Spaces:
Sleeping
Sleeping
File size: 12,120 Bytes
4785a31 cc3f0e9 4785a31 cc3f0e9 4785a31 cc3f0e9 5bc805e 4785a31 2a8aa47 4785a31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
# -*- coding: utf-8 -*-
"""app.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1GWMyMjaydEM_30nRtu1W_B2eaTWLCCuN
# T1
"""
from tensorflow.keras.regularizers import l2
import pathlib
import tensorflow
from tensorflow import keras
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense,Dropout,BatchNormalization
import tensorflow.keras
import pathlib
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import tensorflow.keras.utils as utils
from tensorflow.keras.optimizers import Adam as adam
from tensorflow.keras.optimizers import SGD
from tensorflow.keras.optimizers import RMSprop
from tensorflow.keras.optimizers import Adagrad
from tensorflow.keras.callbacks import EarlyStopping ,ModelCheckpoint
import tensorflow as tf
from tensorflow.keras import Model
import matplotlib.pyplot as plt
import numpy as np
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, GlobalAveragePooling2D, Dropout, Input
import gradio as gr
from tensorflow.keras.applications import VGG16
from tensorflow.keras.applications.resnet50 import preprocess_input
from matplotlib import pyplot
from PIL import Image
from numpy import asarray
from PIL import Image
import glob
import cv2
from tensorflow.keras import layers
from keras.models import load_model
from matplotlib import pyplot
from PIL import Image
from numpy import asarray
from mtcnn.mtcnn import MTCNN
import cv2
from mask_the_face import *
import numpy as np
def get_paths():
classes = []
for file in sorted(glob.iglob('./lfw-deepfunneled/*/')):
classes.append(file)
for i,d in enumerate(classes):
paths=d+'*.jpg'
class_=[]
for file in sorted(glob.iglob(paths)):
class_.append(file)
classes[i]=class_
return classes
classLabels=np.load('classLabels.npy',)
def extract_face(photo, required_size=(224, 224)):
# load image from file
pixels = photo
print(pixels.shape)
maxH=(pixels.shape[0])
maxW=(pixels.shape[1])
if (pixels.shape[-1])>3 or (pixels.shape[-1])<3:
image = Image.fromarray(pixels)
return image
# create the detector, using default weights
detector = MTCNN()
# detect faces in the image
results = detector.detect_faces(pixels)
if not results:
image = Image.fromarray(pixels)
image = image.resize(required_size)
print('not cropped')
return image
# extract the bounding box from the first face
print('cropped')
x1, y1, width, height = results[0]['box']
x2, y2 = x1 + width, y1 + height
face = pixels[y1:int(y2), int(x1):int(x2)]
# resize pixels to the model size
image = Image.fromarray(face)
image = image.resize(required_size)
return image
class FaceNet():
def __init__(self,Weights_loading_path,facenet_path):
self.loading=Weights_loading_path
self.modelPath=facenet_path
self.data_augmentation = keras.Sequential([layers.Rescaling(scale=1./127.5, offset=-1),layers.Resizing(160, 160),],name="data_augmentation",)
self.Facenet=tf.keras.models.load_model(self.modelPath)
self.Facenet.load_weights(self.loading)
def Transfer_FacenetModel_withNormlization(self):
facenetmodel = tf.keras.models.load_model(self.modelPath)
# facenetmodel.load_weights('/content/drive/MyDrive/FaceNet/facenet_keras_weights.h5')
for layer in facenetmodel.layers[:-50]:
layer.trainable = False
inputs = layers.Input(shape=(224,224,3))
# Augment data.
augmented = self.data_augmentation(inputs)
# This is 'bootstrapping' a new top_model onto the pretrained layers.
top_model = facenetmodel(augmented)
top_model = Dropout(0.5)(top_model)
top_model = BatchNormalization()(top_model)
top_model = Flatten(name="flatten")(top_model)
output_layer = Dense(5750, activation='softmax')(top_model)
# Group the convolutional base and new fully-connected layers into a Model object.
model = Model(inputs=inputs, outputs=output_layer)
return model
def predict(self,testsSamples):
predictionProbabilty=self.Facenet.predict(testsSamples)
return predictionProbabilty
class PatchEncoder(layers.Layer):
def __init__(self, num_patches, projection_dim):
super(PatchEncoder, self).__init__()
self.num_patches = num_patches
self.projection = layers.Dense(units=projection_dim)
self.position_embedding = layers.Embedding(
input_dim=num_patches, output_dim=projection_dim
)
def call(self, patch):
positions = tf.range(start=0, limit=self.num_patches, delta=1)
encoded = self.projection(patch) + self.position_embedding(positions)
return encoded
class Patches(layers.Layer):
def __init__(self, patch_size):
super(Patches, self).__init__()
self.patch_size = patch_size
def call(self, images):
batch_size = tf.shape(images)[0]
patches = tf.image.extract_patches(
images=images,
sizes=[1, self.patch_size, self.patch_size, 1],
strides=[1, self.patch_size, self.patch_size, 1],
rates=[1, 1, 1, 1],
padding="VALID",
)
patch_dims = patches.shape[-1]
patches = tf.reshape(patches, [batch_size, -1, patch_dims])
return patches
class Transforemer():
def __init__(self,loading_path):
self.learning_rate = 0.001
self.weight_decay = 0.0001
self.batch_size = 32
self.num_epochs = 300
self.image_size = 72
self.patch_size = 6 # Size of the patches to be extract from the input images
self.num_patches = (self.image_size // self.patch_size) ** 2
self.projection_dim = 64
self.num_heads = 8
self.transformer_units = [self.projection_dim * 2,self.projection_dim,] # Size of the transformer layers
self.transformer_layers = 10
self.mlp_head_units = [2048, 1024] # Size of the dense layers of the final classifier
self.loading=loading_path
self.data_augmentation = keras.Sequential([ layers.Rescaling(1./255), layers.Resizing(self.image_size, self.image_size), layers.RandomFlip("horizontal")],name="data_augmentation",)
self.transformer = self.create_vit_classifier()
self.trnaformer = self.transformer.load_weights(self.loading)
def mlp(self,x, hidden_units, dropout_rate):
for units in hidden_units:
x = layers.Dense(units, activation=tf.nn.gelu)(x)
x = layers.Dropout(dropout_rate)(x)
return x
def create_vit_classifier(self):
inputs = layers.Input(shape=(224,224,3))
augmented = self.data_augmentation(inputs)
patches = Patches(self.patch_size)(augmented)
encoded_patches = PatchEncoder(self.num_patches, self.projection_dim)(patches)
for _ in range(self.transformer_layers):
x1 = layers.LayerNormalization(epsilon=1e-6)(encoded_patches)
attention_output = layers.MultiHeadAttention(num_heads=self.num_heads, key_dim=self.projection_dim, dropout=0.3)(x1, x1)
x2 = layers.Add()([attention_output, encoded_patches])
x3 = layers.LayerNormalization(epsilon=1e-6)(x2)
x3 = self.mlp(x3, hidden_units=self.transformer_units, dropout_rate=0.3)
encoded_patches = layers.Add()([x3, x2])
representation = layers.LayerNormalization(epsilon=1e-6)(encoded_patches)
representation = layers.Flatten()(representation)
representation = layers.Dropout(0.6)(representation)
features = self.mlp(representation, hidden_units=self.mlp_head_units, dropout_rate=0.6)
logits = layers.Dense(5750, activation='softmax')(features)
model = keras.Model(inputs=inputs, outputs=logits)
return model
def predict(self,testsSamples):
predictionProbabilty=self.transformer.predict(testsSamples)
return predictionProbabilty
class EnsembleModel():
def __init__(self,classLabels,model1,model2,model3,model4):
self.labels=classLabels
self.model1 =model1
self.model2 =model2
self.model3 =model3
self.model4 =model4
def predict(self,testSample,):
pred_prob1=self.model1.predict(testSample)
pred_prob2=self.model2.predict(testSample)
pred_prob3=self.model3.predict(testSample)
pred_prob4=self.model4.predict(testSample)
pred_sum=pred_prob1+pred_prob2+pred_prob3+pred_prob4
print(pred_sum.shape)
preds_classes_sum = np.argmax(pred_sum, axis=-1)
total=sum(pred_sum[0])
print(total)
percentages=[x/total for x in pred_sum[0]]
percentages=np.asarray(percentages)
idx = np.argsort(pred_sum, axis=1)[:,-5:]
print(pred_sum[0][idx])
print(percentages[idx])
return self.labels[preds_classes_sum][0],np.flip(self.labels[idx]),np.flip(percentages[idx])
"""# Test
"""
faceModel1=FaceNet('MyEn3facenet.h5','facenetModel.h5')
faceModel2=FaceNet('MyEn4facenet.h5','facenetModel.h5')
transformerModel1=Transforemer('FirstTransformer3Ensamble1.h5')
transformerModel2=Transforemer('FirstTransformer3Ensamble2.h5')
Ensemble=EnsembleModel(classLabels,faceModel1,faceModel2,transformerModel1,transformerModel2)
def grid_display(list_of_images, list_of_titles=[], no_of_columns=2, figsize=(10,10)):
fig = plt.figure(figsize=figsize)
column = 0
for i in range(len(list_of_images)):
column += 1
# check for end of column and create a new figure
if column == no_of_columns+1:
fig = plt.figure(figsize=figsize)
column = 1
fig.add_subplot(1, no_of_columns, column)
plt.imshow(list_of_images[i])
plt.axis('off')
if len(list_of_titles) >= len(list_of_images):
plt.title(list_of_titles[i])
def reconitionPipline(img,mask):
im = Image.fromarray(img.astype('uint8'), 'RGB')
im=np.array(im)
im2= im[:,:,::-1].copy()
if mask:
im2=maskThisImages(im2)
if len(im2)==0:
im2=im.copy()
im2= im2[:,:,::-1]
im2= im2[:,:,::-1]
temp=extract_face(im2)
cropped = np.array(temp)
open_cv_image = cropped[:, :, ::-1].copy()
prediction,top5,percentage=Ensemble.predict(open_cv_image[None,...])
return dict(zip(np.reshape(top5, -1), np.reshape(percentage, -1))),cropped
with gr.Blocks() as demo:
gr.HTML(
"""
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px;">
LFW-Masked Recognition
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
An AI model developed using Ensamble learning method
with transformer and facenet to recognize celebrties classes in LFW dataset (+5700 class)
</p>
</div>
"""
)
with gr.Row():
with gr.Column():
imagein = gr.Image(label='User-Input',interactive=True)
# with gr.Column():
# gr.Examples(['1.jpg','2.jpg','3.jpg'],inputs=imagein)
with gr.Row():
checkbox=gr.Checkbox(label='Mask the face')
image_button = gr.Button("Submit")
with gr.Row():
mOut = gr.Image(type='numpy',label=' (Model-input)')
label = gr.Label(num_top_classes=5)
gr.Markdown("<p style='text-align: center'>Made with 🖤 by Mohammed & Aseel </p>")
image_button.click(fn=reconitionPipline,inputs=[imagein,checkbox],outputs=[label,mOut])
demo.launch() |