File size: 3,548 Bytes
26e73e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import gradio as gr
from time import sleep
from pymongo import MongoClient
from bson import ObjectId
from openai import OpenAI
openai_client = OpenAI()
import os

uri = os.environ.get('MONGODB_ATLAS_URI')
client = MongoClient(uri)
db_name = 'whatscooking'
collection_name = 'restaurants'
restaurants_collection = client[db_name][collection_name]
trips_collection = client[db_name]['smart_trips']



def get_restaurants(search, location, meters):

    newTrip = pre_aggregate_meters(location, meters)

    response = openai_client.embeddings.create(
            input=search,
            model="text-embedding-3-small",
            dimensions=256
        )

    restaurant_docs = list(trips_collection.aggregate([{
        "$vectorSearch": {
            "index" : "vector_index",
            "queryVector": response.data[0].embedding,
            "path" : "embedding",
            "numCandidates": 10,
            "limit": 3,
            "filter": {"searchTrip": newTrip}
        }},
        {"$project": {"_id" : 0, "embedding": 0}}]))

    
    chat_response = openai_client.chat.completions.create(
        model="gpt-3.5-turbo",
        messages=[
            {"role": "system", "content": "You are a helpful restaurant assistant."},
            { "role": "user", "content": f"Find me the 2 best restaurant and why based on {search} and  {restaurant_docs}. explain trades offs and why I should go to each one."}
        ]
        )

    trips_collection.delete_many({"searchTrip": newTrip})

    return chat_response.choices[0].message.content
    

def pre_aggregate_meters(location, meters):

    tripId = ObjectId()

    restaurants_collection.aggregate([
        {
            "$geoNear": {
            "near": location,
            "distanceField": "distance",
            "maxDistance": meters,
            "spherical": True,
            },
        },
        {
            "$addFields": {
                "searchTrip" : tripId,
                "date" : tripId.generation_time
            }
        },
        {
            "$merge": {
                "into": "smart_trips"
            }
        }   
    ]);

    sleep(10)

    return tripId


with gr.Blocks() as demo:
    gr.Markdown(
    """
    # MongoDB's Vector Restaurant planner 
    Start typing below to see the results
    """)
    gr.HTML(value='<iframe style="background: #FFFFFF;border: none;border-radius: 2px;box-shadow: 0 2px 10px 0 rgba(70, 76, 79, .2);" width="640" height="480" src="https://charts.mongodb.com/charts-paveldev-wiumf/embed/charts?id=65c24b0c-2215-4e6f-829c-f484dfd8a90c&maxDataAge=3600&theme=light&autoRefresh=true"></iframe>')
#    
    gr.Interface(
        get_restaurants,
        [
         
            gr.Textbox(placeholder="What type of dinner are you looking for?"),
         gr.Radio([("work",{
            "type": "Point",
            "coordinates": [
            -73.98527039999999,
            40.7589099
            ]
        }), ("home",{
            "type": "Point",
            "coordinates": [
            40.701975, -74.013686
            ]
        }), ("park", {
            "type": "Point",
            "coordinates": [40.720777, -74.000468
            ]
        })], label="Location", info="What location you need?"),
        gr.Slider(minimum=500, maximum=10000, randomize=False, step=5, label="Radius in meters")],
       gr.Textbox(label="MongoDB Vector Recommendations", placeholder="Results will be displayed here"),
        
    )
    #radio.change(location_searched, loc, out)
if __name__ == "__main__":
    demo.launch()