Spaces:
Running
on
Zero
Running
on
Zero
MohamedRashad
commited on
Commit
·
87af913
1
Parent(s):
a5e543c
Update image generation to use InferenceClient and adjust requirements
Browse files- app.py +22 -13
- requirements.txt +1 -1
app.py
CHANGED
@@ -19,7 +19,7 @@ from diffusers import FluxPipeline
|
|
19 |
from huggingface_hub import InferenceClient
|
20 |
|
21 |
llm_client = Client("Qwen/Qwen2.5-72B-Instruct")
|
22 |
-
|
23 |
|
24 |
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
25 |
# pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to("cpu")
|
@@ -54,18 +54,6 @@ Focus on the item itself, ensuring it is fully described, and specify a plain, w
|
|
54 |
|
55 |
return object_t2i_prompt
|
56 |
|
57 |
-
def generate_item_image(object_t2i_prompt):
|
58 |
-
# image = pipe(prompt=object_t2i_prompt, guidance_scale=3.5, num_inference_steps=28, width=1024, height=1024, generator=torch.Generator("cpu").manual_seed(0), output_type="pil").images[0]
|
59 |
-
image = client.text_to_image(object_t2i_prompt, guidance_scale=3.5, num_inference_steps=28, width=1024, height=1024)
|
60 |
-
trial_id, processed_image = preprocess_pil_image(image)
|
61 |
-
return trial_id, processed_image
|
62 |
-
|
63 |
-
MAX_SEED = np.iinfo(np.int32).max
|
64 |
-
TMP_DIR = "/tmp/Trellis-demo"
|
65 |
-
|
66 |
-
os.makedirs(TMP_DIR, exist_ok=True)
|
67 |
-
|
68 |
-
|
69 |
def preprocess_pil_image(image: Image.Image) -> Tuple[str, Image.Image]:
|
70 |
"""
|
71 |
Preprocess the input image.
|
@@ -82,6 +70,27 @@ def preprocess_pil_image(image: Image.Image) -> Tuple[str, Image.Image]:
|
|
82 |
processed_image.save(f"{TMP_DIR}/{trial_id}.png")
|
83 |
return trial_id, processed_image
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
|
87 |
return {
|
|
|
19 |
from huggingface_hub import InferenceClient
|
20 |
|
21 |
llm_client = Client("Qwen/Qwen2.5-72B-Instruct")
|
22 |
+
t2i_client = Client("black-forest-labs/FLUX.1-dev")
|
23 |
|
24 |
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
25 |
# pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to("cpu")
|
|
|
54 |
|
55 |
return object_t2i_prompt
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
def preprocess_pil_image(image: Image.Image) -> Tuple[str, Image.Image]:
|
58 |
"""
|
59 |
Preprocess the input image.
|
|
|
70 |
processed_image.save(f"{TMP_DIR}/{trial_id}.png")
|
71 |
return trial_id, processed_image
|
72 |
|
73 |
+
def generate_item_image(object_t2i_prompt):
|
74 |
+
# image = pipe(prompt=object_t2i_prompt, guidance_scale=3.5, num_inference_steps=28, width=1024, height=1024, generator=torch.Generator("cpu").manual_seed(0), output_type="pil").images[0]
|
75 |
+
# image = client.text_to_image(object_t2i_prompt, guidance_scale=3.5, num_inference_steps=28, width=1024, height=1024)
|
76 |
+
img_path = t2i_client.predict(
|
77 |
+
prompt=object_t2i_prompt,
|
78 |
+
seed=0,
|
79 |
+
randomize_seed=True,
|
80 |
+
width=1024,
|
81 |
+
height=1024,
|
82 |
+
guidance_scale=3.5,
|
83 |
+
num_inference_steps=8,
|
84 |
+
api_name="/infer"
|
85 |
+
)[0]
|
86 |
+
image = Image.open(img_path)
|
87 |
+
trial_id, processed_image = preprocess_pil_image(image)
|
88 |
+
return trial_id, processed_image
|
89 |
+
|
90 |
+
MAX_SEED = np.iinfo(np.int32).max
|
91 |
+
TMP_DIR = "/tmp/Trellis-demo"
|
92 |
+
|
93 |
+
os.makedirs(TMP_DIR, exist_ok=True)
|
94 |
|
95 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
|
96 |
return {
|
requirements.txt
CHANGED
@@ -4,7 +4,7 @@
|
|
4 |
accelerate
|
5 |
sentencepiece
|
6 |
diffusers
|
7 |
-
gradio_client
|
8 |
huggingface-hub==0.26.5
|
9 |
torch==2.4.0
|
10 |
torchvision==0.19.0
|
|
|
4 |
accelerate
|
5 |
sentencepiece
|
6 |
diffusers
|
7 |
+
gradio_client==1.4.0
|
8 |
huggingface-hub==0.26.5
|
9 |
torch==2.4.0
|
10 |
torchvision==0.19.0
|