Spaces:
Runtime error
Runtime error
Pavel Duchovny
commited on
Commit
•
26e73e0
1
Parent(s):
b54e32e
init
Browse files- app.py +120 -0
- flagged/log.csv +3 -0
- requirements.tx +2 -0
app.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from time import sleep
|
3 |
+
from pymongo import MongoClient
|
4 |
+
from bson import ObjectId
|
5 |
+
from openai import OpenAI
|
6 |
+
openai_client = OpenAI()
|
7 |
+
import os
|
8 |
+
|
9 |
+
uri = os.environ.get('MONGODB_ATLAS_URI')
|
10 |
+
client = MongoClient(uri)
|
11 |
+
db_name = 'whatscooking'
|
12 |
+
collection_name = 'restaurants'
|
13 |
+
restaurants_collection = client[db_name][collection_name]
|
14 |
+
trips_collection = client[db_name]['smart_trips']
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
def get_restaurants(search, location, meters):
|
19 |
+
|
20 |
+
newTrip = pre_aggregate_meters(location, meters)
|
21 |
+
|
22 |
+
response = openai_client.embeddings.create(
|
23 |
+
input=search,
|
24 |
+
model="text-embedding-3-small",
|
25 |
+
dimensions=256
|
26 |
+
)
|
27 |
+
|
28 |
+
restaurant_docs = list(trips_collection.aggregate([{
|
29 |
+
"$vectorSearch": {
|
30 |
+
"index" : "vector_index",
|
31 |
+
"queryVector": response.data[0].embedding,
|
32 |
+
"path" : "embedding",
|
33 |
+
"numCandidates": 10,
|
34 |
+
"limit": 3,
|
35 |
+
"filter": {"searchTrip": newTrip}
|
36 |
+
}},
|
37 |
+
{"$project": {"_id" : 0, "embedding": 0}}]))
|
38 |
+
|
39 |
+
|
40 |
+
chat_response = openai_client.chat.completions.create(
|
41 |
+
model="gpt-3.5-turbo",
|
42 |
+
messages=[
|
43 |
+
{"role": "system", "content": "You are a helpful restaurant assistant."},
|
44 |
+
{ "role": "user", "content": f"Find me the 2 best restaurant and why based on {search} and {restaurant_docs}. explain trades offs and why I should go to each one."}
|
45 |
+
]
|
46 |
+
)
|
47 |
+
|
48 |
+
trips_collection.delete_many({"searchTrip": newTrip})
|
49 |
+
|
50 |
+
return chat_response.choices[0].message.content
|
51 |
+
|
52 |
+
|
53 |
+
def pre_aggregate_meters(location, meters):
|
54 |
+
|
55 |
+
tripId = ObjectId()
|
56 |
+
|
57 |
+
restaurants_collection.aggregate([
|
58 |
+
{
|
59 |
+
"$geoNear": {
|
60 |
+
"near": location,
|
61 |
+
"distanceField": "distance",
|
62 |
+
"maxDistance": meters,
|
63 |
+
"spherical": True,
|
64 |
+
},
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"$addFields": {
|
68 |
+
"searchTrip" : tripId,
|
69 |
+
"date" : tripId.generation_time
|
70 |
+
}
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"$merge": {
|
74 |
+
"into": "smart_trips"
|
75 |
+
}
|
76 |
+
}
|
77 |
+
]);
|
78 |
+
|
79 |
+
sleep(10)
|
80 |
+
|
81 |
+
return tripId
|
82 |
+
|
83 |
+
|
84 |
+
with gr.Blocks() as demo:
|
85 |
+
gr.Markdown(
|
86 |
+
"""
|
87 |
+
# MongoDB's Vector Restaurant planner
|
88 |
+
Start typing below to see the results
|
89 |
+
""")
|
90 |
+
gr.HTML(value='<iframe style="background: #FFFFFF;border: none;border-radius: 2px;box-shadow: 0 2px 10px 0 rgba(70, 76, 79, .2);" width="640" height="480" src="https://charts.mongodb.com/charts-paveldev-wiumf/embed/charts?id=65c24b0c-2215-4e6f-829c-f484dfd8a90c&maxDataAge=3600&theme=light&autoRefresh=true"></iframe>')
|
91 |
+
#
|
92 |
+
gr.Interface(
|
93 |
+
get_restaurants,
|
94 |
+
[
|
95 |
+
|
96 |
+
gr.Textbox(placeholder="What type of dinner are you looking for?"),
|
97 |
+
gr.Radio([("work",{
|
98 |
+
"type": "Point",
|
99 |
+
"coordinates": [
|
100 |
+
-73.98527039999999,
|
101 |
+
40.7589099
|
102 |
+
]
|
103 |
+
}), ("home",{
|
104 |
+
"type": "Point",
|
105 |
+
"coordinates": [
|
106 |
+
40.701975, -74.013686
|
107 |
+
]
|
108 |
+
}), ("park", {
|
109 |
+
"type": "Point",
|
110 |
+
"coordinates": [40.720777, -74.000468
|
111 |
+
]
|
112 |
+
})], label="Location", info="What location you need?"),
|
113 |
+
gr.Slider(minimum=500, maximum=10000, randomize=False, step=5, label="Radius in meters")],
|
114 |
+
gr.Textbox(label="MongoDB Vector Recommendations", placeholder="Results will be displayed here"),
|
115 |
+
|
116 |
+
)
|
117 |
+
#radio.change(location_searched, loc, out)
|
118 |
+
if __name__ == "__main__":
|
119 |
+
demo.launch()
|
120 |
+
|
flagged/log.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
search,Location,out,output,flag,username,timestamp
|
2 |
+
Movies,work,,I will now search: Movies!,,,2024-02-07 12:04:10.349102
|
3 |
+
Movies,work,,I will now search: Movies!,,,2024-02-07 12:04:12.484796
|
requirements.tx
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
openai
|
2 |
+
pymongo
|