MohamedRashad commited on
Commit
d392fbe
·
1 Parent(s): c73ba9b

Remove unused files and configurations, including .gitignore, Makefile, requirements.txt, and various source files.

Browse files
.gitattributes CHANGED
@@ -25,6 +25,7 @@
25
  *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
 
28
  *.tflite filter=lfs diff=lfs merge=lfs -text
29
  *.tgz filter=lfs diff=lfs merge=lfs -text
30
  *.wasm filter=lfs diff=lfs merge=lfs -text
@@ -32,4 +33,3 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
- scale-hf-logo.png filter=lfs diff=lfs merge=lfs -text
 
25
  *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
  *.tflite filter=lfs diff=lfs merge=lfs -text
30
  *.tgz filter=lfs diff=lfs merge=lfs -text
31
  *.wasm filter=lfs diff=lfs merge=lfs -text
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
.gitignore DELETED
@@ -1,13 +0,0 @@
1
- auto_evals/
2
- venv/
3
- __pycache__/
4
- .env
5
- .ipynb_checkpoints
6
- *ipynb
7
- .vscode/
8
-
9
- eval-queue/
10
- eval-results/
11
- eval-queue-bk/
12
- eval-results-bk/
13
- logs/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.pre-commit-config.yaml DELETED
@@ -1,53 +0,0 @@
1
- # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- default_language_version:
16
- python: python3
17
-
18
- ci:
19
- autofix_prs: true
20
- autoupdate_commit_msg: '[pre-commit.ci] pre-commit suggestions'
21
- autoupdate_schedule: quarterly
22
-
23
- repos:
24
- - repo: https://github.com/pre-commit/pre-commit-hooks
25
- rev: v4.3.0
26
- hooks:
27
- - id: check-yaml
28
- - id: check-case-conflict
29
- - id: detect-private-key
30
- - id: check-added-large-files
31
- args: ['--maxkb=1000']
32
- - id: requirements-txt-fixer
33
- - id: end-of-file-fixer
34
- - id: trailing-whitespace
35
-
36
- - repo: https://github.com/PyCQA/isort
37
- rev: 5.12.0
38
- hooks:
39
- - id: isort
40
- name: Format imports
41
-
42
- - repo: https://github.com/psf/black
43
- rev: 22.12.0
44
- hooks:
45
- - id: black
46
- name: Format code
47
- additional_dependencies: ['click==8.0.2']
48
-
49
- - repo: https://github.com/charliermarsh/ruff-pre-commit
50
- # Ruff version.
51
- rev: 'v0.0.267'
52
- hooks:
53
- - id: ruff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Makefile DELETED
@@ -1,13 +0,0 @@
1
- .PHONY: style format
2
-
3
-
4
- style:
5
- python -m black --line-length 119 .
6
- python -m isort .
7
- ruff check --fix .
8
-
9
-
10
- quality:
11
- python -m black --check --line-length 119 .
12
- python -m isort --check-only .
13
- ruff check .
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md CHANGED
@@ -1,44 +1,13 @@
1
  ---
2
- title: The Arabic Rag Leaderboard
3
- emoji: 🥇
4
  colorFrom: green
5
  colorTo: indigo
6
  sdk: gradio
 
7
  app_file: app.py
8
  pinned: true
9
- license: apache-2.0
10
  ---
11
 
12
- # Start the configuration
13
-
14
- Most of the variables to change for a default leaderboard are in `src/env.py` (replace the path for your leaderboard) and `src/about.py` (for tasks).
15
-
16
- Results files should have the following format and be stored as json files:
17
- ```json
18
- {
19
- "config": {
20
- "model_dtype": "torch.float16", # or torch.bfloat16 or 8bit or 4bit
21
- "model_name": "path of the model on the hub: org/model",
22
- "model_sha": "revision on the hub",
23
- },
24
- "results": {
25
- "task_name": {
26
- "metric_name": score,
27
- },
28
- "task_name2": {
29
- "metric_name": score,
30
- }
31
- }
32
- }
33
- ```
34
-
35
- Request files are created automatically by this tool.
36
-
37
- If you encounter problem on the space, don't hesitate to restart it to remove the create eval-queue, eval-queue-bk, eval-results and eval-results-bk created folder.
38
-
39
- # Code logic for more complex edits
40
-
41
- You'll find
42
- - the main table' columns names and properties in `src/display/utils.py`
43
- - the logic to read all results and request files, then convert them in dataframe lines, in `src/leaderboard/read_evals.py`, and `src/populate.py`
44
- - the logic to allow or filter submissions in `src/submission/submit.py` and `src/submission/check_validity.py`
 
1
  ---
2
+ title: The Arabic RAG Leaderboard
3
+ emoji: 📊
4
  colorFrom: green
5
  colorTo: indigo
6
  sdk: gradio
7
+ sdk_version: 5.7.1
8
  app_file: app.py
9
  pinned: true
10
+ short_description: The only leaderboard you will require for your RAG needs 🏆
11
  ---
12
 
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app.py CHANGED
@@ -1,204 +1,668 @@
1
- import gradio as gr
2
- from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
 
3
  import pandas as pd
4
- from apscheduler.schedulers.background import BackgroundScheduler
5
- from huggingface_hub import snapshot_download
6
-
7
- from src.about import (
8
- CITATION_BUTTON_LABEL,
9
- CITATION_BUTTON_TEXT,
10
- EVALUATION_QUEUE_TEXT,
11
- INTRODUCTION_TEXT,
12
- LLM_BENCHMARKS_TEXT,
13
- TITLE,
14
- )
15
- from src.display.css_html_js import custom_css
16
- from src.display.utils import (
17
- BENCHMARK_COLS,
18
- COLS,
19
- EVAL_COLS,
20
- EVAL_TYPES,
21
- AutoEvalColumn,
22
- ModelType,
23
- fields,
24
- WeightType,
25
- Precision
26
- )
27
- from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
28
- from src.populate import get_evaluation_queue_df, get_leaderboard_df
29
- from src.submission.submit import add_new_eval
30
-
31
-
32
- def restart_space():
33
- API.restart_space(repo_id=REPO_ID)
34
-
35
- ### Space initialisation
36
- try:
37
- print(EVAL_REQUESTS_PATH)
38
- snapshot_download(
39
- repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
40
- )
41
- except Exception:
42
- restart_space()
43
- try:
44
- print(EVAL_RESULTS_PATH)
45
- snapshot_download(
46
- repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
47
- )
48
- except Exception:
49
- restart_space()
50
-
51
-
52
- LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
53
-
54
- (
55
- finished_eval_queue_df,
56
- running_eval_queue_df,
57
- pending_eval_queue_df,
58
- ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
59
-
60
- def init_leaderboard(dataframe):
61
- if dataframe is None or dataframe.empty:
62
- raise ValueError("Leaderboard DataFrame is empty or None.")
63
- return Leaderboard(
64
- value=dataframe,
65
- datatype=[c.type for c in fields(AutoEvalColumn)],
66
- select_columns=SelectColumns(
67
- default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
68
- cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
69
- label="Select Columns to Display:",
70
- ),
71
- search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
72
- hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
73
- filter_columns=[
74
- ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
75
- ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
76
- ColumnFilter(
77
- AutoEvalColumn.params.name,
78
- type="slider",
79
- min=0.01,
80
- max=150,
81
- label="Select the number of parameters (B)",
82
- ),
83
- ColumnFilter(
84
- AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
85
- ),
86
- ],
87
- bool_checkboxgroup_label="Hide models",
88
- interactive=False,
89
- )
90
-
91
-
92
- demo = gr.Blocks(css=custom_css)
93
- with demo:
94
- gr.HTML(TITLE)
95
- gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
96
-
97
- with gr.Tabs(elem_classes="tab-buttons") as tabs:
98
- with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
99
- leaderboard = init_leaderboard(LEADERBOARD_DF)
100
-
101
- with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
102
- gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
103
-
104
- with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
105
- with gr.Column():
106
- with gr.Row():
107
- gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
108
-
109
- with gr.Column():
110
- with gr.Accordion(
111
- f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
112
- open=False,
113
- ):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114
  with gr.Row():
115
- finished_eval_table = gr.components.Dataframe(
116
- value=finished_eval_queue_df,
117
- headers=EVAL_COLS,
118
- datatype=EVAL_TYPES,
119
- row_count=5,
 
 
 
 
 
 
 
 
 
 
 
120
  )
121
- with gr.Accordion(
122
- f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
123
- open=False,
124
- ):
125
  with gr.Row():
126
- running_eval_table = gr.components.Dataframe(
127
- value=running_eval_queue_df,
128
- headers=EVAL_COLS,
129
- datatype=EVAL_TYPES,
130
- row_count=5,
 
 
131
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132
 
133
- with gr.Accordion(
134
- f" Pending Evaluation Queue ({len(pending_eval_queue_df)})",
135
- open=False,
136
- ):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137
  with gr.Row():
138
- pending_eval_table = gr.components.Dataframe(
139
- value=pending_eval_queue_df,
140
- headers=EVAL_COLS,
141
- datatype=EVAL_TYPES,
142
- row_count=5,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
143
  )
144
- with gr.Row():
145
- gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
146
 
147
- with gr.Row():
148
- with gr.Column():
149
- model_name_textbox = gr.Textbox(label="Model name")
150
- revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
151
- model_type = gr.Dropdown(
152
- choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
153
- label="Model type",
154
- multiselect=False,
155
- value=None,
156
- interactive=True,
157
- )
158
 
159
- with gr.Column():
160
- precision = gr.Dropdown(
161
- choices=[i.value.name for i in Precision if i != Precision.Unknown],
162
- label="Precision",
163
- multiselect=False,
164
- value="float16",
165
- interactive=True,
166
- )
167
- weight_type = gr.Dropdown(
168
- choices=[i.value.name for i in WeightType],
169
- label="Weights type",
170
- multiselect=False,
171
- value="Original",
172
- interactive=True,
 
173
  )
174
- base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
175
-
176
- submit_button = gr.Button("Submit Eval")
177
- submission_result = gr.Markdown()
178
- submit_button.click(
179
- add_new_eval,
180
- [
181
- model_name_textbox,
182
- base_model_name_textbox,
183
- revision_name_textbox,
184
- precision,
185
- weight_type,
186
- model_type,
187
- ],
188
- submission_result,
189
- )
190
 
191
- with gr.Row():
192
- with gr.Accordion("📙 Citation", open=False):
193
- citation_button = gr.Textbox(
194
- value=CITATION_BUTTON_TEXT,
195
- label=CITATION_BUTTON_LABEL,
196
- lines=20,
197
- elem_id="citation-button",
198
- show_copy_button=True,
199
- )
200
 
201
- scheduler = BackgroundScheduler()
202
- scheduler.add_job(restart_space, "interval", seconds=1800)
203
- scheduler.start()
204
- demo.queue(default_concurrency_limit=40).launch()
 
1
+ import os
2
+ import json
3
+ import numpy as np
4
  import pandas as pd
5
+ import gradio as gr
6
+ from huggingface_hub import HfApi, hf_hub_download
7
+
8
+
9
+ OWNER = "Navid-AI"
10
+ DATASET_REPO_ID = f"{OWNER}/requests-dataset"
11
+
12
+ HEADER = """<div style="text-align: center; margin-bottom: 20px;">
13
+ <h1>The Arabic RAG Leaderboard</h1>
14
+ <p style="font-size: 14px; color: #888;">The only leaderboard you will require for your RAG needs 🏆</p>
15
+ </div>
16
+
17
+ """
18
+
19
+ ABOUT_SECTION = """
20
+ ## About
21
+
22
+ The AraGen Leaderboard is designed to evaluate and compare the performance of Chat Arabic Large Language Models (LLMs) on a set of generative tasks. By leveraging the new **3C3H** evaluation measure which evaluate the model's output across six dimensions —Correctness, Completeness, Conciseness, Helpfulness, Honesty, and Harmlessness— the leaderboard provides a comprehensive and holistic evaluation of a model's performance in generating human-like and ethically responsible content.
23
+
24
+ ### Why Focus on Chat Models?
25
+
26
+ AraGen Leaderboard —And 3C3H in general— is specifically designed to assess **chat models**, which interact in conversational settings, intended for end user interaction and require a blend of factual accuracy and user-centric dialogue capabilities. While it is technically possible to submit foundational models, we kindly ask users to refrain from doing so. For evaluations of foundational models using likelihood accuracy based benchmarks, please refer to the [Open Arabic LLM Leaderboard (OALL)](https://huggingface.co/spaces/OALL/Open-Arabic-LLM-Leaderboard).
27
+
28
+ ### How to Submit Your Model?
29
+
30
+ Navigate to the submission section below to submit your open chat model from the HuggingFace Hub for evaluation. Ensure that your model is public and the submmited metadata (precision, revision, #params) is accurate.
31
+
32
+ ### Contact
33
+
34
+ For any inquiries or assistance, feel free to reach out through the community tab at [Inception AraGen Community](https://huggingface.co/spaces/inceptionai/AraGen-Leaderboard/discussions) or via [email](mailto:[email protected]).
35
+ """
36
+
37
+ CITATION_BUTTON_LABEL = """
38
+ Copy the following snippet to cite these results
39
+ """
40
+
41
+ CITATION_BUTTON_TEXT = """
42
+ @misc{AraGen,
43
+ author = {El Filali, Ali and Sengupta, Neha and Abouelseoud, Arwa and Nakov, Preslav and Fourrier, Clémentine},
44
+ title = {Rethinking LLM Evaluation with 3C3H: AraGen Benchmark and Leaderboard},
45
+ year = {2024},
46
+ publisher = {Inception},
47
+ howpublished = "url{https://huggingface.co/spaces/inceptionai/AraGen-Leaderboard}"
48
+ }
49
+ """
50
+
51
+
52
+ def load_results():
53
+ # Get the current directory of the script and construct the path to results.json
54
+ current_dir = os.path.dirname(os.path.abspath(__file__))
55
+ results_file = os.path.join(current_dir, "assets", "results", "results.json")
56
+
57
+ # Load the JSON data from the specified file
58
+ with open(results_file, 'r') as f:
59
+ data = json.load(f)
60
+
61
+ # Filter out any entries that only contain '_last_sync_timestamp'
62
+ filtered_data = []
63
+ for entry in data:
64
+ # If '_last_sync_timestamp' is the only key, skip it
65
+ if len(entry.keys()) == 1 and "_last_sync_timestamp" in entry:
66
+ continue
67
+ filtered_data.append(entry)
68
+
69
+ data = filtered_data
70
+
71
+ # Lists to collect data
72
+ data_3c3h = []
73
+ data_tasks = []
74
+
75
+ for model_data in data:
76
+ # Extract model meta data
77
+ meta = model_data.get('Meta', {})
78
+ model_name = meta.get('Model Name', 'UNK')
79
+ revision = meta.get('Revision', 'UNK')
80
+ precision = meta.get('Precision', 'UNK')
81
+ params = meta.get('Params', 'UNK')
82
+ license = meta.get('License', 'UNK')
83
+
84
+ # Convert "Model Size" to numeric, treating "UNK" as infinity
85
+ try:
86
+ model_size_numeric = float(params)
87
+ except (ValueError, TypeError):
88
+ model_size_numeric = np.inf
89
+
90
+ # 3C3H Scores
91
+ scores_data = model_data.get('claude-3.5-sonnet Scores', {})
92
+ scores_3c3h = scores_data.get('3C3H Scores', {})
93
+ scores_tasks = scores_data.get('Tasks Scores', {})
94
+
95
+ # Multiply scores by 100 to get percentages (keep them as numeric values)
96
+ formatted_scores_3c3h = {k: v*100 for k, v in scores_3c3h.items()}
97
+ formatted_scores_tasks = {k: v*100 for k, v in scores_tasks.items()}
98
+
99
+ # For 3C3H Scores DataFrame
100
+ data_entry_3c3h = {
101
+ 'Model Name': model_name,
102
+ 'Revision': revision,
103
+ 'License': license,
104
+ 'Precision': precision,
105
+ 'Model Size': model_size_numeric, # Numeric value for sorting
106
+ '3C3H Score': formatted_scores_3c3h.get("3C3H Score", np.nan),
107
+ 'Correctness': formatted_scores_3c3h.get("Correctness", np.nan),
108
+ 'Completeness': formatted_scores_3c3h.get("Completeness", np.nan),
109
+ 'Conciseness': formatted_scores_3c3h.get("Conciseness", np.nan),
110
+ 'Helpfulness': formatted_scores_3c3h.get("Helpfulness", np.nan),
111
+ 'Honesty': formatted_scores_3c3h.get("Honesty", np.nan),
112
+ 'Harmlessness': formatted_scores_3c3h.get("Harmlessness", np.nan),
113
+ }
114
+ data_3c3h.append(data_entry_3c3h)
115
+
116
+ # For Tasks Scores DataFrame
117
+ data_entry_tasks = {
118
+ 'Model Name': model_name,
119
+ 'Revision': revision,
120
+ 'License': license,
121
+ 'Precision': precision,
122
+ 'Model Size': model_size_numeric, # Numeric value for sorting
123
+ **formatted_scores_tasks
124
+ }
125
+ data_tasks.append(data_entry_tasks)
126
+
127
+ df_3c3h = pd.DataFrame(data_3c3h)
128
+ df_tasks = pd.DataFrame(data_tasks)
129
+
130
+ # Round the numeric score columns to 4 decimal places
131
+ score_columns_3c3h = ['3C3H Score', 'Correctness', 'Completeness', 'Conciseness', 'Helpfulness', 'Honesty', 'Harmlessness']
132
+ df_3c3h[score_columns_3c3h] = df_3c3h[score_columns_3c3h].round(4)
133
+
134
+ # Replace np.inf with a large number in 'Model Size Filter' for filtering
135
+ max_model_size_value = 1000 # Define a maximum value
136
+ df_3c3h['Model Size Filter'] = df_3c3h['Model Size'].replace(np.inf, max_model_size_value)
137
+
138
+ # Sort df_3c3h by '3C3H Score' descending if column exists
139
+ if '3C3H Score' in df_3c3h.columns:
140
+ df_3c3h = df_3c3h.sort_values(by='3C3H Score', ascending=False)
141
+ df_3c3h.insert(0, 'Rank', range(1, len(df_3c3h) + 1)) # Add Rank column starting from 1
142
+ else:
143
+ df_3c3h.insert(0, 'Rank', range(1, len(df_3c3h) + 1))
144
+
145
+ # Extract task columns
146
+ task_columns = [col for col in df_tasks.columns if col not in ['Model Name', 'Revision', 'License', 'Precision', 'Model Size', 'Model Size Filter']]
147
+
148
+ # Round the task score columns to 4 decimal places
149
+ if task_columns:
150
+ df_tasks[task_columns] = df_tasks[task_columns].round(4)
151
+
152
+ # Replace np.inf with a large number in 'Model Size Filter' for filtering
153
+ df_tasks['Model Size Filter'] = df_tasks['Model Size'].replace(np.inf, max_model_size_value)
154
+
155
+ # Sort df_tasks by the first task column if it exists
156
+ if task_columns:
157
+ first_task = task_columns[0]
158
+ df_tasks = df_tasks.sort_values(by=first_task, ascending=False)
159
+ df_tasks.insert(0, 'Rank', range(1, len(df_tasks) + 1)) # Add Rank column starting from 1
160
+ else:
161
+ df_tasks = df_tasks.sort_values(by='Model Name', ascending=True)
162
+ df_tasks.insert(0, 'Rank', range(1, len(df_tasks) + 1))
163
+
164
+ return df_3c3h, df_tasks, task_columns
165
+
166
+ def load_requests(status_folder):
167
+ api = HfApi()
168
+ requests_data = []
169
+ folder_path_in_repo = status_folder # 'pending', 'finished', or 'failed'
170
+
171
+ hf_api_token = os.environ.get('HF_API_TOKEN', None)
172
+
173
+ try:
174
+ # List files in the dataset repository
175
+ files_info = api.list_repo_files(
176
+ repo_id=DATASET_REPO_ID,
177
+ repo_type="dataset",
178
+ token=hf_api_token
179
+ )
180
+ except Exception as e:
181
+ print(f"Error accessing dataset repository: {e}")
182
+ return pd.DataFrame() # Return empty DataFrame if repository not found or inaccessible
183
+
184
+ # Filter files in the desired folder
185
+ files_in_folder = [f for f in files_info if f.startswith(f"{folder_path_in_repo}/") and f.endswith('.json')]
186
+
187
+ for file_path in files_in_folder:
188
+ try:
189
+ # Download the JSON file
190
+ local_file_path = hf_hub_download(
191
+ repo_id=DATASET_REPO_ID,
192
+ filename=file_path,
193
+ repo_type="dataset",
194
+ token=hf_api_token
195
+ )
196
+ # Load JSON data
197
+ with open(local_file_path, 'r') as f:
198
+ request = json.load(f)
199
+ requests_data.append(request)
200
+ except Exception as e:
201
+ print(f"Error loading file {file_path}: {e}")
202
+ continue # Skip files that can't be loaded
203
+
204
+ df = pd.DataFrame(requests_data)
205
+ return df
206
+
207
+ def submit_model(model_name, revision, precision, params, license):
208
+ # Load existing evaluations
209
+ df_3c3h, df_tasks, _ = load_results()
210
+ existing_models_results = df_3c3h[['Model Name', 'Revision', 'Precision']]
211
+
212
+ # Handle 'Missing' precision
213
+ if precision == 'Missing':
214
+ precision = None
215
+ else:
216
+ precision = precision.strip().lower()
217
+
218
+ # Load pending and finished requests from the dataset repository
219
+ df_pending = load_requests('pending')
220
+ df_finished = load_requests('finished')
221
+
222
+ # Check if model is already evaluated
223
+ model_exists_in_results = ((existing_models_results['Model Name'] == model_name) &
224
+ (existing_models_results['Revision'] == revision) &
225
+ (existing_models_results['Precision'] == precision)).any()
226
+ if model_exists_in_results:
227
+ return f"**Model '{model_name}' with revision '{revision}' and precision '{precision}' has already been evaluated.**"
228
+
229
+ # Check if model is in pending requests
230
+ if not df_pending.empty:
231
+ existing_models_pending = df_pending[['model_name', 'revision', 'precision']]
232
+ model_exists_in_pending = ((existing_models_pending['model_name'] == model_name) &
233
+ (existing_models_pending['revision'] == revision) &
234
+ (existing_models_pending['precision'] == precision)).any()
235
+ if model_exists_in_pending:
236
+ return f"**Model '{model_name}' with revision '{revision}' and precision '{precision}' is already in the pending evaluations.**"
237
+
238
+ # Check if model is in finished requests
239
+ if not df_finished.empty:
240
+ existing_models_finished = df_finished[['model_name', 'revision', 'precision']]
241
+ model_exists_in_finished = ((existing_models_finished['model_name'] == model_name) &
242
+ (existing_models_finished['revision'] == revision) &
243
+ (existing_models_finished['precision'] == precision)).any()
244
+ if model_exists_in_finished:
245
+ return f"**Model '{model_name}' with revision '{revision}' and precision '{precision}' has already been evaluated.**"
246
+
247
+ # Check if model exists on HuggingFace Hub
248
+ api = HfApi()
249
+ try:
250
+ model_info = api.model_info(model_name)
251
+ except Exception as e:
252
+ return f"**Error: Could not find model '{model_name}' on HuggingFace Hub. Please ensure the model name is correct and the model is public.**"
253
+
254
+ # Proceed with submission
255
+ status = "PENDING"
256
+
257
+ # Prepare the submission data
258
+ submission = {
259
+ "model_name": model_name,
260
+ "license": license,
261
+ "revision": revision,
262
+ "precision": precision,
263
+ "status": status,
264
+ "params": params
265
+ }
266
+
267
+ # Serialize the submission to JSON
268
+ submission_json = json.dumps(submission, indent=2)
269
+
270
+ # Define the file path in the repository
271
+ org_model = model_name.split('/')
272
+ if len(org_model) != 2:
273
+ return "**Please enter the full model name including the organization or username, e.g., 'inceptionai/jais-family-30b-8k'**"
274
+ org, model_id = org_model
275
+ precision_str = precision if precision else 'Missing'
276
+ file_path_in_repo = f"pending/{org}/{model_id}_eval_request_{revision}_{precision_str}.json"
277
+
278
+ # Upload the submission to the dataset repository
279
+ try:
280
+ hf_api_token = os.environ.get('HF_API_TOKEN', None)
281
+ api.upload_file(
282
+ path_or_fileobj=submission_json.encode('utf-8'),
283
+ path_in_repo=file_path_in_repo,
284
+ repo_id=DATASET_REPO_ID,
285
+ repo_type="dataset",
286
+ token=hf_api_token
287
+ )
288
+ except Exception as e:
289
+ return f"**Error: Could not submit the model. {str(e)}**"
290
+
291
+ return f"**Model '{model_name}' has been submitted for evaluation.**"
292
+
293
+ def main():
294
+ df_3c3h, df_tasks, task_columns = load_results()
295
+
296
+ # Extract unique Precision and License values for filters
297
+ precision_options_3c3h = sorted(df_3c3h['Precision'].dropna().unique().tolist())
298
+ precision_options_3c3h = [p for p in precision_options_3c3h if p != 'UNK']
299
+ precision_options_3c3h.append('Missing')
300
+
301
+ license_options_3c3h = sorted(df_3c3h['License'].dropna().unique().tolist())
302
+ license_options_3c3h = [l for l in license_options_3c3h if l != 'UNK']
303
+ license_options_3c3h.append('Missing')
304
+
305
+ precision_options_tasks = sorted(df_tasks['Precision'].dropna().unique().tolist())
306
+ precision_options_tasks = [p for p in precision_options_tasks if p != 'UNK']
307
+ precision_options_tasks.append('Missing')
308
+
309
+ license_options_tasks = sorted(df_tasks['License'].dropna().unique().tolist())
310
+ license_options_tasks = [l for l in license_options_tasks if l != 'UNK']
311
+ license_options_tasks.append('Missing')
312
+
313
+ # Get min and max model sizes for sliders, handling 'inf' values
314
+ min_model_size_3c3h = int(df_3c3h['Model Size Filter'].min())
315
+ max_model_size_3c3h = int(df_3c3h['Model Size Filter'].max())
316
+
317
+ min_model_size_tasks = int(df_tasks['Model Size Filter'].min())
318
+ max_model_size_tasks = int(df_tasks['Model Size Filter'].max())
319
+
320
+ # Exclude 'Model Size Filter' from column selectors
321
+ column_choices_3c3h = [col for col in df_3c3h.columns if col != 'Model Size Filter']
322
+ column_choices_tasks = [col for col in df_tasks.columns if col != 'Model Size Filter']
323
+
324
+ with gr.Blocks() as demo:
325
+ gr.Markdown(HEADER)
326
+
327
+ with gr.Tabs():
328
+ with gr.Tab("Retrieval"):
329
+ with gr.Tabs():
330
+ with gr.Tab("Leaderboard"):
331
  with gr.Row():
332
+ search_box_retrieval = gr.Textbox(
333
+ placeholder="Search for models...",
334
+ label="Search",
335
+ interactive=True
336
+ )
337
+
338
+ with gr.Row():
339
+ license_filter_retrieval = gr.CheckboxGroup(
340
+ choices=license_options_3c3h,
341
+ value=license_options_3c3h.copy(), # Default all selected
342
+ label="Filter by License",
343
+ )
344
+ precision_filter_retrieval = gr.CheckboxGroup(
345
+ choices=precision_options_3c3h,
346
+ value=precision_options_3c3h.copy(), # Default all selected
347
+ label="Filter by Precision",
348
  )
 
 
 
 
349
  with gr.Row():
350
+ model_size_min_filter_3c3h = gr.Slider(
351
+ minimum=min_model_size_3c3h,
352
+ maximum=max_model_size_3c3h,
353
+ value=min_model_size_3c3h,
354
+ step=1,
355
+ label="Minimum Model Size",
356
+ interactive=True
357
  )
358
+ model_size_max_filter_3c3h = gr.Slider(
359
+ minimum=min_model_size_3c3h,
360
+ maximum=max_model_size_3c3h,
361
+ value=max_model_size_3c3h,
362
+ step=1,
363
+ label="Maximum Model Size",
364
+ interactive=True
365
+ )
366
+
367
+ leaderboard_3c3h = gr.Dataframe(
368
+ df_3c3h[['Rank', 'Model Name', '3C3H Score', 'Correctness', 'Completeness',
369
+ 'Conciseness', 'Helpfulness', 'Honesty', 'Harmlessness']],
370
+ interactive=False
371
+ )
372
+
373
+ def filter_df_3c3h(search_query, selected_cols, precision_filters, license_filters, min_size, max_size):
374
+ filtered_df = df_3c3h.copy()
375
+
376
+ # Ensure min_size <= max_size
377
+ if min_size > max_size:
378
+ min_size, max_size = max_size, min_size
379
+
380
+ # Apply search filter
381
+ if search_query:
382
+ filtered_df = filtered_df[filtered_df['Model Name'].str.contains(search_query, case=False, na=False)]
383
+
384
+ # Apply Precision filter
385
+ if precision_filters:
386
+ include_missing = 'Missing' in precision_filters
387
+ selected_precisions = [p for p in precision_filters if p != 'Missing']
388
+ if include_missing:
389
+ filtered_df = filtered_df[
390
+ (filtered_df['Precision'].isin(selected_precisions)) |
391
+ (filtered_df['Precision'] == 'UNK') |
392
+ (filtered_df['Precision'].isna())
393
+ ]
394
+ else:
395
+ filtered_df = filtered_df[filtered_df['Precision'].isin(selected_precisions)]
396
+
397
+ # Apply License filter
398
+ if license_filters:
399
+ include_missing = 'Missing' in license_filters
400
+ selected_licenses = [l for l in license_filters if l != 'Missing']
401
+ if include_missing:
402
+ filtered_df = filtered_df[
403
+ (filtered_df['License'].isin(selected_licenses)) |
404
+ (filtered_df['License'] == 'UNK') |
405
+ (filtered_df['License'].isna())
406
+ ]
407
+ else:
408
+ filtered_df = filtered_df[filtered_df['License'].isin(selected_licenses)]
409
+
410
+ # Apply Model Size filter
411
+ filtered_df = filtered_df[
412
+ (filtered_df['Model Size Filter'] >= min_size) &
413
+ (filtered_df['Model Size Filter'] <= max_size)
414
+ ]
415
+
416
+ # Remove existing 'Rank' column if present
417
+ if 'Rank' in filtered_df.columns:
418
+ filtered_df = filtered_df.drop(columns=['Rank'])
419
+
420
+ # Recalculate Rank after filtering
421
+ filtered_df = filtered_df.reset_index(drop=True)
422
+ filtered_df.insert(0, 'Rank', range(1, len(filtered_df) + 1))
423
+
424
+ # Ensure selected columns are present
425
+ selected_cols = [col for col in selected_cols if col in filtered_df.columns]
426
+
427
+ return filtered_df[selected_cols]
428
+
429
+ # Bind the filter function to the appropriate events
430
+ filter_inputs_3c3h = [
431
+ search_box_retrieval,
432
+ precision_filter_retrieval,
433
+ license_filter_retrieval,
434
+ model_size_min_filter_3c3h,
435
+ model_size_max_filter_3c3h
436
+ ]
437
+ search_box_retrieval.submit(
438
+ filter_df_3c3h,
439
+ inputs=filter_inputs_3c3h,
440
+ outputs=leaderboard_3c3h
441
+ )
442
+
443
+ # Bind change events for CheckboxGroups and sliders
444
+ for component in filter_inputs_3c3h:
445
+ component.change(
446
+ filter_df_3c3h,
447
+ inputs=filter_inputs_3c3h,
448
+ outputs=leaderboard_3c3h
449
+ )
450
+
451
+ with gr.Tab("Submit Retriever"):
452
+
453
+ model_name_input = gr.Textbox(
454
+ label="Model",
455
+ placeholder="Enter the full model name from HuggingFace Hub (e.g., inceptionai/jais-family-30b-8k)"
456
+ )
457
+ revision_input = gr.Textbox(
458
+ label="Revision",
459
+ placeholder="main",
460
+ value="main"
461
+ )
462
+ precision_input = gr.Dropdown(
463
+ choices=["float16", "float32", "bfloat16", "8bit", "4bit"],
464
+ label="Precision",
465
+ value="float16"
466
+ )
467
+ params_input = gr.Textbox(
468
+ label="Params",
469
+ placeholder="Enter the approximate number of parameters as Integer (e.g., 7, 13, 30, 70 ...)"
470
+ )
471
+ # Changed from Dropdown to Textbox with default value "Open"
472
+ license_input = gr.Textbox(
473
+ label="License",
474
+ placeholder="Enter the license type (Generic one is 'Open' in case no License is provided)",
475
+ value="Open"
476
+ )
477
+ submit_button = gr.Button("Submit Model")
478
+ submission_result = gr.Markdown()
479
+
480
+ submit_button.click(
481
+ submit_model,
482
+ inputs=[model_name_input, revision_input, precision_input, params_input, license_input],
483
+ outputs=submission_result
484
+ )
485
+
486
+ # Load pending, finished, and failed requests
487
+ df_pending = load_requests('pending')
488
+ df_finished = load_requests('finished')
489
+ df_failed = load_requests('failed')
490
 
491
+ # Display the tables
492
+ gr.Markdown("## Evaluation Status")
493
+ with gr.Accordion(f"Pending Evaluations ({len(df_pending)})", open=False):
494
+ if not df_pending.empty:
495
+ gr.Dataframe(df_pending)
496
+ else:
497
+ gr.Markdown("No pending evaluations.")
498
+ with gr.Accordion(f"Finished Evaluations ({len(df_finished)})", open=False):
499
+ if not df_finished.empty:
500
+ gr.Dataframe(df_finished)
501
+ else:
502
+ gr.Markdown("No finished evaluations.")
503
+ with gr.Accordion(f"Failed Evaluations ({len(df_failed)})", open=False):
504
+ if not df_failed.empty:
505
+ gr.Dataframe(df_failed)
506
+ else:
507
+ gr.Markdown("No failed evaluations.")
508
+
509
+ with gr.Tab("Reranking"):
510
+ with gr.Tabs():
511
+ with gr.Tab("Leaderboard"):
512
+
513
  with gr.Row():
514
+ search_box_tasks = gr.Textbox(
515
+ placeholder="Search for models...",
516
+ label="Search",
517
+ interactive=True
518
+ )
519
+ with gr.Row():
520
+ column_selector_tasks = gr.CheckboxGroup(
521
+ choices=column_choices_tasks,
522
+ value=['Rank', 'Model Name'] + task_columns,
523
+ label="Select columns to display",
524
+ )
525
+ with gr.Row():
526
+ license_filter_tasks = gr.CheckboxGroup(
527
+ choices=license_options_tasks,
528
+ value=license_options_tasks.copy(), # Default all selected
529
+ label="Filter by License",
530
+ )
531
+ precision_filter_tasks = gr.CheckboxGroup(
532
+ choices=precision_options_tasks,
533
+ value=precision_options_tasks.copy(), # Default all selected
534
+ label="Filter by Precision",
535
+ )
536
+ with gr.Row():
537
+ model_size_min_filter_tasks = gr.Slider(
538
+ minimum=min_model_size_tasks,
539
+ maximum=max_model_size_tasks,
540
+ value=min_model_size_tasks,
541
+ step=1,
542
+ label="Minimum Model Size",
543
+ interactive=True
544
+ )
545
+ model_size_max_filter_tasks = gr.Slider(
546
+ minimum=min_model_size_tasks,
547
+ maximum=max_model_size_tasks,
548
+ value=max_model_size_tasks,
549
+ step=1,
550
+ label="Maximum Model Size",
551
+ interactive=True
552
+ )
553
+
554
+ leaderboard_tasks = gr.Dataframe(
555
+ df_tasks[['Rank', 'Model Name'] + task_columns],
556
+ interactive=False
557
+ )
558
+
559
+ def filter_df_tasks(search_query, selected_cols, precision_filters, license_filters, min_size, max_size):
560
+ filtered_df = df_tasks.copy()
561
+
562
+ # Ensure min_size <= max_size
563
+ if min_size > max_size:
564
+ min_size, max_size = max_size, min_size
565
+
566
+ # Apply search filter
567
+ if search_query:
568
+ filtered_df = filtered_df[filtered_df['Model Name'].str.contains(search_query, case=False, na=False)]
569
+
570
+ # Apply Precision filter
571
+ if precision_filters:
572
+ include_missing = 'Missing' in precision_filters
573
+ selected_precisions = [p for p in precision_filters if p != 'Missing']
574
+ if include_missing:
575
+ filtered_df = filtered_df[
576
+ (filtered_df['Precision'].isin(selected_precisions)) |
577
+ (filtered_df['Precision'] == 'UNK') |
578
+ (filtered_df['Precision'].isna())
579
+ ]
580
+ else:
581
+ filtered_df = filtered_df[filtered_df['Precision'].isin(selected_precisions)]
582
+
583
+ # Apply License filter
584
+ if license_filters:
585
+ include_missing = 'Missing' in license_filters
586
+ selected_licenses = [l for l in license_filters if l != 'Missing']
587
+ if include_missing:
588
+ filtered_df = filtered_df[
589
+ (filtered_df['License'].isin(selected_licenses)) |
590
+ (filtered_df['License'] == 'UNK') |
591
+ (filtered_df['License'].isna())
592
+ ]
593
+ else:
594
+ filtered_df = filtered_df[filtered_df['License'].isin(selected_licenses)]
595
+
596
+ # Apply Model Size filter
597
+ filtered_df = filtered_df[
598
+ (filtered_df['Model Size Filter'] >= min_size) &
599
+ (filtered_df['Model Size Filter'] <= max_size)
600
+ ]
601
+
602
+ # Remove existing 'Rank' column if present
603
+ if 'Rank' in filtered_df.columns:
604
+ filtered_df = filtered_df.drop(columns=['Rank'])
605
+
606
+ # Sort by the first task column if it exists
607
+ if task_columns:
608
+ first_task = task_columns[0]
609
+ filtered_df = filtered_df.sort_values(by=first_task, ascending=False)
610
+ else:
611
+ filtered_df = filtered_df.sort_values(by='Model Name', ascending=True)
612
+
613
+ # Recalculate Rank after filtering
614
+ filtered_df = filtered_df.reset_index(drop=True)
615
+ filtered_df.insert(0, 'Rank', range(1, len(filtered_df) + 1))
616
+
617
+ # Ensure selected columns are present
618
+ selected_cols = [col for col in selected_cols if col in filtered_df.columns]
619
+
620
+ return filtered_df[selected_cols]
621
+
622
+ # Bind the filter function to the appropriate events
623
+ filter_inputs_tasks = [
624
+ search_box_tasks,
625
+ column_selector_tasks,
626
+ precision_filter_tasks,
627
+ license_filter_tasks,
628
+ model_size_min_filter_tasks,
629
+ model_size_max_filter_tasks
630
+ ]
631
+ search_box_tasks.submit(
632
+ filter_df_tasks,
633
+ inputs=filter_inputs_tasks,
634
+ outputs=leaderboard_tasks
635
+ )
636
+
637
+ # Bind change events for CheckboxGroups and sliders
638
+ for component in filter_inputs_tasks:
639
+ component.change(
640
+ filter_df_tasks,
641
+ inputs=filter_inputs_tasks,
642
+ outputs=leaderboard_tasks
643
  )
 
 
644
 
645
+ with gr.Tab("Submit Reranker"):
646
+ pass
 
 
 
 
 
 
 
 
 
647
 
648
+ with gr.Tab("LLM Context Answering"):
649
+ with gr.Tabs():
650
+ with gr.Tab("Leaderboard"):
651
+ pass
652
+ with gr.Tab("Submit Here"):
653
+ pass
654
+
655
+ with gr.Row():
656
+ with gr.Accordion("📙 Citation", open=False):
657
+ citation_button = gr.Textbox(
658
+ value=CITATION_BUTTON_TEXT,
659
+ label=CITATION_BUTTON_LABEL,
660
+ lines=20,
661
+ elem_id="citation-button",
662
+ show_copy_button=True,
663
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
664
 
665
+ demo.launch()
 
 
 
 
 
 
 
 
666
 
667
+ if __name__ == "__main__":
668
+ main()
 
 
pyproject.toml DELETED
@@ -1,13 +0,0 @@
1
- [tool.ruff]
2
- # Enable pycodestyle (`E`) and Pyflakes (`F`) codes by default.
3
- select = ["E", "F"]
4
- ignore = ["E501"] # line too long (black is taking care of this)
5
- line-length = 119
6
- fixable = ["A", "B", "C", "D", "E", "F", "G", "I", "N", "Q", "S", "T", "W", "ANN", "ARG", "BLE", "COM", "DJ", "DTZ", "EM", "ERA", "EXE", "FBT", "ICN", "INP", "ISC", "NPY", "PD", "PGH", "PIE", "PL", "PT", "PTH", "PYI", "RET", "RSE", "RUF", "SIM", "SLF", "TCH", "TID", "TRY", "UP", "YTT"]
7
-
8
- [tool.isort]
9
- profile = "black"
10
- line_length = 119
11
-
12
- [tool.black]
13
- line-length = 119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
requirements.txt DELETED
@@ -1,16 +0,0 @@
1
- APScheduler
2
- black
3
- datasets
4
- gradio
5
- gradio[oauth]
6
- gradio_leaderboard==0.0.13
7
- gradio_client
8
- huggingface-hub>=0.18.0
9
- matplotlib
10
- numpy
11
- pandas
12
- python-dateutil
13
- tqdm
14
- transformers
15
- tokenizers>=0.15.0
16
- sentencepiece
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/about.py DELETED
@@ -1,72 +0,0 @@
1
- from dataclasses import dataclass
2
- from enum import Enum
3
-
4
- @dataclass
5
- class Task:
6
- benchmark: str
7
- metric: str
8
- col_name: str
9
-
10
-
11
- # Select your tasks here
12
- # ---------------------------------------------------
13
- class Tasks(Enum):
14
- # task_key in the json file, metric_key in the json file, name to display in the leaderboard
15
- task0 = Task("anli_r1", "acc", "ANLI")
16
- task1 = Task("logiqa", "acc_norm", "LogiQA")
17
-
18
- NUM_FEWSHOT = 0 # Change with your few shot
19
- # ---------------------------------------------------
20
-
21
-
22
-
23
- # Your leaderboard name
24
- TITLE = """<h1 align="center" id="space-title">The Arabic RAG Leaderboard</h1>"""
25
-
26
- # What does your leaderboard evaluate?
27
- INTRODUCTION_TEXT = """
28
- Intro text
29
- """
30
-
31
- # Which evaluations are you running? how can people reproduce what you have?
32
- LLM_BENCHMARKS_TEXT = f"""
33
- ## How it works
34
-
35
- ## Reproducibility
36
- To reproduce our results, here is the commands you can run:
37
-
38
- """
39
-
40
- EVALUATION_QUEUE_TEXT = """
41
- ## Some good practices before submitting a model
42
-
43
- ### 1) Make sure you can load your model and tokenizer using AutoClasses:
44
- ```python
45
- from transformers import AutoConfig, AutoModel, AutoTokenizer
46
- config = AutoConfig.from_pretrained("your model name", revision=revision)
47
- model = AutoModel.from_pretrained("your model name", revision=revision)
48
- tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
49
- ```
50
- If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
51
-
52
- Note: make sure your model is public!
53
- Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!
54
-
55
- ### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
56
- It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!
57
-
58
- ### 3) Make sure your model has an open license!
59
- This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗
60
-
61
- ### 4) Fill up your model card
62
- When we add extra information about models to the leaderboard, it will be automatically taken from the model card
63
-
64
- ## In case of model failure
65
- If your model is displayed in the `FAILED` category, its execution stopped.
66
- Make sure you have followed the above steps first.
67
- If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task).
68
- """
69
-
70
- CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
71
- CITATION_BUTTON_TEXT = r"""
72
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/display/css_html_js.py DELETED
@@ -1,105 +0,0 @@
1
- custom_css = """
2
-
3
- .markdown-text {
4
- font-size: 16px !important;
5
- }
6
-
7
- #models-to-add-text {
8
- font-size: 18px !important;
9
- }
10
-
11
- #citation-button span {
12
- font-size: 16px !important;
13
- }
14
-
15
- #citation-button textarea {
16
- font-size: 16px !important;
17
- }
18
-
19
- #citation-button > label > button {
20
- margin: 6px;
21
- transform: scale(1.3);
22
- }
23
-
24
- #leaderboard-table {
25
- margin-top: 15px
26
- }
27
-
28
- #leaderboard-table-lite {
29
- margin-top: 15px
30
- }
31
-
32
- #search-bar-table-box > div:first-child {
33
- background: none;
34
- border: none;
35
- }
36
-
37
- #search-bar {
38
- padding: 0px;
39
- }
40
-
41
- /* Limit the width of the first AutoEvalColumn so that names don't expand too much */
42
- #leaderboard-table td:nth-child(2),
43
- #leaderboard-table th:nth-child(2) {
44
- max-width: 400px;
45
- overflow: auto;
46
- white-space: nowrap;
47
- }
48
-
49
- .tab-buttons button {
50
- font-size: 20px;
51
- }
52
-
53
- #scale-logo {
54
- border-style: none !important;
55
- box-shadow: none;
56
- display: block;
57
- margin-left: auto;
58
- margin-right: auto;
59
- max-width: 600px;
60
- }
61
-
62
- #scale-logo .download {
63
- display: none;
64
- }
65
- #filter_type{
66
- border: 0;
67
- padding-left: 0;
68
- padding-top: 0;
69
- }
70
- #filter_type label {
71
- display: flex;
72
- }
73
- #filter_type label > span{
74
- margin-top: var(--spacing-lg);
75
- margin-right: 0.5em;
76
- }
77
- #filter_type label > .wrap{
78
- width: 103px;
79
- }
80
- #filter_type label > .wrap .wrap-inner{
81
- padding: 2px;
82
- }
83
- #filter_type label > .wrap .wrap-inner input{
84
- width: 1px
85
- }
86
- #filter-columns-type{
87
- border:0;
88
- padding:0.5;
89
- }
90
- #filter-columns-size{
91
- border:0;
92
- padding:0.5;
93
- }
94
- #box-filter > .form{
95
- border: 0
96
- }
97
- """
98
-
99
- get_window_url_params = """
100
- function(url_params) {
101
- const params = new URLSearchParams(window.location.search);
102
- url_params = Object.fromEntries(params);
103
- return url_params;
104
- }
105
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/display/formatting.py DELETED
@@ -1,27 +0,0 @@
1
- def model_hyperlink(link, model_name):
2
- return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
3
-
4
-
5
- def make_clickable_model(model_name):
6
- link = f"https://huggingface.co/{model_name}"
7
- return model_hyperlink(link, model_name)
8
-
9
-
10
- def styled_error(error):
11
- return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
12
-
13
-
14
- def styled_warning(warn):
15
- return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
16
-
17
-
18
- def styled_message(message):
19
- return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
20
-
21
-
22
- def has_no_nan_values(df, columns):
23
- return df[columns].notna().all(axis=1)
24
-
25
-
26
- def has_nan_values(df, columns):
27
- return df[columns].isna().any(axis=1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/display/utils.py DELETED
@@ -1,110 +0,0 @@
1
- from dataclasses import dataclass, make_dataclass
2
- from enum import Enum
3
-
4
- import pandas as pd
5
-
6
- from src.about import Tasks
7
-
8
- def fields(raw_class):
9
- return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
10
-
11
-
12
- # These classes are for user facing column names,
13
- # to avoid having to change them all around the code
14
- # when a modif is needed
15
- @dataclass
16
- class ColumnContent:
17
- name: str
18
- type: str
19
- displayed_by_default: bool
20
- hidden: bool = False
21
- never_hidden: bool = False
22
-
23
- ## Leaderboard columns
24
- auto_eval_column_dict = []
25
- # Init
26
- auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
27
- auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
28
- #Scores
29
- auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
30
- for task in Tasks:
31
- auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
32
- # Model information
33
- auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
34
- auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
35
- auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
36
- auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
37
- auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
38
- auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
39
- auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
40
- auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
41
- auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
42
-
43
- # We use make dataclass to dynamically fill the scores from Tasks
44
- AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
45
-
46
- ## For the queue columns in the submission tab
47
- @dataclass(frozen=True)
48
- class EvalQueueColumn: # Queue column
49
- model = ColumnContent("model", "markdown", True)
50
- revision = ColumnContent("revision", "str", True)
51
- private = ColumnContent("private", "bool", True)
52
- precision = ColumnContent("precision", "str", True)
53
- weight_type = ColumnContent("weight_type", "str", "Original")
54
- status = ColumnContent("status", "str", True)
55
-
56
- ## All the model information that we might need
57
- @dataclass
58
- class ModelDetails:
59
- name: str
60
- display_name: str = ""
61
- symbol: str = "" # emoji
62
-
63
-
64
- class ModelType(Enum):
65
- PT = ModelDetails(name="pretrained", symbol="🟢")
66
- FT = ModelDetails(name="fine-tuned", symbol="🔶")
67
- IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
68
- RL = ModelDetails(name="RL-tuned", symbol="🟦")
69
- Unknown = ModelDetails(name="", symbol="?")
70
-
71
- def to_str(self, separator=" "):
72
- return f"{self.value.symbol}{separator}{self.value.name}"
73
-
74
- @staticmethod
75
- def from_str(type):
76
- if "fine-tuned" in type or "🔶" in type:
77
- return ModelType.FT
78
- if "pretrained" in type or "🟢" in type:
79
- return ModelType.PT
80
- if "RL-tuned" in type or "🟦" in type:
81
- return ModelType.RL
82
- if "instruction-tuned" in type or "⭕" in type:
83
- return ModelType.IFT
84
- return ModelType.Unknown
85
-
86
- class WeightType(Enum):
87
- Adapter = ModelDetails("Adapter")
88
- Original = ModelDetails("Original")
89
- Delta = ModelDetails("Delta")
90
-
91
- class Precision(Enum):
92
- float16 = ModelDetails("float16")
93
- bfloat16 = ModelDetails("bfloat16")
94
- Unknown = ModelDetails("?")
95
-
96
- def from_str(precision):
97
- if precision in ["torch.float16", "float16"]:
98
- return Precision.float16
99
- if precision in ["torch.bfloat16", "bfloat16"]:
100
- return Precision.bfloat16
101
- return Precision.Unknown
102
-
103
- # Column selection
104
- COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
105
-
106
- EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
107
- EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
108
-
109
- BENCHMARK_COLS = [t.value.col_name for t in Tasks]
110
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/envs.py DELETED
@@ -1,25 +0,0 @@
1
- import os
2
-
3
- from huggingface_hub import HfApi
4
-
5
- # Info to change for your repository
6
- # ----------------------------------
7
- TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
8
-
9
- OWNER = "demo-leaderboard-backend" # Change to your org - don't forget to create a results and request dataset, with the correct format!
10
- # ----------------------------------
11
-
12
- REPO_ID = f"{OWNER}/leaderboard"
13
- QUEUE_REPO = f"{OWNER}/requests"
14
- RESULTS_REPO = f"{OWNER}/results"
15
-
16
- # If you setup a cache later, just change HF_HOME
17
- CACHE_PATH=os.getenv("HF_HOME", ".")
18
-
19
- # Local caches
20
- EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
21
- EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
22
- EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
23
- EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
24
-
25
- API = HfApi(token=TOKEN)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/leaderboard/read_evals.py DELETED
@@ -1,196 +0,0 @@
1
- import glob
2
- import json
3
- import math
4
- import os
5
- from dataclasses import dataclass
6
-
7
- import dateutil
8
- import numpy as np
9
-
10
- from src.display.formatting import make_clickable_model
11
- from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
12
- from src.submission.check_validity import is_model_on_hub
13
-
14
-
15
- @dataclass
16
- class EvalResult:
17
- """Represents one full evaluation. Built from a combination of the result and request file for a given run.
18
- """
19
- eval_name: str # org_model_precision (uid)
20
- full_model: str # org/model (path on hub)
21
- org: str
22
- model: str
23
- revision: str # commit hash, "" if main
24
- results: dict
25
- precision: Precision = Precision.Unknown
26
- model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
27
- weight_type: WeightType = WeightType.Original # Original or Adapter
28
- architecture: str = "Unknown"
29
- license: str = "?"
30
- likes: int = 0
31
- num_params: int = 0
32
- date: str = "" # submission date of request file
33
- still_on_hub: bool = False
34
-
35
- @classmethod
36
- def init_from_json_file(self, json_filepath):
37
- """Inits the result from the specific model result file"""
38
- with open(json_filepath) as fp:
39
- data = json.load(fp)
40
-
41
- config = data.get("config")
42
-
43
- # Precision
44
- precision = Precision.from_str(config.get("model_dtype"))
45
-
46
- # Get model and org
47
- org_and_model = config.get("model_name", config.get("model_args", None))
48
- org_and_model = org_and_model.split("/", 1)
49
-
50
- if len(org_and_model) == 1:
51
- org = None
52
- model = org_and_model[0]
53
- result_key = f"{model}_{precision.value.name}"
54
- else:
55
- org = org_and_model[0]
56
- model = org_and_model[1]
57
- result_key = f"{org}_{model}_{precision.value.name}"
58
- full_model = "/".join(org_and_model)
59
-
60
- still_on_hub, _, model_config = is_model_on_hub(
61
- full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
62
- )
63
- architecture = "?"
64
- if model_config is not None:
65
- architectures = getattr(model_config, "architectures", None)
66
- if architectures:
67
- architecture = ";".join(architectures)
68
-
69
- # Extract results available in this file (some results are split in several files)
70
- results = {}
71
- for task in Tasks:
72
- task = task.value
73
-
74
- # We average all scores of a given metric (not all metrics are present in all files)
75
- accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
76
- if accs.size == 0 or any([acc is None for acc in accs]):
77
- continue
78
-
79
- mean_acc = np.mean(accs) * 100.0
80
- results[task.benchmark] = mean_acc
81
-
82
- return self(
83
- eval_name=result_key,
84
- full_model=full_model,
85
- org=org,
86
- model=model,
87
- results=results,
88
- precision=precision,
89
- revision= config.get("model_sha", ""),
90
- still_on_hub=still_on_hub,
91
- architecture=architecture
92
- )
93
-
94
- def update_with_request_file(self, requests_path):
95
- """Finds the relevant request file for the current model and updates info with it"""
96
- request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
97
-
98
- try:
99
- with open(request_file, "r") as f:
100
- request = json.load(f)
101
- self.model_type = ModelType.from_str(request.get("model_type", ""))
102
- self.weight_type = WeightType[request.get("weight_type", "Original")]
103
- self.license = request.get("license", "?")
104
- self.likes = request.get("likes", 0)
105
- self.num_params = request.get("params", 0)
106
- self.date = request.get("submitted_time", "")
107
- except Exception:
108
- print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
109
-
110
- def to_dict(self):
111
- """Converts the Eval Result to a dict compatible with our dataframe display"""
112
- average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
113
- data_dict = {
114
- "eval_name": self.eval_name, # not a column, just a save name,
115
- AutoEvalColumn.precision.name: self.precision.value.name,
116
- AutoEvalColumn.model_type.name: self.model_type.value.name,
117
- AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
118
- AutoEvalColumn.weight_type.name: self.weight_type.value.name,
119
- AutoEvalColumn.architecture.name: self.architecture,
120
- AutoEvalColumn.model.name: make_clickable_model(self.full_model),
121
- AutoEvalColumn.revision.name: self.revision,
122
- AutoEvalColumn.average.name: average,
123
- AutoEvalColumn.license.name: self.license,
124
- AutoEvalColumn.likes.name: self.likes,
125
- AutoEvalColumn.params.name: self.num_params,
126
- AutoEvalColumn.still_on_hub.name: self.still_on_hub,
127
- }
128
-
129
- for task in Tasks:
130
- data_dict[task.value.col_name] = self.results[task.value.benchmark]
131
-
132
- return data_dict
133
-
134
-
135
- def get_request_file_for_model(requests_path, model_name, precision):
136
- """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
137
- request_files = os.path.join(
138
- requests_path,
139
- f"{model_name}_eval_request_*.json",
140
- )
141
- request_files = glob.glob(request_files)
142
-
143
- # Select correct request file (precision)
144
- request_file = ""
145
- request_files = sorted(request_files, reverse=True)
146
- for tmp_request_file in request_files:
147
- with open(tmp_request_file, "r") as f:
148
- req_content = json.load(f)
149
- if (
150
- req_content["status"] in ["FINISHED"]
151
- and req_content["precision"] == precision.split(".")[-1]
152
- ):
153
- request_file = tmp_request_file
154
- return request_file
155
-
156
-
157
- def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
158
- """From the path of the results folder root, extract all needed info for results"""
159
- model_result_filepaths = []
160
-
161
- for root, _, files in os.walk(results_path):
162
- # We should only have json files in model results
163
- if len(files) == 0 or any([not f.endswith(".json") for f in files]):
164
- continue
165
-
166
- # Sort the files by date
167
- try:
168
- files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
169
- except dateutil.parser._parser.ParserError:
170
- files = [files[-1]]
171
-
172
- for file in files:
173
- model_result_filepaths.append(os.path.join(root, file))
174
-
175
- eval_results = {}
176
- for model_result_filepath in model_result_filepaths:
177
- # Creation of result
178
- eval_result = EvalResult.init_from_json_file(model_result_filepath)
179
- eval_result.update_with_request_file(requests_path)
180
-
181
- # Store results of same eval together
182
- eval_name = eval_result.eval_name
183
- if eval_name in eval_results.keys():
184
- eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
185
- else:
186
- eval_results[eval_name] = eval_result
187
-
188
- results = []
189
- for v in eval_results.values():
190
- try:
191
- v.to_dict() # we test if the dict version is complete
192
- results.append(v)
193
- except KeyError: # not all eval values present
194
- continue
195
-
196
- return results
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/populate.py DELETED
@@ -1,58 +0,0 @@
1
- import json
2
- import os
3
-
4
- import pandas as pd
5
-
6
- from src.display.formatting import has_no_nan_values, make_clickable_model
7
- from src.display.utils import AutoEvalColumn, EvalQueueColumn
8
- from src.leaderboard.read_evals import get_raw_eval_results
9
-
10
-
11
- def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
12
- """Creates a dataframe from all the individual experiment results"""
13
- raw_data = get_raw_eval_results(results_path, requests_path)
14
- all_data_json = [v.to_dict() for v in raw_data]
15
-
16
- df = pd.DataFrame.from_records(all_data_json)
17
- df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
18
- df = df[cols].round(decimals=2)
19
-
20
- # filter out if any of the benchmarks have not been produced
21
- df = df[has_no_nan_values(df, benchmark_cols)]
22
- return df
23
-
24
-
25
- def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
26
- """Creates the different dataframes for the evaluation queues requestes"""
27
- entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
28
- all_evals = []
29
-
30
- for entry in entries:
31
- if ".json" in entry:
32
- file_path = os.path.join(save_path, entry)
33
- with open(file_path) as fp:
34
- data = json.load(fp)
35
-
36
- data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
37
- data[EvalQueueColumn.revision.name] = data.get("revision", "main")
38
-
39
- all_evals.append(data)
40
- elif ".md" not in entry:
41
- # this is a folder
42
- sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")]
43
- for sub_entry in sub_entries:
44
- file_path = os.path.join(save_path, entry, sub_entry)
45
- with open(file_path) as fp:
46
- data = json.load(fp)
47
-
48
- data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
49
- data[EvalQueueColumn.revision.name] = data.get("revision", "main")
50
- all_evals.append(data)
51
-
52
- pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
53
- running_list = [e for e in all_evals if e["status"] == "RUNNING"]
54
- finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
55
- df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
56
- df_running = pd.DataFrame.from_records(running_list, columns=cols)
57
- df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
58
- return df_finished[cols], df_running[cols], df_pending[cols]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/submission/check_validity.py DELETED
@@ -1,99 +0,0 @@
1
- import json
2
- import os
3
- import re
4
- from collections import defaultdict
5
- from datetime import datetime, timedelta, timezone
6
-
7
- import huggingface_hub
8
- from huggingface_hub import ModelCard
9
- from huggingface_hub.hf_api import ModelInfo
10
- from transformers import AutoConfig
11
- from transformers.models.auto.tokenization_auto import AutoTokenizer
12
-
13
- def check_model_card(repo_id: str) -> tuple[bool, str]:
14
- """Checks if the model card and license exist and have been filled"""
15
- try:
16
- card = ModelCard.load(repo_id)
17
- except huggingface_hub.utils.EntryNotFoundError:
18
- return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
19
-
20
- # Enforce license metadata
21
- if card.data.license is None:
22
- if not ("license_name" in card.data and "license_link" in card.data):
23
- return False, (
24
- "License not found. Please add a license to your model card using the `license` metadata or a"
25
- " `license_name`/`license_link` pair."
26
- )
27
-
28
- # Enforce card content
29
- if len(card.text) < 200:
30
- return False, "Please add a description to your model card, it is too short."
31
-
32
- return True, ""
33
-
34
- def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
35
- """Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
36
- try:
37
- config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
38
- if test_tokenizer:
39
- try:
40
- tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
41
- except ValueError as e:
42
- return (
43
- False,
44
- f"uses a tokenizer which is not in a transformers release: {e}",
45
- None
46
- )
47
- except Exception as e:
48
- return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
49
- return True, None, config
50
-
51
- except ValueError:
52
- return (
53
- False,
54
- "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
55
- None
56
- )
57
-
58
- except Exception as e:
59
- return False, "was not found on hub!", None
60
-
61
-
62
- def get_model_size(model_info: ModelInfo, precision: str):
63
- """Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
64
- try:
65
- model_size = round(model_info.safetensors["total"] / 1e9, 3)
66
- except (AttributeError, TypeError):
67
- return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
68
-
69
- size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
70
- model_size = size_factor * model_size
71
- return model_size
72
-
73
- def get_model_arch(model_info: ModelInfo):
74
- """Gets the model architecture from the configuration"""
75
- return model_info.config.get("architectures", "Unknown")
76
-
77
- def already_submitted_models(requested_models_dir: str) -> set[str]:
78
- """Gather a list of already submitted models to avoid duplicates"""
79
- depth = 1
80
- file_names = []
81
- users_to_submission_dates = defaultdict(list)
82
-
83
- for root, _, files in os.walk(requested_models_dir):
84
- current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
85
- if current_depth == depth:
86
- for file in files:
87
- if not file.endswith(".json"):
88
- continue
89
- with open(os.path.join(root, file), "r") as f:
90
- info = json.load(f)
91
- file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
92
-
93
- # Select organisation
94
- if info["model"].count("/") == 0 or "submitted_time" not in info:
95
- continue
96
- organisation, _ = info["model"].split("/")
97
- users_to_submission_dates[organisation].append(info["submitted_time"])
98
-
99
- return set(file_names), users_to_submission_dates
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/submission/submit.py DELETED
@@ -1,119 +0,0 @@
1
- import json
2
- import os
3
- from datetime import datetime, timezone
4
-
5
- from src.display.formatting import styled_error, styled_message, styled_warning
6
- from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
7
- from src.submission.check_validity import (
8
- already_submitted_models,
9
- check_model_card,
10
- get_model_size,
11
- is_model_on_hub,
12
- )
13
-
14
- REQUESTED_MODELS = None
15
- USERS_TO_SUBMISSION_DATES = None
16
-
17
- def add_new_eval(
18
- model: str,
19
- base_model: str,
20
- revision: str,
21
- precision: str,
22
- weight_type: str,
23
- model_type: str,
24
- ):
25
- global REQUESTED_MODELS
26
- global USERS_TO_SUBMISSION_DATES
27
- if not REQUESTED_MODELS:
28
- REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
29
-
30
- user_name = ""
31
- model_path = model
32
- if "/" in model:
33
- user_name = model.split("/")[0]
34
- model_path = model.split("/")[1]
35
-
36
- precision = precision.split(" ")[0]
37
- current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
38
-
39
- if model_type is None or model_type == "":
40
- return styled_error("Please select a model type.")
41
-
42
- # Does the model actually exist?
43
- if revision == "":
44
- revision = "main"
45
-
46
- # Is the model on the hub?
47
- if weight_type in ["Delta", "Adapter"]:
48
- base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
49
- if not base_model_on_hub:
50
- return styled_error(f'Base model "{base_model}" {error}')
51
-
52
- if not weight_type == "Adapter":
53
- model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
54
- if not model_on_hub:
55
- return styled_error(f'Model "{model}" {error}')
56
-
57
- # Is the model info correctly filled?
58
- try:
59
- model_info = API.model_info(repo_id=model, revision=revision)
60
- except Exception:
61
- return styled_error("Could not get your model information. Please fill it up properly.")
62
-
63
- model_size = get_model_size(model_info=model_info, precision=precision)
64
-
65
- # Were the model card and license filled?
66
- try:
67
- license = model_info.cardData["license"]
68
- except Exception:
69
- return styled_error("Please select a license for your model")
70
-
71
- modelcard_OK, error_msg = check_model_card(model)
72
- if not modelcard_OK:
73
- return styled_error(error_msg)
74
-
75
- # Seems good, creating the eval
76
- print("Adding new eval")
77
-
78
- eval_entry = {
79
- "model": model,
80
- "base_model": base_model,
81
- "revision": revision,
82
- "precision": precision,
83
- "weight_type": weight_type,
84
- "status": "PENDING",
85
- "submitted_time": current_time,
86
- "model_type": model_type,
87
- "likes": model_info.likes,
88
- "params": model_size,
89
- "license": license,
90
- "private": False,
91
- }
92
-
93
- # Check for duplicate submission
94
- if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
95
- return styled_warning("This model has been already submitted.")
96
-
97
- print("Creating eval file")
98
- OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
99
- os.makedirs(OUT_DIR, exist_ok=True)
100
- out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
101
-
102
- with open(out_path, "w") as f:
103
- f.write(json.dumps(eval_entry))
104
-
105
- print("Uploading eval file")
106
- API.upload_file(
107
- path_or_fileobj=out_path,
108
- path_in_repo=out_path.split("eval-queue/")[1],
109
- repo_id=QUEUE_REPO,
110
- repo_type="dataset",
111
- commit_message=f"Add {model} to eval queue",
112
- )
113
-
114
- # Remove the local file
115
- os.remove(out_path)
116
-
117
- return styled_message(
118
- "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
119
- )