Spaces:
Running
on
Zero
Running
on
Zero
import subprocess | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
import gradio as gr | |
import spaces | |
from gradio_litmodel3d import LitModel3D | |
import os | |
os.environ['SPCONV_ALGO'] = 'native' | |
from typing import * | |
import torch | |
import numpy as np | |
import imageio | |
import uuid | |
from easydict import EasyDict as edict | |
from PIL import Image | |
from trellis.pipelines import TrellisImageTo3DPipeline | |
from trellis.representations import Gaussian, MeshExtractResult | |
from trellis.utils import render_utils, postprocessing_utils | |
from gradio_client import Client | |
from diffusers import FluxPipeline | |
from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images | |
llm_client = Client("Qwen/Qwen2.5-72B-Instruct") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
pipe = FluxPipeline.from_pretrained("sayakpaul/FLUX.1-merged", torch_dtype=torch.bfloat16).to(device) | |
pipe.vae.enable_tiling() | |
pipe.vae.enable_slicing() | |
pipe.enable_sequential_cpu_offload() # offloads modules to CPU on a submodule level (rather than model level) | |
torch.cuda.empty_cache() | |
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) | |
MAX_SEED = np.iinfo(np.int32).max | |
TMP_DIR = "/tmp/Trellis-demo" | |
os.makedirs(TMP_DIR, exist_ok=True) | |
def generate_t2i_prompt(item_name): | |
llm_prompt_template = """You are tasked with creating a concise yet highly detailed description of an item to be used for generating an image in a game development pipeline. The image should show the **entire item** with no parts cropped or hidden. The background should always be plain and monocolor, with no focus on it. | |
### Guidelines: | |
1. **Whole Item Focus**: The description should emphasize the full item, ensuring it is clearly depicted in the image. | |
2. **Concise Details**: Use vivid but compact language to describe the item's shape, materials, textures, colors, and unique features. Avoid unnecessary elaboration or context. | |
3. **No Background Details**: Specify that the background is plain and monocolor without describing it further. | |
### Examples: | |
Item: "Golden Pocket Watch" | |
A vintage golden pocket watch with intricate floral engravings, polished metal, and Roman numerals on its clock face. Its chain is smooth and reflective, completing the elegant design. | |
Item: "Crystal Vase" | |
A tall crystal vase with a fluted top edge, clear polished surface, and delicate floral engravings. The crystal glimmers subtly, showing off its refined craftsmanship. | |
Now generate a concise description for the item: "{item_name}" | |
Focus on the item itself, ensuring it is fully described, and specify a plain, white background and the output is no longer than 77 tokens. | |
""" | |
object_t2i_prompt = llm_client.predict( | |
query=llm_prompt_template.format(item_name=item_name), | |
history=[], | |
system="You are Qwen, created by Alibaba Cloud. You are a helpful assistant.", | |
api_name="/model_chat", | |
)[1][0][-1] | |
print(object_t2i_prompt) | |
return object_t2i_prompt | |
def preprocess_pil_image(image: Image.Image) -> Tuple[str, Image.Image]: | |
""" | |
Preprocess the input image. | |
Args: | |
image (Image.Image): The input image. | |
Returns: | |
str: uuid of the trial. | |
Image.Image: The preprocessed image. | |
""" | |
trial_id = str(uuid.uuid4()) | |
processed_image = pipeline.preprocess_image(image) | |
processed_image.save(f"{TMP_DIR}/{trial_id}.png") | |
return trial_id, processed_image | |
def generate_item_image(object_t2i_prompt): | |
trial_id = "" | |
for image in pipe.flux_pipe_call_that_returns_an_iterable_of_images( | |
prompt=object_t2i_prompt, | |
guidance_scale=3.5, | |
num_inference_steps=8, | |
width=1024, | |
height=1024, | |
generator=torch.Generator("cpu").manual_seed(0), | |
output_type="pil", | |
): | |
yield trial_id, image | |
# img_path = t2i_client.predict( | |
# prompt=object_t2i_prompt, | |
# seed=0, | |
# randomize_seed=True, | |
# width=1024, | |
# height=1024, | |
# guidance_scale=3.5, | |
# num_inference_steps=8, | |
# api_name="/infer" | |
# )[0] | |
# image = Image.open(img_path) | |
trial_id, processed_image = preprocess_pil_image(image) | |
yield trial_id, processed_image | |
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict: | |
return { | |
'gaussian': { | |
**gs.init_params, | |
'_xyz': gs._xyz.cpu().numpy(), | |
'_features_dc': gs._features_dc.cpu().numpy(), | |
'_scaling': gs._scaling.cpu().numpy(), | |
'_rotation': gs._rotation.cpu().numpy(), | |
'_opacity': gs._opacity.cpu().numpy(), | |
}, | |
'mesh': { | |
'vertices': mesh.vertices.cpu().numpy(), | |
'faces': mesh.faces.cpu().numpy(), | |
}, | |
'trial_id': trial_id, | |
} | |
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]: | |
gs = Gaussian( | |
aabb=state['gaussian']['aabb'], | |
sh_degree=state['gaussian']['sh_degree'], | |
mininum_kernel_size=state['gaussian']['mininum_kernel_size'], | |
scaling_bias=state['gaussian']['scaling_bias'], | |
opacity_bias=state['gaussian']['opacity_bias'], | |
scaling_activation=state['gaussian']['scaling_activation'], | |
) | |
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda') | |
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda') | |
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda') | |
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda') | |
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda') | |
mesh = edict( | |
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'), | |
faces=torch.tensor(state['mesh']['faces'], device='cuda'), | |
) | |
return gs, mesh, state['trial_id'] | |
def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float, ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int) -> Tuple[dict, str]: | |
""" | |
Convert an image to a 3D model. | |
Args: | |
trial_id (str): The uuid of the trial. | |
seed (int): The random seed. | |
randomize_seed (bool): Whether to randomize the seed. | |
ss_guidance_strength (float): The guidance strength for sparse structure generation. | |
ss_sampling_steps (int): The number of sampling steps for sparse structure generation. | |
slat_guidance_strength (float): The guidance strength for structured latent generation. | |
slat_sampling_steps (int): The number of sampling steps for structured latent generation. | |
Returns: | |
dict: The information of the generated 3D model. | |
str: The path to the video of the 3D model. | |
""" | |
if randomize_seed: | |
seed = np.random.randint(0, MAX_SEED) | |
outputs = pipeline.run( | |
Image.open(f"{TMP_DIR}/{trial_id}.png"), | |
seed=seed, | |
formats=["gaussian", "mesh"], | |
preprocess_image=False, | |
sparse_structure_sampler_params={ | |
"steps": ss_sampling_steps, | |
"cfg_strength": ss_guidance_strength, | |
}, | |
slat_sampler_params={ | |
"steps": slat_sampling_steps, | |
"cfg_strength": slat_guidance_strength, | |
}, | |
) | |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color'] | |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal'] | |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))] | |
trial_id = uuid.uuid4() | |
video_path = f"{TMP_DIR}/{trial_id}.mp4" | |
os.makedirs(os.path.dirname(video_path), exist_ok=True) | |
imageio.mimsave(video_path, video, fps=15) | |
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id) | |
return state, video_path | |
def extract_glb(state: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]: | |
""" | |
Extract a GLB file from the 3D model. | |
Args: | |
state (dict): The state of the generated 3D model. | |
mesh_simplify (float): The mesh simplification factor. | |
texture_size (int): The texture resolution. | |
Returns: | |
str: The path to the extracted GLB file. | |
""" | |
gs, mesh, trial_id = unpack_state(state) | |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) | |
glb_path = f"{TMP_DIR}/{trial_id}.glb" | |
glb.export(glb_path) | |
return glb_path, glb_path | |
def activate_button() -> gr.Button: | |
return gr.Button(interactive=True) | |
def deactivate_button() -> gr.Button: | |
return gr.Button(interactive=False) | |
with gr.Blocks(title="Game Items Generator") as demo: | |
gr.HTML("<h1 style='text-align: center;'>Game Items Generator</h1>") | |
gr.Markdown(""" | |
## Text or Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/) | |
- Write in a very simple words the item you want for your game and click "Enhance Prompt" to generate a text-to-image prompt. | |
- Click "Generate Image" to generate an image of the item or you can bypass all of the previous steps and uplod your own image. | |
- Click "Generate 3D video" to create a 3D asset. If the image has alpha channel, it be used as the mask. Otherwise, we use `rembg` to remove the background. | |
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it. | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(equal_height=True): | |
item_text_field = gr.Textbox(label="Item Name", placeholder="Enter the name of the item", lines=2, scale=4) | |
enhance_prompt_btn = gr.Button("Enhance Prompt", variant="primary", scale=1) | |
generate_image_btn = gr.Button("Generate Image", variant="primary") | |
image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=400) | |
with gr.Accordion(label="Generation Settings", open=False): | |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1) | |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
gr.Markdown("Stage 1: Sparse Structure Generation") | |
with gr.Row(): | |
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1) | |
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) | |
gr.Markdown("Stage 2: Structured Latent Generation") | |
with gr.Row(): | |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1) | |
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) | |
generate_btn = gr.Button("Generate 3D video") | |
with gr.Accordion(label="GLB Extraction Settings", open=False): | |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01) | |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512) | |
extract_glb_btn = gr.Button("Extract GLB", interactive=False) | |
with gr.Column(): | |
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300) | |
model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300) | |
# model_output = gr.Model3D(label="Extracted GLB", height=300) | |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False) | |
trial_id = gr.Textbox(visible=False) | |
output_buf = gr.State() | |
# Example images at the bottom of the page | |
with gr.Row(): | |
examples = gr.Examples( | |
examples=[ | |
f'assets/example_image/{image}' | |
for image in os.listdir("assets/example_image") | |
], | |
inputs=[image_prompt], | |
fn=preprocess_pil_image, | |
outputs=[trial_id, image_prompt], | |
run_on_click=True, | |
examples_per_page=64, | |
) | |
# Handlers | |
enhance_prompt_btn.click( | |
generate_t2i_prompt, | |
inputs=[item_text_field], | |
outputs=[item_text_field], | |
) | |
generate_image_btn.click( | |
generate_item_image, | |
inputs=[item_text_field], | |
outputs=[trial_id, image_prompt], | |
) | |
image_prompt.upload( | |
preprocess_pil_image, | |
inputs=[image_prompt], | |
outputs=[trial_id, image_prompt], | |
) | |
image_prompt.clear( | |
lambda: '', | |
outputs=[trial_id], | |
) | |
generate_btn.click( | |
image_to_3d, | |
inputs=[trial_id, seed, randomize_seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps], | |
outputs=[output_buf, video_output], | |
).then( | |
activate_button, | |
outputs=[extract_glb_btn], | |
) | |
video_output.clear( | |
deactivate_button, | |
outputs=[extract_glb_btn], | |
) | |
extract_glb_btn.click( | |
extract_glb, | |
inputs=[output_buf, mesh_simplify, texture_size], | |
outputs=[model_output, download_glb], | |
).then( | |
activate_button, | |
outputs=[download_glb], | |
) | |
model_output.clear( | |
deactivate_button, | |
outputs=[download_glb], | |
) | |
# Cleans up the temporary directory every 10 minutes | |
import threading | |
import time | |
def cleanup_tmp_dir(): | |
while True: | |
if os.path.exists(TMP_DIR): | |
for file in os.listdir(TMP_DIR): | |
# remove files older than 10 minutes | |
if time.time() - os.path.getmtime(os.path.join(TMP_DIR, file)) > 600: | |
os.remove(os.path.join(TMP_DIR, file)) | |
time.sleep(600) | |
cleanup_thread = threading.Thread(target=cleanup_tmp_dir) | |
cleanup_thread.start() | |
# Launch the Gradio app | |
if __name__ == "__main__": | |
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large") | |
pipeline.cuda() | |
try: | |
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg | |
except: | |
pass | |
demo.launch(share=False) | |