Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,307 Bytes
449f481 73c350d 38f03cc c63aa42 73c350d 38f03cc 73c350d c767532 474e44a 1273148 73c350d c767532 8961b93 b1b4917 9200fea 36a40e7 9200fea 8961b93 1273148 73c350d 8961b93 73c350d c767532 73c350d 38f03cc 73c350d 56ef76b 87af913 1273148 9200fea 1273148 87af913 1273148 87af913 73c350d 689e677 73c350d f4f0e5b 73c350d c63aa42 73c350d 38f03cc 73c350d 38f03cc 73c350d b54b529 73c350d 61757c6 73c350d 3712078 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D
import os
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
import uuid
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
from gradio_client import Client
from diffusers import FluxPipeline
from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images
llm_client = Client("Qwen/Qwen2.5-72B-Instruct")
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = FluxPipeline.from_pretrained("sayakpaul/FLUX.1-merged", torch_dtype=torch.bfloat16).to(device)
pipe.vae.enable_tiling()
pipe.vae.enable_slicing()
pipe.enable_sequential_cpu_offload() # offloads modules to CPU on a submodule level (rather than model level)
torch.cuda.empty_cache()
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = "/tmp/Trellis-demo"
os.makedirs(TMP_DIR, exist_ok=True)
def generate_t2i_prompt(item_name):
llm_prompt_template = """You are tasked with creating a concise yet highly detailed description of an item to be used for generating an image in a game development pipeline. The image should show the **entire item** with no parts cropped or hidden. The background should always be plain and monocolor, with no focus on it.
### Guidelines:
1. **Whole Item Focus**: The description should emphasize the full item, ensuring it is clearly depicted in the image.
2. **Concise Details**: Use vivid but compact language to describe the item's shape, materials, textures, colors, and unique features. Avoid unnecessary elaboration or context.
3. **No Background Details**: Specify that the background is plain and monocolor without describing it further.
### Examples:
Item: "Golden Pocket Watch"
A vintage golden pocket watch with intricate floral engravings, polished metal, and Roman numerals on its clock face. Its chain is smooth and reflective, completing the elegant design.
Item: "Crystal Vase"
A tall crystal vase with a fluted top edge, clear polished surface, and delicate floral engravings. The crystal glimmers subtly, showing off its refined craftsmanship.
Now generate a concise description for the item: "{item_name}"
Focus on the item itself, ensuring it is fully described, and specify a plain, white background and the output is no longer than 77 tokens.
"""
object_t2i_prompt = llm_client.predict(
query=llm_prompt_template.format(item_name=item_name),
history=[],
system="You are Qwen, created by Alibaba Cloud. You are a helpful assistant.",
api_name="/model_chat",
)[1][0][-1]
print(object_t2i_prompt)
return object_t2i_prompt
def preprocess_pil_image(image: Image.Image) -> Tuple[str, Image.Image]:
"""
Preprocess the input image.
Args:
image (Image.Image): The input image.
Returns:
str: uuid of the trial.
Image.Image: The preprocessed image.
"""
trial_id = str(uuid.uuid4())
processed_image = pipeline.preprocess_image(image)
processed_image.save(f"{TMP_DIR}/{trial_id}.png")
return trial_id, processed_image
@spaces.GPU(duration=120)
def generate_item_image(object_t2i_prompt):
trial_id = ""
for image in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=object_t2i_prompt,
guidance_scale=3.5,
num_inference_steps=8,
width=1024,
height=1024,
generator=torch.Generator("cpu").manual_seed(0),
output_type="pil",
):
yield trial_id, image
# img_path = t2i_client.predict(
# prompt=object_t2i_prompt,
# seed=0,
# randomize_seed=True,
# width=1024,
# height=1024,
# guidance_scale=3.5,
# num_inference_steps=8,
# api_name="/infer"
# )[0]
# image = Image.open(img_path)
trial_id, processed_image = preprocess_pil_image(image)
yield trial_id, processed_image
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
return {
'gaussian': {
**gs.init_params,
'_xyz': gs._xyz.cpu().numpy(),
'_features_dc': gs._features_dc.cpu().numpy(),
'_scaling': gs._scaling.cpu().numpy(),
'_rotation': gs._rotation.cpu().numpy(),
'_opacity': gs._opacity.cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.cpu().numpy(),
'faces': mesh.faces.cpu().numpy(),
},
'trial_id': trial_id,
}
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
gs = Gaussian(
aabb=state['gaussian']['aabb'],
sh_degree=state['gaussian']['sh_degree'],
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
scaling_bias=state['gaussian']['scaling_bias'],
opacity_bias=state['gaussian']['opacity_bias'],
scaling_activation=state['gaussian']['scaling_activation'],
)
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
mesh = edict(
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
)
return gs, mesh, state['trial_id']
@spaces.GPU
def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float, ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int) -> Tuple[dict, str]:
"""
Convert an image to a 3D model.
Args:
trial_id (str): The uuid of the trial.
seed (int): The random seed.
randomize_seed (bool): Whether to randomize the seed.
ss_guidance_strength (float): The guidance strength for sparse structure generation.
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
slat_guidance_strength (float): The guidance strength for structured latent generation.
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
Returns:
dict: The information of the generated 3D model.
str: The path to the video of the 3D model.
"""
if randomize_seed:
seed = np.random.randint(0, MAX_SEED)
outputs = pipeline.run(
Image.open(f"{TMP_DIR}/{trial_id}.png"),
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
)
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
trial_id = uuid.uuid4()
video_path = f"{TMP_DIR}/{trial_id}.mp4"
os.makedirs(os.path.dirname(video_path), exist_ok=True)
imageio.mimsave(video_path, video, fps=15)
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id)
return state, video_path
@spaces.GPU
def extract_glb(state: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]:
"""
Extract a GLB file from the 3D model.
Args:
state (dict): The state of the generated 3D model.
mesh_simplify (float): The mesh simplification factor.
texture_size (int): The texture resolution.
Returns:
str: The path to the extracted GLB file.
"""
gs, mesh, trial_id = unpack_state(state)
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
glb_path = f"{TMP_DIR}/{trial_id}.glb"
glb.export(glb_path)
return glb_path, glb_path
def activate_button() -> gr.Button:
return gr.Button(interactive=True)
def deactivate_button() -> gr.Button:
return gr.Button(interactive=False)
with gr.Blocks(title="Game Items Generator") as demo:
gr.HTML("<h1 style='text-align: center;'>Game Items Generator</h1>")
gr.Markdown("""
## Text or Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
- Write in a very simple words the item you want for your game and click "Enhance Prompt" to generate a text-to-image prompt.
- Click "Generate Image" to generate an image of the item or you can bypass all of the previous steps and uplod your own image.
- Click "Generate 3D video" to create a 3D asset. If the image has alpha channel, it be used as the mask. Otherwise, we use `rembg` to remove the background.
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
""")
with gr.Row():
with gr.Column():
with gr.Row(equal_height=True):
item_text_field = gr.Textbox(label="Item Name", placeholder="Enter the name of the item", lines=2, scale=4)
enhance_prompt_btn = gr.Button("Enhance Prompt", variant="primary", scale=1)
generate_image_btn = gr.Button("Generate Image", variant="primary")
image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=400)
with gr.Accordion(label="Generation Settings", open=False):
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
gr.Markdown("Stage 1: Sparse Structure Generation")
with gr.Row():
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
gr.Markdown("Stage 2: Structured Latent Generation")
with gr.Row():
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
generate_btn = gr.Button("Generate 3D video")
with gr.Accordion(label="GLB Extraction Settings", open=False):
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
with gr.Column():
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300)
# model_output = gr.Model3D(label="Extracted GLB", height=300)
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
trial_id = gr.Textbox(visible=False)
output_buf = gr.State()
# Example images at the bottom of the page
with gr.Row():
examples = gr.Examples(
examples=[
f'assets/example_image/{image}'
for image in os.listdir("assets/example_image")
],
inputs=[image_prompt],
fn=preprocess_pil_image,
outputs=[trial_id, image_prompt],
run_on_click=True,
examples_per_page=64,
)
# Handlers
enhance_prompt_btn.click(
generate_t2i_prompt,
inputs=[item_text_field],
outputs=[item_text_field],
)
generate_image_btn.click(
generate_item_image,
inputs=[item_text_field],
outputs=[trial_id, image_prompt],
)
image_prompt.upload(
preprocess_pil_image,
inputs=[image_prompt],
outputs=[trial_id, image_prompt],
)
image_prompt.clear(
lambda: '',
outputs=[trial_id],
)
generate_btn.click(
image_to_3d,
inputs=[trial_id, seed, randomize_seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
outputs=[output_buf, video_output],
).then(
activate_button,
outputs=[extract_glb_btn],
)
video_output.clear(
deactivate_button,
outputs=[extract_glb_btn],
)
extract_glb_btn.click(
extract_glb,
inputs=[output_buf, mesh_simplify, texture_size],
outputs=[model_output, download_glb],
).then(
activate_button,
outputs=[download_glb],
)
model_output.clear(
deactivate_button,
outputs=[download_glb],
)
# Cleans up the temporary directory every 10 minutes
import threading
import time
def cleanup_tmp_dir():
while True:
if os.path.exists(TMP_DIR):
for file in os.listdir(TMP_DIR):
# remove files older than 10 minutes
if time.time() - os.path.getmtime(os.path.join(TMP_DIR, file)) > 600:
os.remove(os.path.join(TMP_DIR, file))
time.sleep(600)
cleanup_thread = threading.Thread(target=cleanup_tmp_dir)
cleanup_thread.start()
# Launch the Gradio app
if __name__ == "__main__":
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
pipeline.cuda()
try:
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
except:
pass
demo.launch(share=False)
|