SEO / app.py
Merlintxu's picture
Update app.py
63fe26b verified
raw
history blame
12.1 kB
import os
import json
import logging
import re
import requests
import hashlib
import PyPDF2
import numpy as np
import pandas as pd
from io import BytesIO
from typing import List, Dict, Optional
from urllib.parse import urlparse, urljoin
from concurrent.futures import ThreadPoolExecutor, as_completed
from bs4 import BeautifulSoup
from pathlib import Path
from datetime import datetime
from collections import defaultdict
from sklearn.feature_extraction.text import TfidfVectorizer
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry
from transformers import pipeline, AutoModelForQuestionAnswering, AutoTokenizer
from sentence_transformers import SentenceTransformer
import spacy
import torch
import gradio as gr
import matplotlib.pyplot as plt
# Configuración de logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class SEOSpaceAnalyzer:
def __init__(self):
self.session = self._configure_session()
self.models = self._load_models()
self.base_dir = Path("content_storage")
self.base_dir.mkdir(exist_ok=True)
self.current_analysis = {}
def _configure_session(self):
"""Configura sesión HTTP con reintentos"""
session = requests.Session()
retry = Retry(
total=3,
backoff_factor=1,
status_forcelist=[500, 502, 503, 504]
)
adapter = HTTPAdapter(max_retries=retry)
session.mount('https://', adapter)
session.headers.update({
'User-Agent': 'Mozilla/5.0 (compatible; SEOBot/1.0)',
'Accept-Language': 'es-ES,es;q=0.9'
})
return session
def _load_models(self):
"""Carga modelos optimizados para Hugging Face"""
device = 0 if torch.cuda.is_available() else -1
return {
'summarizer': pipeline("summarization",
model="facebook/bart-large-cnn",
device=device),
'ner': pipeline("ner",
model="dslim/bert-base-NER",
device=device),
'semantic': SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2'),
'spacy': spacy.load("es_core_news_lg")
}
def analyze_sitemap(self, sitemap_url: str):
"""Analiza un sitemap completo"""
try:
urls = self._parse_sitemap(sitemap_url)
if not urls:
return {"error": "No se pudieron extraer URLs del sitemap"}
results = []
with ThreadPoolExecutor(max_workers=4) as executor:
futures = [executor.submit(self._process_url, url) for url in urls[:50]] # Limitar para demo
for future in as_completed(futures):
results.append(future.result())
self.current_analysis = {
'stats': self._calculate_stats(results),
'content_analysis': self._analyze_content(results),
'links': self._analyze_links(results),
'recommendations': self._generate_seo_recommendations(results)
}
return self.current_analysis
except Exception as e:
logger.error(f"Error en análisis: {str(e)}")
return {"error": str(e)}
def _process_url(self, url: str):
"""Procesa una URL individual"""
try:
response = self.session.get(url, timeout=10)
response.raise_for_status()
content_type = response.headers.get('Content-Type', '')
result = {'url': url, 'status': 'success'}
if 'application/pdf' in content_type:
result.update(self._process_pdf(response.content))
elif 'text/html' in content_type:
result.update(self._process_html(response.text, url))
return result
except Exception as e:
logger.warning(f"Error procesando {url}: {str(e)}")
return {'url': url, 'status': 'error', 'error': str(e)}
def _process_html(self, html: str, base_url: str):
"""Procesa contenido HTML"""
soup = BeautifulSoup(html, 'lxml')
clean_text = self._clean_text(soup.get_text())
return {
'type': 'html',
'content': clean_text,
'word_count': len(clean_text.split()),
'links': self._extract_links(soup, base_url),
'metadata': self._extract_metadata(soup)
}
def _process_pdf(self, content: bytes):
"""Procesa documentos PDF"""
text = ""
with BytesIO(content) as pdf_file:
reader = PyPDF2.PdfReader(pdf_file)
for page in reader.pages:
text += page.extract_text()
clean_text = self._clean_text(text)
return {
'type': 'pdf',
'content': clean_text,
'word_count': len(clean_text.split()),
'page_count': len(reader.pages)
}
def _clean_text(self, text: str):
"""Limpieza avanzada de texto"""
text = re.sub(r'\s+', ' ', text)
return re.sub(r'[^\w\sáéíóúñÁÉÍÓÚÑ]', ' ', text).strip()
def _extract_links(self, soup: BeautifulSoup, base_url: str):
"""Extrae y clasifica enlaces"""
links = []
for tag in soup.find_all('a', href=True):
try:
full_url = urljoin(base_url, tag['href'])
parsed = urlparse(full_url)
links.append({
'url': full_url,
'type': 'internal' if parsed.netloc == urlparse(base_url).netloc else 'external',
'anchor': self._clean_text(tag.text)[:100],
'file_type': self._get_file_type(parsed.path)
})
except:
continue
return links
def _get_file_type(self, path: str):
"""Determina tipo de archivo por extensión"""
ext = Path(path).suffix.lower()
return ext[1:] if ext else 'html'
def _extract_metadata(self, soup: BeautifulSoup):
"""Extrae metadatos SEO"""
metadata = {'title': '', 'description': '', 'keywords': []}
# Título
if soup.title:
metadata['title'] = soup.title.string.strip()
# Meta tags
for meta in soup.find_all('meta'):
if meta.get('name') == 'description':
metadata['description'] = meta.get('content', '')[:500]
elif meta.get('name') == 'keywords':
metadata['keywords'] = [kw.strip() for kw in meta.get('content', '').split(',')]
return metadata
def _parse_sitemap(self, sitemap_url: str):
"""Parsea sitemap XML básico"""
try:
response = self.session.get(sitemap_url)
response.raise_for_status()
urls = []
soup = BeautifulSoup(response.text, 'lxml')
# Sitemap index
for loc in soup.find_all('loc'):
url = loc.text.strip()
if url.endswith('.xml') and url != sitemap_url:
urls.extend(self._parse_sitemap(url))
else:
urls.append(url)
return list(set(urls))
except Exception as e:
logger.error(f"Error parsing sitemap: {str(e)}")
return []
def _calculate_stats(self, results: List[Dict]):
"""Calcula estadísticas básicas"""
successful = [r for r in results if r.get('status') == 'success']
return {
'total_urls': len(results),
'successful': len(successful),
'failed': len(results) - len(successful),
'content_types': pd.Series([r.get('type', 'unknown') for r in successful]).value_counts().to_dict(),
'avg_word_count': np.mean([r.get('word_count', 0) for r in successful])
}
def _analyze_content(self, results: List[Dict]):
"""Analiza contenido con NLP"""
successful = [r for r in results if r.get('status') == 'success']
texts = [r.get('content', '') for r in successful]
# Análisis de temas principales
vectorizer = TfidfVectorizer(stop_words=list(spacy.lang.es.stop_words.STOP_WORDS))
try:
tfidf = vectorizer.fit_transform(texts)
top_keywords = vectorizer.get_feature_names_out()[np.argsort(tfidf.sum(axis=0).A1][-10:][::-1]
except:
top_keywords = []
return {
'top_keywords': list(top_keywords),
'content_samples': [t[:500] + '...' for t in texts[:3]] # Muestras de contenido
}
def _analyze_links(self, results: List[Dict]):
"""Analiza estructura de enlaces"""
all_links = []
for result in results:
if result.get('links'):
all_links.extend(result['links'])
if not all_links:
return {}
df = pd.DataFrame(all_links)
return {
'internal_links': df[df['type'] == 'internal']['url'].value_counts().to_dict(),
'external_domains': df[df['type'] == 'external']['url'].apply(lambda x: urlparse(x).netloc).value_counts().to_dict(),
'common_anchors': df['anchor'].value_counts().head(10).to_dict()
}
def _generate_seo_recommendations(self, results: List[Dict]):
"""Genera recomendaciones SEO"""
successful = [r for r in results if r.get('status') == 'success']
recs = []
# Revisar metadatos
missing_titles = sum(1 for r in successful if not r.get('metadata', {}).get('title'))
if missing_titles:
recs.append(f"Añadir títulos a {missing_titles} páginas")
# Revisar contenido corto
short_content = sum(1 for r in successful if r.get('word_count', 0) < 300)
if short_content:
recs.append(f"Ampliar contenido en {short_content} páginas (menos de 300 palabras)")
return recs if recs else ["No se detectaron problemas críticos de SEO"]
# Interfaz Gradio
def create_interface():
analyzer = SEOSpaceAnalyzer()
with gr.Blocks(title="SEO Analyzer Pro", theme=gr.themes.Soft()) as interface:
gr.Markdown("""
# 🕵️ SEO Analyzer Pro
*Analizador SEO avanzado con modelos de lenguaje*
""")
with gr.Row():
with gr.Column():
sitemap_url = gr.Textbox(
label="URL del Sitemap",
placeholder="https://ejemplo.com/sitemap.xml",
interactive=True
)
analyze_btn = gr.Button("Analizar", variant="primary")
with gr.Column():
status = gr.Textbox(label="Estado", interactive=False)
with gr.Tabs():
with gr.Tab("Resumen"):
stats = gr.JSON(label="Estadísticas")
recommendations = gr.JSON(label="Recomendaciones SEO")
with gr.Tab("Contenido"):
content_analysis = gr.JSON(label="Análisis de Contenido")
content_samples = gr.JSON(label="Muestras de Contenido")
with gr.Tab("Enlaces"):
links_analysis = gr.JSON(label="Análisis de Enlaces")
links_plot = gr.Plot()
# Event handlers
analyze_btn.click(
fn=analyzer.analyze_sitemap,
inputs=sitemap_url,
outputs=[stats, recommendations, content_analysis, links_analysis],
api_name="analyze"
)
return interface
if __name__ == "__main__":
app = create_interface()
app.launch(server_name="0.0.0.0", server_port=7860)