MrSinan's picture
Update app.py
2a8aa47
raw
history blame
12.1 kB
# -*- coding: utf-8 -*-
"""app.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1GWMyMjaydEM_30nRtu1W_B2eaTWLCCuN
# T1
"""
from tensorflow.keras.regularizers import l2
import pathlib
import tensorflow
from tensorflow import keras
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense,Dropout,BatchNormalization
import tensorflow.keras
import pathlib
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import tensorflow.keras.utils as utils
from tensorflow.keras.optimizers import Adam as adam
from tensorflow.keras.optimizers import SGD
from tensorflow.keras.optimizers import RMSprop
from tensorflow.keras.optimizers import Adagrad
from tensorflow.keras.callbacks import EarlyStopping ,ModelCheckpoint
import tensorflow as tf
from tensorflow.keras import Model
import matplotlib.pyplot as plt
import numpy as np
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, GlobalAveragePooling2D, Dropout, Input
import gradio as gr
from tensorflow.keras.applications import VGG16
from tensorflow.keras.applications.resnet50 import preprocess_input
from matplotlib import pyplot
from PIL import Image
from numpy import asarray
from PIL import Image
import glob
import cv2
from tensorflow.keras import layers
from keras.models import load_model
from matplotlib import pyplot
from PIL import Image
from numpy import asarray
from mtcnn.mtcnn import MTCNN
import cv2
from mask_the_face import *
import numpy as np
def get_paths():
classes = []
for file in sorted(glob.iglob('./lfw-deepfunneled/*/')):
classes.append(file)
for i,d in enumerate(classes):
paths=d+'*.jpg'
class_=[]
for file in sorted(glob.iglob(paths)):
class_.append(file)
classes[i]=class_
return classes
classLabels=np.load('classLabels.npy',)
def extract_face(photo, required_size=(224, 224)):
# load image from file
pixels = photo
print(pixels.shape)
maxH=(pixels.shape[0])
maxW=(pixels.shape[1])
if (pixels.shape[-1])>3 or (pixels.shape[-1])<3:
image = Image.fromarray(pixels)
return image
# create the detector, using default weights
detector = MTCNN()
# detect faces in the image
results = detector.detect_faces(pixels)
if not results:
image = Image.fromarray(pixels)
image = image.resize(required_size)
print('not cropped')
return image
# extract the bounding box from the first face
print('cropped')
x1, y1, width, height = results[0]['box']
x2, y2 = x1 + width, y1 + height
face = pixels[y1:int(y2), int(x1):int(x2)]
# resize pixels to the model size
image = Image.fromarray(face)
image = image.resize(required_size)
return image
class FaceNet():
def __init__(self,Weights_loading_path,facenet_path):
self.loading=Weights_loading_path
self.modelPath=facenet_path
self.data_augmentation = keras.Sequential([layers.Rescaling(scale=1./127.5, offset=-1),layers.Resizing(160, 160),],name="data_augmentation",)
self.Facenet=tf.keras.models.load_model(self.modelPath)
self.Facenet.load_weights(self.loading)
def Transfer_FacenetModel_withNormlization(self):
facenetmodel = tf.keras.models.load_model(self.modelPath)
# facenetmodel.load_weights('/content/drive/MyDrive/FaceNet/facenet_keras_weights.h5')
for layer in facenetmodel.layers[:-50]:
layer.trainable = False
inputs = layers.Input(shape=(224,224,3))
# Augment data.
augmented = self.data_augmentation(inputs)
# This is 'bootstrapping' a new top_model onto the pretrained layers.
top_model = facenetmodel(augmented)
top_model = Dropout(0.5)(top_model)
top_model = BatchNormalization()(top_model)
top_model = Flatten(name="flatten")(top_model)
output_layer = Dense(5750, activation='softmax')(top_model)
# Group the convolutional base and new fully-connected layers into a Model object.
model = Model(inputs=inputs, outputs=output_layer)
return model
def predict(self,testsSamples):
predictionProbabilty=self.Facenet.predict(testsSamples)
return predictionProbabilty
class PatchEncoder(layers.Layer):
def __init__(self, num_patches, projection_dim):
super(PatchEncoder, self).__init__()
self.num_patches = num_patches
self.projection = layers.Dense(units=projection_dim)
self.position_embedding = layers.Embedding(
input_dim=num_patches, output_dim=projection_dim
)
def call(self, patch):
positions = tf.range(start=0, limit=self.num_patches, delta=1)
encoded = self.projection(patch) + self.position_embedding(positions)
return encoded
class Patches(layers.Layer):
def __init__(self, patch_size):
super(Patches, self).__init__()
self.patch_size = patch_size
def call(self, images):
batch_size = tf.shape(images)[0]
patches = tf.image.extract_patches(
images=images,
sizes=[1, self.patch_size, self.patch_size, 1],
strides=[1, self.patch_size, self.patch_size, 1],
rates=[1, 1, 1, 1],
padding="VALID",
)
patch_dims = patches.shape[-1]
patches = tf.reshape(patches, [batch_size, -1, patch_dims])
return patches
class Transforemer():
def __init__(self,loading_path):
self.learning_rate = 0.001
self.weight_decay = 0.0001
self.batch_size = 32
self.num_epochs = 300
self.image_size = 72
self.patch_size = 6 # Size of the patches to be extract from the input images
self.num_patches = (self.image_size // self.patch_size) ** 2
self.projection_dim = 64
self.num_heads = 8
self.transformer_units = [self.projection_dim * 2,self.projection_dim,] # Size of the transformer layers
self.transformer_layers = 10
self.mlp_head_units = [2048, 1024] # Size of the dense layers of the final classifier
self.loading=loading_path
self.data_augmentation = keras.Sequential([ layers.Rescaling(1./255), layers.Resizing(self.image_size, self.image_size), layers.RandomFlip("horizontal")],name="data_augmentation",)
self.transformer = self.create_vit_classifier()
self.trnaformer = self.transformer.load_weights(self.loading)
def mlp(self,x, hidden_units, dropout_rate):
for units in hidden_units:
x = layers.Dense(units, activation=tf.nn.gelu)(x)
x = layers.Dropout(dropout_rate)(x)
return x
def create_vit_classifier(self):
inputs = layers.Input(shape=(224,224,3))
augmented = self.data_augmentation(inputs)
patches = Patches(self.patch_size)(augmented)
encoded_patches = PatchEncoder(self.num_patches, self.projection_dim)(patches)
for _ in range(self.transformer_layers):
x1 = layers.LayerNormalization(epsilon=1e-6)(encoded_patches)
attention_output = layers.MultiHeadAttention(num_heads=self.num_heads, key_dim=self.projection_dim, dropout=0.3)(x1, x1)
x2 = layers.Add()([attention_output, encoded_patches])
x3 = layers.LayerNormalization(epsilon=1e-6)(x2)
x3 = self.mlp(x3, hidden_units=self.transformer_units, dropout_rate=0.3)
encoded_patches = layers.Add()([x3, x2])
representation = layers.LayerNormalization(epsilon=1e-6)(encoded_patches)
representation = layers.Flatten()(representation)
representation = layers.Dropout(0.6)(representation)
features = self.mlp(representation, hidden_units=self.mlp_head_units, dropout_rate=0.6)
logits = layers.Dense(5750, activation='softmax')(features)
model = keras.Model(inputs=inputs, outputs=logits)
return model
def predict(self,testsSamples):
predictionProbabilty=self.transformer.predict(testsSamples)
return predictionProbabilty
class EnsembleModel():
def __init__(self,classLabels,model1,model2,model3,model4):
self.labels=classLabels
self.model1 =model1
self.model2 =model2
self.model3 =model3
self.model4 =model4
def predict(self,testSample,):
pred_prob1=self.model1.predict(testSample)
pred_prob2=self.model2.predict(testSample)
pred_prob3=self.model3.predict(testSample)
pred_prob4=self.model4.predict(testSample)
pred_sum=pred_prob1+pred_prob2+pred_prob3+pred_prob4
print(pred_sum.shape)
preds_classes_sum = np.argmax(pred_sum, axis=-1)
total=sum(pred_sum[0])
print(total)
percentages=[x/total for x in pred_sum[0]]
percentages=np.asarray(percentages)
idx = np.argsort(pred_sum, axis=1)[:,-5:]
print(pred_sum[0][idx])
print(percentages[idx])
return self.labels[preds_classes_sum][0],np.flip(self.labels[idx]),np.flip(percentages[idx])
"""# Test
"""
faceModel1=FaceNet('MyEn3facenet.h5','facenetModel.h5')
faceModel2=FaceNet('MyEn4facenet.h5','facenetModel.h5')
transformerModel1=Transforemer('FirstTransformer3Ensamble1.h5')
transformerModel2=Transforemer('FirstTransformer3Ensamble2.h5')
Ensemble=EnsembleModel(classLabels,faceModel1,faceModel2,transformerModel1,transformerModel2)
def grid_display(list_of_images, list_of_titles=[], no_of_columns=2, figsize=(10,10)):
fig = plt.figure(figsize=figsize)
column = 0
for i in range(len(list_of_images)):
column += 1
# check for end of column and create a new figure
if column == no_of_columns+1:
fig = plt.figure(figsize=figsize)
column = 1
fig.add_subplot(1, no_of_columns, column)
plt.imshow(list_of_images[i])
plt.axis('off')
if len(list_of_titles) >= len(list_of_images):
plt.title(list_of_titles[i])
def reconitionPipline(img,mask):
im = Image.fromarray(img.astype('uint8'), 'RGB')
im=np.array(im)
im2= im[:,:,::-1].copy()
if mask:
im2=maskThisImages(im2)
if len(im2)==0:
im2=im.copy()
im2= im2[:,:,::-1]
im2= im2[:,:,::-1]
temp=extract_face(im2)
cropped = np.array(temp)
open_cv_image = cropped[:, :, ::-1].copy()
prediction,top5,percentage=Ensemble.predict(open_cv_image[None,...])
return dict(zip(np.reshape(top5, -1), np.reshape(percentage, -1))),cropped
with gr.Blocks() as demo:
gr.HTML(
"""
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px;">
LFW-Masked Recognition
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
An AI model developed using Ensamble learning method
with transformer and facenet to recognize celebrties classes in LFW dataset (+5700 class)
</p>
</div>
"""
)
with gr.Row():
with gr.Column():
imagein = gr.Image(label='User-Input',interactive=True)
# with gr.Column():
# gr.Examples(['1.jpg','2.jpg','3.jpg'],inputs=imagein)
with gr.Row():
checkbox=gr.Checkbox(label='Mask the face')
image_button = gr.Button("Submit")
with gr.Row():
mOut = gr.Image(type='numpy',label=' (Model-input)')
label = gr.Label(num_top_classes=5)
gr.Markdown("<p style='text-align: center'>Made with 🖤 by Mohammed & Aseel </p>")
image_button.click(fn=reconitionPipline,inputs=[imagein,checkbox],outputs=[label,mOut])
demo.launch()