Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 10,827 Bytes
eb50697 f21842d eb50697 f21842d eb50697 cf880c9 eb50697 2836709 eb50697 cf880c9 eb50697 7738e98 eb50697 ba07ad3 eb50697 ba07ad3 eb50697 293e470 eb50697 7738e98 eb50697 7738e98 eb50697 7738e98 eb50697 7738e98 eb50697 7738e98 eb50697 7738e98 eb50697 7738e98 ba07ad3 eb50697 d787cff eb50697 ba07ad3 eb50697 293e470 eb50697 ba07ad3 eb50697 ba07ad3 eb50697 3a93505 eb50697 99871cf d8f6ba2 99871cf eb50697 cf880c9 eb50697 d8f6ba2 eb50697 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import gradio as gr
import pandas as pd
import json
import os
from pathlib import Path
from huggingface_hub import HfApi, hf_hub_download
api = HfApi()
OWNER = "Navid-AI"
DATASET_REPO_ID = f"{OWNER}/requests-dataset"
def load_retrieval_results():
base_path = Path(__file__).parent
results_dir = base_path / "results"
retrieval_dataframe_path = results_dir / "retrieval_results.json"
if not retrieval_dataframe_path.exists():
df = pd.DataFrame(columns=["Model", "Revision", "Precision", "Task", "Model Size (in Millions)", "Embedding Dimension", "Max Tokens", "Num Likes", "Web Search Dataset (Overall Score)"])
else:
df = pd.read_json(retrieval_dataframe_path)
return df
def get_model_info(model_id, verbose=False):
model_info = api.model_info(model_id)
num_downloads = model_info.downloads
num_likes = model_info.likes
license = model_info.card_data["license"]
num_parameters = round(model_info.safetensors.total / 1e6)
supported_precisions = list(model_info.safetensors.parameters.keys())
if verbose:
print(f"Model '{model_id}' has {num_downloads} downloads, {num_likes} likes, and is licensed under {license}.")
print(f"The model has approximately {num_parameters:.2f} billion parameters.")
print(f"The model supports the following precisions: {supported_precisions}")
return num_downloads, num_likes, license, num_parameters, supported_precisions
def fetch_model_information(model_name):
try:
_, _, license, num_parameters, supported_precisions = get_model_info(model_name)
if len(supported_precisions) == 0:
supported_precisions = [None]
except Exception as e:
gr.Error(f"Error: Could not fetch model information. {str(e)}")
return
return gr.update(choices=supported_precisions, value=supported_precisions[0]), num_parameters, license
def submit_model(model_name, revision, precision, params, license, task):
# Load existing evaluations
if task == "Retriever":
df = load_retrieval_results()
elif task == "Reranker":
df = load_retrieval_results()
else:
return gr.Error(f"Error: Task '{task}' is not supported.")
existing_models_results = df[['Model', 'Revision', 'Precision', 'Task']]
# Handle 'Missing' precision
if precision == 'Missing':
precision = None
else:
precision = precision.strip().lower()
# Load pending and finished requests from the dataset repository
df_pending = load_requests('pending')
df_finished = load_requests('finished')
# Check if model is already evaluated
model_exists_in_results = ((existing_models_results['Model'] == model_name) &
(existing_models_results['Revision'] == revision) &
(existing_models_results['Precision'] == precision) &
(existing_models_results['Task'] == task)).any()
if model_exists_in_results:
return gr.Info(f"Model '{model_name}' with revision '{revision}' and precision '{precision}' for task '{task}' has already been evaluated.")
# Check if model is in pending requests
if not df_pending.empty:
existing_models_pending = df_pending[['model_name', 'revision', 'precision']]
model_exists_in_pending = ((existing_models_pending['model_name'] == model_name) &
(existing_models_pending['revision'] == revision) &
(existing_models_pending['precision'] == precision) &
(existing_models_pending['task'] == task)).any()
if model_exists_in_pending:
return gr.Info(f"Model '{model_name}' with revision '{revision}' and precision '{precision}' for task '{task}' is already in the evaluation queue.")
# Check if model is in finished requests
if not df_finished.empty:
existing_models_finished = df_finished[['model_name', 'revision', 'precision']]
model_exists_in_finished = ((existing_models_finished['model_name'] == model_name) &
(existing_models_finished['revision'] == revision) &
(existing_models_finished['precision'] == precision) &
(existing_models_finished['task'] == task)).any()
if model_exists_in_finished:
return gr.Info(f"Model '{model_name}' with revision '{revision}' and precision '{precision}' for task '{task}' has already been evaluated.")
# Check if model exists on HuggingFace Hub
try:
api.model_info(model_name)
except Exception as e:
print(f"Error fetching model info: {e}")
return gr.Error(f"Error: Model '{model_name}' not found on HuggingFace Hub.")
# Proceed with submission
status = "PENDING"
# Prepare the submission data
submission = {
"model_name": model_name,
"license": license,
"revision": revision,
"precision": precision,
"status": status,
"params": params,
"task": task
}
# Serialize the submission to JSON
submission_json = json.dumps(submission, indent=2)
# Define the file path in the repository
org_model = model_name.split('/')
if len(org_model) != 2:
return "**Please enter the full model name including the organization or username, e.g., 'intfloat/multilingual-e5-large-instruct'**"
org, model_id = org_model
precision_str = precision if precision else 'Missing'
file_path_in_repo = f"pending/{org}/{model_id}_eval_request_{revision}_{precision_str}_{task.lower()}.json"
# Upload the submission to the dataset repository
try:
hf_api_token = os.environ.get('HF_TOKEN', None)
api.upload_file(
path_or_fileobj=submission_json.encode('utf-8'),
path_in_repo=file_path_in_repo,
repo_id=DATASET_REPO_ID,
repo_type="dataset",
token=hf_api_token
)
except Exception as e:
print(f"Error uploading file: {e}")
return gr.Error(f"Error: Could not submit model '{model_name}' for evaluation.")
return f"**Model '{model_name}' with revision '{revision}' and precision '{precision}' for task '{task}' has been submitted successfully.**"
def load_requests(status_folder):
api = HfApi()
requests_data = []
folder_path_in_repo = status_folder # 'pending', 'finished', or 'failed'
hf_api_token = os.environ.get('HF_TOKEN', None)
try:
# List files in the dataset repository
files_info = api.list_repo_files(
repo_id=DATASET_REPO_ID,
repo_type="dataset",
token=hf_api_token
)
except Exception as e:
print(f"Error accessing dataset repository: {e}")
return pd.DataFrame() # Return empty DataFrame if repository not found or inaccessible
# Filter files in the desired folder
files_in_folder = [f for f in files_info if f.startswith(f"{folder_path_in_repo}/") and f.endswith('.json')]
for file_path in files_in_folder:
try:
# Download the JSON file
local_file_path = hf_hub_download(
repo_id=DATASET_REPO_ID,
filename=file_path,
repo_type="dataset",
token=hf_api_token
)
# Load JSON data
with open(local_file_path, 'r') as f:
request = json.load(f)
requests_data.append(request)
except Exception as e:
print(f"Error loading file {file_path}: {e}")
continue # Skip files that can't be loaded
df = pd.DataFrame(requests_data)
return df
def submit_gradio_module(task_type):
var = gr.State(value=task_type)
with gr.Tab(f"Submit {task_type}") as submitter_tab:
with gr.Row(equal_height=True):
model_name_input = gr.Textbox(
label="Model",
placeholder="Enter the full model name from HuggingFace Hub (e.g., intfloat/multilingual-e5-large-instruct)",
scale=4,
)
fetch_data_button = gr.Button(value="Auto Fetch Model Info", variant="secondary")
with gr.Row():
precision_input = gr.Dropdown(
choices=["F16", "F32", "BF16", "I8", "U8", "I16"],
label="Precision",
value="F16"
)
license_input = gr.Textbox(
label="License",
placeholder="Enter the license type (Generic one is 'Open' in case no License is provided)",
value="Open"
)
revision_input = gr.Textbox(
label="Revision",
placeholder="main",
value="main"
)
with gr.Row():
params_input = gr.Textbox(
label="Params (in Millions)",
placeholder="Enter the approximate number of parameters as Integer (e.g., 7, 13, 30, 70 ...)"
)
submit_button = gr.Button("Submit Model", variant="primary")
submission_result = gr.Markdown()
fetch_outputs = [precision_input, params_input, license_input]
fetch_data_button.click(
fetch_model_information,
inputs=[model_name_input],
outputs=fetch_outputs
)
model_name_input.submit(
fetch_model_information,
inputs=[model_name_input],
outputs=fetch_outputs
)
submit_button.click(
submit_model,
inputs=[model_name_input, revision_input, precision_input, params_input, license_input, var],
outputs=submission_result
)
# Load pending, finished, and failed requests
df_pending = load_requests('pending')
df_finished = load_requests('finished')
df_failed = load_requests('failed')
# Display the tables
gr.Markdown("## Evaluation Status")
with gr.Accordion(f"Pending Evaluations ({len(df_pending)})", open=False):
if not df_pending.empty:
gr.Dataframe(df_pending)
else:
gr.Markdown("No pending evaluations.")
with gr.Accordion(f"Finished Evaluations ({len(df_finished)})", open=False):
if not df_finished.empty:
gr.Dataframe(df_finished)
else:
gr.Markdown("No finished evaluations.")
with gr.Accordion(f"Failed Evaluations ({len(df_failed)})", open=False):
if not df_failed.empty:
gr.Dataframe(df_failed)
else:
gr.Markdown("No failed evaluations.")
return submitter_tab |