296 |
+
# model_size_max_filter_tasks
|
297 |
+
# ]
|
298 |
+
# search_box_tasks.submit(
|
299 |
+
# filter_df_tasks,
|
300 |
+
# inputs=filter_inputs_tasks,
|
301 |
+
# outputs=leaderboard_tasks
|
302 |
+
# )
|
303 |
|
304 |
+
# # Bind change events for CheckboxGroups and sliders
|
305 |
+
# for component in filter_inputs_tasks:
|
306 |
+
# component.change(
|
307 |
+
# filter_df_tasks,
|
308 |
+
# inputs=filter_inputs_tasks,
|
309 |
+
# outputs=leaderboard_tasks
|
310 |
+
# )
|
311 |
+
|
312 |
+
submit_gradio_module()
|
313 |
+
|
|
|
314 |
with gr.Tab("LLM Context Answering"):
|
315 |
with gr.Tabs():
|
316 |
with gr.Tab("Leaderboard"):
|
|
|
320 |
|
321 |
with gr.Row():
|
322 |
with gr.Accordion("📙 Citation", open=False):
|
323 |
+
gr.Textbox(
|
324 |
value=CITATION_BUTTON_TEXT,
|
325 |
label=CITATION_BUTTON_LABEL,
|
326 |
lines=20,
|
utils.py
ADDED
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
from pathlib import Path
|
6 |
+
from huggingface_hub import HfApi
|
7 |
+
|
8 |
+
api = HfApi()
|
9 |
+
|
10 |
+
def load_retrieval_results():
|
11 |
+
base_path = Path(__file__).parent
|
12 |
+
results_dir = base_path / "assets" / "results"
|
13 |
+
|
14 |
+
retrieval_dataframe_path = results_dir / "retrieval_results.json"
|
15 |
+
if not retrieval_dataframe_path.exists():
|
16 |
+
df = pd.DataFrame(columns=["Model", "Model Size", "Embedding Dimension", "Max Tokens", "Web Search Dataset (MRR)", "Web Search Dataset (nDCG@k=None)"])
|
17 |
+
else:
|
18 |
+
df = pd.read_json(retrieval_dataframe_path)
|
19 |
+
return df
|
20 |
+
|
21 |
+
def get_model_info(model_id, verbose=False):
|
22 |
+
model_info = api.model_info(model_id)
|
23 |
+
num_downloads = model_info.downloads
|
24 |
+
num_likes = model_info.likes
|
25 |
+
license = model_info.card_data["license"]
|
26 |
+
num_parameters = round(model_info.safetensors.total / 1e6)
|
27 |
+
supported_precisions = list(model_info.safetensors.parameters.keys())
|
28 |
+
if verbose:
|
29 |
+
print(f"Model '{model_id}' has {num_downloads} downloads, {num_likes} likes, and is licensed under {license}.")
|
30 |
+
print(f"The model has approximately {num_parameters:.2f} billion parameters.")
|
31 |
+
print(f"The model supports the following precisions: {supported_precisions}")
|
32 |
+
return num_downloads, num_likes, license, num_parameters, supported_precisions
|
33 |
+
|
34 |
+
def fetch_model_information(model_name):
|
35 |
+
try:
|
36 |
+
_, _, license, num_parameters, supported_precisions = get_model_info(model_name)
|
37 |
+
if len(supported_precisions) == 0:
|
38 |
+
supported_precisions = [None]
|
39 |
+
except Exception as e:
|
40 |
+
gr.Error(f"**Error: Could not fetch model information. {str(e)}**")
|
41 |
+
return
|
42 |
+
return gr.update(choices=supported_precisions, value=supported_precisions[0]), num_parameters, license
|
43 |
+
|
44 |
+
def submit_model(model_name, revision, precision, params, license):
|
45 |
+
# Load existing evaluations
|
46 |
+
df_retrieval = load_retrieval_results()
|
47 |
+
if df_retrieval.empty:
|
48 |
+
return "**Error: Could not load the retrieval results.**"
|
49 |
+
|
50 |
+
existing_models_results = df_retrieval[['Model', 'Revision', 'Precision']]
|
51 |
+
|
52 |
+
# Handle 'Missing' precision
|
53 |
+
if precision == 'Missing':
|
54 |
+
precision = None
|
55 |
+
else:
|
56 |
+
precision = precision.strip().lower()
|
57 |
+
|
58 |
+
# Load pending and finished requests from the dataset repository
|
59 |
+
df_pending = load_requests('pending')
|
60 |
+
df_finished = load_requests('finished')
|
61 |
+
|
62 |
+
# Check if model is already evaluated
|
63 |
+
model_exists_in_results = ((existing_models_results['Model Name'] == model_name) &
|
64 |
+
(existing_models_results['Revision'] == revision) &
|
65 |
+
(existing_models_results['Precision'] == precision)).any()
|
66 |
+
if model_exists_in_results:
|
67 |
+
return f"**Model '{model_name}' with revision '{revision}' and precision '{precision}' has already been evaluated.**"
|
68 |
+
|
69 |
+
# Check if model is in pending requests
|
70 |
+
if not df_pending.empty:
|
71 |
+
existing_models_pending = df_pending[['model_name', 'revision', 'precision']]
|
72 |
+
model_exists_in_pending = ((existing_models_pending['model_name'] == model_name) &
|
73 |
+
(existing_models_pending['revision'] == revision) &
|
74 |
+
(existing_models_pending['precision'] == precision)).any()
|
75 |
+
if model_exists_in_pending:
|
76 |
+
return f"**Model '{model_name}' with revision '{revision}' and precision '{precision}' is already in the pending evaluations.**"
|
77 |
+
|
78 |
+
# Check if model is in finished requests
|
79 |
+
if not df_finished.empty:
|
80 |
+
existing_models_finished = df_finished[['model_name', 'revision', 'precision']]
|
81 |
+
model_exists_in_finished = ((existing_models_finished['model_name'] == model_name) &
|
82 |
+
(existing_models_finished['revision'] == revision) &
|
83 |
+
(existing_models_finished['precision'] == precision)).any()
|
84 |
+
if model_exists_in_finished:
|
85 |
+
return f"**Model '{model_name}' with revision '{revision}' and precision '{precision}' has already been evaluated.**"
|
86 |
+
|
87 |
+
# Check if model exists on HuggingFace Hub
|
88 |
+
try:
|
89 |
+
api.model_info(model_name)
|
90 |
+
except Exception as e:
|
91 |
+
return f"**Error: Could not find model '{model_name}' on HuggingFace Hub. Please ensure the model name is correct and the model is public.**"
|
92 |
+
|
93 |
+
# Proceed with submission
|
94 |
+
status = "PENDING"
|
95 |
+
|
96 |
+
# Prepare the submission data
|
97 |
+
submission = {
|
98 |
+
"model_name": model_name,
|
99 |
+
"license": license,
|
100 |
+
"revision": revision,
|
101 |
+
"precision": precision,
|
102 |
+
"status": status,
|
103 |
+
"params": params
|
104 |
+
}
|
105 |
+
|
106 |
+
# Serialize the submission to JSON
|
107 |
+
submission_json = json.dumps(submission, indent=2)
|
108 |
+
|
109 |
+
# Define the file path in the repository
|
110 |
+
org_model = model_name.split('/')
|
111 |
+
if len(org_model) != 2:
|
112 |
+
return "**Please enter the full model name including the organization or username, e.g., 'intfloat/multilingual-e5-large-instruct'**"
|
113 |
+
org, model_id = org_model
|
114 |
+
precision_str = precision if precision else 'Missing'
|
115 |
+
file_path_in_repo = f"pending/{org}/{model_id}_eval_request_{revision}_{precision_str}.json"
|
116 |
+
|
117 |
+
# Upload the submission to the dataset repository
|
118 |
+
try:
|
119 |
+
hf_api_token = os.environ.get('HF_API_TOKEN', None)
|
120 |
+
api.upload_file(
|
121 |
+
path_or_fileobj=submission_json.encode('utf-8'),
|
122 |
+
path_in_repo=file_path_in_repo,
|
123 |
+
repo_id=DATASET_REPO_ID,
|
124 |
+
repo_type="dataset",
|
125 |
+
token=hf_api_token
|
126 |
+
)
|
127 |
+
except Exception as e:
|
128 |
+
return f"**Error: Could not submit the model. {str(e)}**"
|
129 |
+
|
130 |
+
return f"**Model '{model_name}' has been submitted for evaluation.**"
|
131 |
+
|
132 |
+
def load_requests(status_folder):
|
133 |
+
api = HfApi()
|
134 |
+
requests_data = []
|
135 |
+
folder_path_in_repo = status_folder # 'pending', 'finished', or 'failed'
|
136 |
+
|
137 |
+
hf_api_token = os.environ.get('HF_API_TOKEN', None)
|
138 |
+
|
139 |
+
try:
|
140 |
+
# List files in the dataset repository
|
141 |
+
files_info = api.list_repo_files(
|
142 |
+
repo_id=DATASET_REPO_ID,
|
143 |
+
repo_type="dataset",
|
144 |
+
token=hf_api_token
|
145 |
+
)
|
146 |
+
except Exception as e:
|
147 |
+
print(f"Error accessing dataset repository: {e}")
|
148 |
+
return pd.DataFrame() # Return empty DataFrame if repository not found or inaccessible
|
149 |
+
|
150 |
+
# Filter files in the desired folder
|
151 |
+
files_in_folder = [f for f in files_info if f.startswith(f"{folder_path_in_repo}/") and f.endswith('.json')]
|
152 |
+
|
153 |
+
for file_path in files_in_folder:
|
154 |
+
try:
|
155 |
+
# Download the JSON file
|
156 |
+
local_file_path = hf_hub_download(
|
157 |
+
repo_id=DATASET_REPO_ID,
|
158 |
+
filename=file_path,
|
159 |
+
repo_type="dataset",
|
160 |
+
token=hf_api_token
|
161 |
+
)
|
162 |
+
# Load JSON data
|
163 |
+
with open(local_file_path, 'r') as f:
|
164 |
+
request = json.load(f)
|
165 |
+
requests_data.append(request)
|
166 |
+
except Exception as e:
|
167 |
+
print(f"Error loading file {file_path}: {e}")
|
168 |
+
continue # Skip files that can't be loaded
|
169 |
+
|
170 |
+
df = pd.DataFrame(requests_data)
|
171 |
+
return df
|
172 |
+
|
173 |
+
|
174 |
+
def submit_gradio_module():
|
175 |
+
with gr.Tab("Submit Model") as submitter_tab:
|
176 |
+
|
177 |
+
with gr.Row(equal_height=True):
|
178 |
+
model_name_input = gr.Textbox(
|
179 |
+
label="Model",
|
180 |
+
placeholder="Enter the full model name from HuggingFace Hub (e.g., intfloat/multilingual-e5-large-instruct)",
|
181 |
+
scale=4,
|
182 |
+
)
|
183 |
+
fetch_data_button = gr.Button(value="Auto Fetch Model Info", variant="secondary")
|
184 |
+
|
185 |
+
with gr.Row():
|
186 |
+
precision_input = gr.Dropdown(
|
187 |
+
choices=["F16", "F32", "BF16", "I8", "U8", "I16"],
|
188 |
+
label="Precision",
|
189 |
+
value="F16"
|
190 |
+
)
|
191 |
+
params_input = gr.Textbox(
|
192 |
+
label="Params (in Millions)",
|
193 |
+
placeholder="Enter the approximate number of parameters as Integer (e.g., 7, 13, 30, 70 ...)"
|
194 |
+
)
|
195 |
+
|
196 |
+
with gr.Row():
|
197 |
+
license_input = gr.Textbox(
|
198 |
+
label="License",
|
199 |
+
placeholder="Enter the license type (Generic one is 'Open' in case no License is provided)",
|
200 |
+
value="Open"
|
201 |
+
)
|
202 |
+
revision_input = gr.Textbox(
|
203 |
+
label="Revision",
|
204 |
+
placeholder="main",
|
205 |
+
value="main"
|
206 |
+
)
|
207 |
+
|
208 |
+
submit_button = gr.Button("Submit Model", variant="primary")
|
209 |
+
submission_result = gr.Markdown()
|
210 |
+
fetch_outputs = [precision_input, params_input, license_input]
|
211 |
+
|
212 |
+
fetch_data_button.click(
|
213 |
+
fetch_model_information,
|
214 |
+
inputs=[model_name_input],
|
215 |
+
outputs=fetch_outputs
|
216 |
+
)
|
217 |
+
model_name_input.submit(
|
218 |
+
fetch_model_information,
|
219 |
+
inputs=[model_name_input],
|
220 |
+
outputs=fetch_outputs
|
221 |
+
)
|
222 |
+
submit_button.click(
|
223 |
+
submit_model,
|
224 |
+
inputs=[model_name_input, revision_input, precision_input, params_input, license_input],
|
225 |
+
outputs=submission_result
|
226 |
+
)
|
227 |
+
|
228 |
+
# Load pending, finished, and failed requests
|
229 |
+
df_pending = load_requests('pending')
|
230 |
+
df_finished = load_requests('finished')
|
231 |
+
df_failed = load_requests('failed')
|
232 |
+
|
233 |
+
# Display the tables
|
234 |
+
gr.Markdown("## Evaluation Status")
|
235 |
+
with gr.Accordion(f"Pending Evaluations ({len(df_pending)})", open=False):
|
236 |
+
if not df_pending.empty:
|
237 |
+
gr.Dataframe(df_pending)
|
238 |
+
else:
|
239 |
+
gr.Markdown("No pending evaluations.")
|
240 |
+
with gr.Accordion(f"Finished Evaluations ({len(df_finished)})", open=False):
|
241 |
+
if not df_finished.empty:
|
242 |
+
gr.Dataframe(df_finished)
|
243 |
+
else:
|
244 |
+
gr.Markdown("No finished evaluations.")
|
245 |
+
with gr.Accordion(f"Failed Evaluations ({len(df_failed)})", open=False):
|
246 |
+
if not df_failed.empty:
|
247 |
+
gr.Dataframe(df_failed)
|
248 |
+
else:
|
249 |
+
gr.Markdown("No failed evaluations.")
|
250 |
+
|
251 |
+
return submitter_tab
|