File size: 14,074 Bytes
73c350d
38f03cc
c63aa42
73c350d
 
 
 
38f03cc
73c350d
 
 
 
 
 
 
 
c767532
1273148
 
73c350d
c767532
1273148
b1e0411
 
1273148
73c350d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c767532
 
 
 
 
 
73c350d
 
 
 
38f03cc
73c350d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1273148
87af913
1273148
 
 
 
 
 
 
 
 
b1e0411
1273148
 
 
 
 
 
 
 
 
 
 
 
 
87af913
1273148
87af913
 
 
 
 
73c350d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
689e677
73c350d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c63aa42
 
73c350d
 
 
 
 
 
 
 
 
 
 
 
 
38f03cc
73c350d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38f03cc
73c350d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b54b529
 
 
 
 
 
 
 
 
 
 
 
 
73c350d
 
61757c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73c350d
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D

import os
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
import uuid
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
from gradio_client import Client
from diffusers import FluxPipeline, AutoencoderKL
from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images

llm_client = Client("Qwen/Qwen2.5-72B-Instruct")

pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to("cuda")
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16).to("cuda")
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)

def generate_t2i_prompt(item_name):
    llm_prompt_template = """You are tasked with creating a concise yet highly detailed description of an item to be used for generating an image in a game development pipeline. The image should show the **entire item** with no parts cropped or hidden. The background should always be plain and monocolor, with no focus on it.  

### Guidelines:
1. **Whole Item Focus**: The description should emphasize the full item, ensuring it is clearly depicted in the image.  
2. **Concise Details**: Use vivid but compact language to describe the item's shape, materials, textures, colors, and unique features. Avoid unnecessary elaboration or context.  
3. **No Background Details**: Specify that the background is plain and monocolor without describing it further.  

### Examples:
Item: "Golden Pocket Watch"  
A vintage golden pocket watch with intricate floral engravings, polished metal, and Roman numerals on its clock face. Its chain is smooth and reflective, completing the elegant design.

Item: "Crystal Vase"  
A tall crystal vase with a fluted top edge, clear polished surface, and delicate floral engravings. The crystal glimmers subtly, showing off its refined craftsmanship.

Now generate a concise description for the item: "{item_name}"  
Focus on the item itself, ensuring it is fully described, and specify a plain, white background and the output is no longer than 77 tokens.
"""

    object_t2i_prompt = llm_client.predict(
        query=llm_prompt_template.format(item_name=item_name),
        history=[],
        system="You are Qwen, created by Alibaba Cloud. You are a helpful assistant.",
        api_name="/model_chat",
    )[1][0][-1]
    print(object_t2i_prompt)

    return object_t2i_prompt

def preprocess_pil_image(image: Image.Image) -> Tuple[str, Image.Image]:
    """
    Preprocess the input image.

    Args:
        image (Image.Image): The input image.

    Returns:
        str: uuid of the trial.
        Image.Image: The preprocessed image.
    """
    trial_id = str(uuid.uuid4())
    processed_image = pipeline.preprocess_image(image)
    processed_image.save(f"{TMP_DIR}/{trial_id}.png")
    return trial_id, processed_image

@spaces.GPU
def generate_item_image(object_t2i_prompt):
    trial_id = ""
    for image in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
        prompt=object_t2i_prompt,
        guidance_scale=3.5,
        num_inference_steps=28,
        width=1024,
        height=1024,
        generator=torch.Generator("cpu").manual_seed(0),
        output_type="pil",
        good_vae=good_vae,
    ):
        yield trial_id, image
    # img_path = t2i_client.predict(
	# 	prompt=object_t2i_prompt,
	# 	seed=0,
	# 	randomize_seed=True,
	# 	width=1024,
	# 	height=1024,
	# 	guidance_scale=3.5,
	# 	num_inference_steps=8,
	# 	api_name="/infer"
    # )[0]
    # image = Image.open(img_path)
    trial_id, processed_image = preprocess_pil_image(image)
    yield trial_id, processed_image

MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = "/tmp/Trellis-demo"

os.makedirs(TMP_DIR, exist_ok=True)

def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
    return {
        'gaussian': {
            **gs.init_params,
            '_xyz': gs._xyz.cpu().numpy(),
            '_features_dc': gs._features_dc.cpu().numpy(),
            '_scaling': gs._scaling.cpu().numpy(),
            '_rotation': gs._rotation.cpu().numpy(),
            '_opacity': gs._opacity.cpu().numpy(),
        },
        'mesh': {
            'vertices': mesh.vertices.cpu().numpy(),
            'faces': mesh.faces.cpu().numpy(),
        },
        'trial_id': trial_id,
    }
    
    
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
    gs = Gaussian(
        aabb=state['gaussian']['aabb'],
        sh_degree=state['gaussian']['sh_degree'],
        mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
        scaling_bias=state['gaussian']['scaling_bias'],
        opacity_bias=state['gaussian']['opacity_bias'],
        scaling_activation=state['gaussian']['scaling_activation'],
    )
    gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
    gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
    gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
    gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
    gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
    
    mesh = edict(
        vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
        faces=torch.tensor(state['mesh']['faces'], device='cuda'),
    )
    
    return gs, mesh, state['trial_id']


@spaces.GPU
def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float, ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int) -> Tuple[dict, str]:
    """
    Convert an image to a 3D model.

    Args:
        trial_id (str): The uuid of the trial.
        seed (int): The random seed.
        randomize_seed (bool): Whether to randomize the seed.
        ss_guidance_strength (float): The guidance strength for sparse structure generation.
        ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
        slat_guidance_strength (float): The guidance strength for structured latent generation.
        slat_sampling_steps (int): The number of sampling steps for structured latent generation.

    Returns:
        dict: The information of the generated 3D model.
        str: The path to the video of the 3D model.
    """
    if randomize_seed:
        seed = np.random.randint(0, MAX_SEED)
    outputs = pipeline.run(
        Image.open(f"{TMP_DIR}/{trial_id}.png"),
        seed=seed,
        formats=["gaussian", "mesh"],
        preprocess_image=False,
        sparse_structure_sampler_params={
            "steps": ss_sampling_steps,
            "cfg_strength": ss_guidance_strength,
        },
        slat_sampler_params={
            "steps": slat_sampling_steps,
            "cfg_strength": slat_guidance_strength,
        },
    )
    video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
    video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
    video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
    trial_id = uuid.uuid4()
    video_path = f"{TMP_DIR}/{trial_id}.mp4"
    os.makedirs(os.path.dirname(video_path), exist_ok=True)
    imageio.mimsave(video_path, video, fps=15)
    state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id)
    return state, video_path


@spaces.GPU
def extract_glb(state: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]:
    """
    Extract a GLB file from the 3D model.

    Args:
        state (dict): The state of the generated 3D model.
        mesh_simplify (float): The mesh simplification factor.
        texture_size (int): The texture resolution.

    Returns:
        str: The path to the extracted GLB file.
    """
    gs, mesh, trial_id = unpack_state(state)
    glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
    glb_path = f"{TMP_DIR}/{trial_id}.glb"
    glb.export(glb_path)
    return glb_path, glb_path


def activate_button() -> gr.Button:
    return gr.Button(interactive=True)


def deactivate_button() -> gr.Button:
    return gr.Button(interactive=False)


with gr.Blocks(title="Game Items Generator") as demo:
    gr.HTML("<h1 style='text-align: center;'>Game Items Generator</h1>")
    gr.Markdown("""
    ## Text or Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
    - Write in a very simple words the item you want for your game and click "Enhance Prompt" to generate a text-to-image prompt.
    - Click "Generate Image" to generate an image of the item or you can bypass all of the previous steps and uplod your own image.
    - Click "Generate 3D video" to create a 3D asset. If the image has alpha channel, it be used as the mask. Otherwise, we use `rembg` to remove the background.
    * If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
    """)
    
    with gr.Row():
        with gr.Column():
            with gr.Row(equal_height=True):
                item_text_field = gr.Textbox(label="Item Name", placeholder="Enter the name of the item", lines=2, scale=4)
                enhance_prompt_btn = gr.Button("Enhance Prompt", variant="primary", scale=1)
            generate_image_btn = gr.Button("Generate Image", variant="primary")
            image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=300)
            
            with gr.Accordion(label="Generation Settings", open=False):
                seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
                randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                gr.Markdown("Stage 1: Sparse Structure Generation")
                with gr.Row():
                    ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
                    ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
                gr.Markdown("Stage 2: Structured Latent Generation")
                with gr.Row():
                    slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
                    slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)

            generate_btn = gr.Button("Generate 3D video")
            
            with gr.Accordion(label="GLB Extraction Settings", open=False):
                mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
                texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
            
            extract_glb_btn = gr.Button("Extract GLB", interactive=False)

        with gr.Column():
            video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
            model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300)
            # model_output = gr.Model3D(label="Extracted GLB", height=300)
            download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
            
    trial_id = gr.Textbox(visible=False)
    output_buf = gr.State()

    # Example images at the bottom of the page
    with gr.Row():
        examples = gr.Examples(
            examples=[
                f'assets/example_image/{image}'
                for image in os.listdir("assets/example_image")
            ],
            inputs=[image_prompt],
            fn=preprocess_pil_image,
            outputs=[trial_id, image_prompt],
            run_on_click=True,
            examples_per_page=64,
        )

    # Handlers
    enhance_prompt_btn.click(
        generate_t2i_prompt,
        inputs=[item_text_field],
        outputs=[item_text_field],
    )
    generate_image_btn.click(
        generate_item_image,
        inputs=[item_text_field],
        outputs=[trial_id, image_prompt],
    )
    image_prompt.upload(
        preprocess_pil_image,
        inputs=[image_prompt],
        outputs=[trial_id, image_prompt],
    )
    image_prompt.clear(
        lambda: '',
        outputs=[trial_id],
    )

    generate_btn.click(
        image_to_3d,
        inputs=[trial_id, seed, randomize_seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
        outputs=[output_buf, video_output],
    ).then(
        activate_button,
        outputs=[extract_glb_btn],
    )

    video_output.clear(
        deactivate_button,
        outputs=[extract_glb_btn],
    )

    extract_glb_btn.click(
        extract_glb,
        inputs=[output_buf, mesh_simplify, texture_size],
        outputs=[model_output, download_glb],
    ).then(
        activate_button,
        outputs=[download_glb],
    )

    model_output.clear(
        deactivate_button,
        outputs=[download_glb],
    )
    

# Cleans up the temporary directory every 10 minutes
import threading
import time

def cleanup_tmp_dir():
    while True:
        if os.path.exists(TMP_DIR):
            for file in os.listdir(TMP_DIR):
                # remove files older than 10 minutes
                if time.time() - os.path.getmtime(os.path.join(TMP_DIR, file)) > 600:
                    os.remove(os.path.join(TMP_DIR, file))
        time.sleep(600)
                
cleanup_thread = threading.Thread(target=cleanup_tmp_dir)
cleanup_thread.start()
    
# Launch the Gradio app
if __name__ == "__main__":
    pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
    pipeline.cuda()
    try:
        pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))    # Preload rembg
    except:
        pass
    demo.launch()