Update app.py
Browse files
app.py
CHANGED
@@ -15,38 +15,18 @@ from bs4 import BeautifulSoup
|
|
15 |
from pathlib import Path
|
16 |
from datetime import datetime
|
17 |
from collections import defaultdict
|
18 |
-
|
19 |
-
import gradio as gr
|
20 |
-
import matplotlib.pyplot as plt
|
21 |
-
from sklearn.feature_extractio
|
22 |
-
import json
|
23 |
-
import logging
|
24 |
-
import re
|
25 |
-
import requests
|
26 |
-
import hashlib
|
27 |
-
import PyPDF2
|
28 |
-
import numpy as np
|
29 |
-
import pandas as pd
|
30 |
-
from io import BytesIO
|
31 |
-
from typing import List, Dict, Optional
|
32 |
-
from urllib.parse import urlparse, urljoin
|
33 |
-
from concurrent.futures import ThreadPoolExecutor, as_completed
|
34 |
-
from bs4 import BeautifulSoup
|
35 |
-
from pathlib import Path
|
36 |
-
from datetime import datetime
|
37 |
-
from collections import defaultdict
|
38 |
-
|
39 |
-
import gradio as gr
|
40 |
-
import matplotlib.pyplot as plt
|
41 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
42 |
from requests.adapters import HTTPAdapter
|
43 |
-
from
|
44 |
from transformers import pipeline, AutoModelForQuestionAnswering, AutoTokenizer
|
45 |
from sentence_transformers import SentenceTransformer
|
46 |
import spacy
|
47 |
import torch
|
48 |
|
49 |
-
|
|
|
|
|
|
|
50 |
logging.basicConfig(level=logging.INFO)
|
51 |
logger = logging.getLogger(__name__)
|
52 |
|
@@ -55,12 +35,11 @@ class SEOSpaceAnalyzer:
|
|
55 |
self.session = self._configure_session()
|
56 |
self.models = self._load_models()
|
57 |
self.base_dir = Path("content_storage")
|
58 |
-
self.
|
59 |
-
self.documents = []
|
60 |
self.current_analysis = {}
|
61 |
|
62 |
def _configure_session(self):
|
63 |
-
"""
|
64 |
session = requests.Session()
|
65 |
retry = Retry(
|
66 |
total=3,
|
@@ -76,201 +55,270 @@ class SEOSpaceAnalyzer:
|
|
76 |
return session
|
77 |
|
78 |
def _load_models(self):
|
79 |
-
"""Carga modelos
|
80 |
device = 0 if torch.cuda.is_available() else -1
|
81 |
return {
|
82 |
'summarizer': pipeline("summarization",
|
83 |
model="facebook/bart-large-cnn",
|
84 |
device=device),
|
85 |
'ner': pipeline("ner",
|
86 |
-
|
87 |
-
|
88 |
-
device=device),
|
89 |
-
'qa': pipeline("question-answering",
|
90 |
-
model="deepset/roberta-base-squad2",
|
91 |
-
device=device),
|
92 |
'semantic': SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2'),
|
93 |
'spacy': spacy.load("es_core_news_lg")
|
94 |
}
|
95 |
|
96 |
-
def
|
97 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
try:
|
99 |
-
response = self.session.get(url, timeout=
|
100 |
response.raise_for_status()
|
101 |
|
102 |
content_type = response.headers.get('Content-Type', '')
|
103 |
-
result = {'url': url, '
|
104 |
|
105 |
if 'application/pdf' in content_type:
|
106 |
result.update(self._process_pdf(response.content))
|
107 |
elif 'text/html' in content_type:
|
108 |
result.update(self._process_html(response.text, url))
|
109 |
-
|
110 |
-
self._save_content(url, response.content)
|
111 |
-
return result
|
112 |
|
|
|
113 |
except Exception as e:
|
114 |
-
logger.
|
115 |
-
return {'url': url, 'error': str(e)}
|
116 |
|
117 |
-
def _process_html(self, html, base_url):
|
118 |
"""Procesa contenido HTML"""
|
119 |
soup = BeautifulSoup(html, 'lxml')
|
|
|
|
|
120 |
return {
|
121 |
-
'content': self._clean_text(soup.get_text()),
|
122 |
'type': 'html',
|
123 |
-
'
|
124 |
-
'
|
|
|
|
|
125 |
}
|
126 |
|
127 |
-
def _process_pdf(self, content):
|
128 |
"""Procesa documentos PDF"""
|
129 |
text = ""
|
130 |
with BytesIO(content) as pdf_file:
|
131 |
reader = PyPDF2.PdfReader(pdf_file)
|
132 |
for page in reader.pages:
|
133 |
text += page.extract_text()
|
134 |
-
|
|
|
135 |
return {
|
136 |
-
'content': self._clean_text(text),
|
137 |
'type': 'pdf',
|
138 |
-
'
|
|
|
|
|
139 |
}
|
140 |
|
141 |
-
def
|
|
|
|
|
|
|
|
|
|
|
142 |
"""Extrae y clasifica enlaces"""
|
143 |
links = []
|
144 |
for tag in soup.find_all('a', href=True):
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
|
|
|
|
155 |
return links
|
156 |
|
157 |
-
def _get_file_type(self,
|
158 |
-
"""Determina
|
159 |
-
ext = Path(
|
160 |
return ext[1:] if ext else 'html'
|
161 |
|
162 |
-
def
|
163 |
-
"""
|
164 |
-
|
165 |
-
return re.sub(r'[^\w\sáéíóúñÁÉÍÓÚÑ]', ' ', text).strip()
|
166 |
-
|
167 |
-
def _save_content(self, url, content):
|
168 |
-
"""Almacena el contenido descargado"""
|
169 |
-
path = urlparse(url).path.lstrip('/')
|
170 |
-
save_path = self.base_dir / urlparse(url).netloc / path
|
171 |
-
save_path.parent.mkdir(parents=True, exist_ok=True)
|
172 |
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
def analyze_sitemap(self, sitemap_url):
|
177 |
-
"""Analiza todo el sitemap y genera reportes"""
|
178 |
-
urls = self._parse_sitemap(sitemap_url)
|
179 |
-
results = []
|
180 |
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
|
|
186 |
|
187 |
-
|
188 |
-
'basic_stats': self._calculate_stats(results),
|
189 |
-
'content_analysis': self._analyze_content(results),
|
190 |
-
'link_analysis': self._analyze_links(results),
|
191 |
-
'seo_recommendations': self._generate_recommendations(results)
|
192 |
-
}
|
193 |
-
|
194 |
-
return self.current_analysis
|
195 |
|
196 |
-
def _parse_sitemap(self, sitemap_url):
|
197 |
-
"""Parsea
|
198 |
-
|
199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
|
201 |
-
def _calculate_stats(self, results):
|
202 |
-
"""Calcula estadísticas básicas
|
|
|
|
|
203 |
return {
|
204 |
'total_urls': len(results),
|
205 |
-
'
|
206 |
-
'
|
|
|
|
|
207 |
}
|
208 |
|
209 |
-
def
|
210 |
-
"""
|
211 |
-
|
212 |
-
|
213 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
-
|
217 |
-
|
218 |
-
with open(json_path, 'w') as f:
|
219 |
-
json.dump(report, f)
|
220 |
-
|
221 |
-
# Crear CSV con enlaces
|
222 |
-
df = pd.DataFrame([link for result in self.current_analysis['link_analysis'] for link in result['links']])
|
223 |
-
csv_path = self.base_dir / 'links_analysis.csv'
|
224 |
-
df.to_csv(csv_path, index=False)
|
225 |
|
226 |
-
|
|
|
|
|
|
|
|
|
|
|
227 |
|
228 |
-
def
|
229 |
-
"""Genera
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
)
|
236 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
-
#
|
239 |
def create_interface():
|
240 |
analyzer = SEOSpaceAnalyzer()
|
241 |
|
242 |
with gr.Blocks(title="SEO Analyzer Pro", theme=gr.themes.Soft()) as interface:
|
243 |
-
gr.Markdown("
|
|
|
|
|
|
|
244 |
|
245 |
with gr.Row():
|
246 |
-
|
247 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
|
249 |
-
with gr.
|
250 |
-
|
251 |
-
|
|
|
252 |
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
|
|
|
261 |
analyze_btn.click(
|
262 |
fn=analyzer.analyze_sitemap,
|
263 |
inputs=sitemap_url,
|
264 |
-
outputs=[
|
265 |
-
|
266 |
-
|
267 |
-
download_btn.click(
|
268 |
-
fn=analyzer.create_report,
|
269 |
-
outputs=report_download
|
270 |
)
|
271 |
|
272 |
return interface
|
273 |
|
274 |
if __name__ == "__main__":
|
275 |
-
|
276 |
-
|
|
|
15 |
from pathlib import Path
|
16 |
from datetime import datetime
|
17 |
from collections import defaultdict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
19 |
from requests.adapters import HTTPAdapter
|
20 |
+
from urllib3.util.retry import Retry
|
21 |
from transformers import pipeline, AutoModelForQuestionAnswering, AutoTokenizer
|
22 |
from sentence_transformers import SentenceTransformer
|
23 |
import spacy
|
24 |
import torch
|
25 |
|
26 |
+
import gradio as gr
|
27 |
+
import matplotlib.pyplot as plt
|
28 |
+
|
29 |
+
# Configuración de logging
|
30 |
logging.basicConfig(level=logging.INFO)
|
31 |
logger = logging.getLogger(__name__)
|
32 |
|
|
|
35 |
self.session = self._configure_session()
|
36 |
self.models = self._load_models()
|
37 |
self.base_dir = Path("content_storage")
|
38 |
+
self.base_dir.mkdir(exist_ok=True)
|
|
|
39 |
self.current_analysis = {}
|
40 |
|
41 |
def _configure_session(self):
|
42 |
+
"""Configura sesión HTTP con reintentos"""
|
43 |
session = requests.Session()
|
44 |
retry = Retry(
|
45 |
total=3,
|
|
|
55 |
return session
|
56 |
|
57 |
def _load_models(self):
|
58 |
+
"""Carga modelos optimizados para Hugging Face"""
|
59 |
device = 0 if torch.cuda.is_available() else -1
|
60 |
return {
|
61 |
'summarizer': pipeline("summarization",
|
62 |
model="facebook/bart-large-cnn",
|
63 |
device=device),
|
64 |
'ner': pipeline("ner",
|
65 |
+
model="dslim/bert-base-NER",
|
66 |
+
device=device),
|
|
|
|
|
|
|
|
|
67 |
'semantic': SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2'),
|
68 |
'spacy': spacy.load("es_core_news_lg")
|
69 |
}
|
70 |
|
71 |
+
def analyze_sitemap(self, sitemap_url: str):
|
72 |
+
"""Analiza un sitemap completo"""
|
73 |
+
try:
|
74 |
+
urls = self._parse_sitemap(sitemap_url)
|
75 |
+
if not urls:
|
76 |
+
return {"error": "No se pudieron extraer URLs del sitemap"}
|
77 |
+
|
78 |
+
results = []
|
79 |
+
with ThreadPoolExecutor(max_workers=4) as executor:
|
80 |
+
futures = [executor.submit(self._process_url, url) for url in urls[:50]] # Limitar para demo
|
81 |
+
for future in as_completed(futures):
|
82 |
+
results.append(future.result())
|
83 |
+
|
84 |
+
self.current_analysis = {
|
85 |
+
'stats': self._calculate_stats(results),
|
86 |
+
'content_analysis': self._analyze_content(results),
|
87 |
+
'links': self._analyze_links(results),
|
88 |
+
'recommendations': self._generate_seo_recommendations(results)
|
89 |
+
}
|
90 |
+
|
91 |
+
return self.current_analysis
|
92 |
+
|
93 |
+
except Exception as e:
|
94 |
+
logger.error(f"Error en análisis: {str(e)}")
|
95 |
+
return {"error": str(e)}
|
96 |
+
|
97 |
+
def _process_url(self, url: str):
|
98 |
+
"""Procesa una URL individual"""
|
99 |
try:
|
100 |
+
response = self.session.get(url, timeout=10)
|
101 |
response.raise_for_status()
|
102 |
|
103 |
content_type = response.headers.get('Content-Type', '')
|
104 |
+
result = {'url': url, 'status': 'success'}
|
105 |
|
106 |
if 'application/pdf' in content_type:
|
107 |
result.update(self._process_pdf(response.content))
|
108 |
elif 'text/html' in content_type:
|
109 |
result.update(self._process_html(response.text, url))
|
|
|
|
|
|
|
110 |
|
111 |
+
return result
|
112 |
except Exception as e:
|
113 |
+
logger.warning(f"Error procesando {url}: {str(e)}")
|
114 |
+
return {'url': url, 'status': 'error', 'error': str(e)}
|
115 |
|
116 |
+
def _process_html(self, html: str, base_url: str):
|
117 |
"""Procesa contenido HTML"""
|
118 |
soup = BeautifulSoup(html, 'lxml')
|
119 |
+
clean_text = self._clean_text(soup.get_text())
|
120 |
+
|
121 |
return {
|
|
|
122 |
'type': 'html',
|
123 |
+
'content': clean_text,
|
124 |
+
'word_count': len(clean_text.split()),
|
125 |
+
'links': self._extract_links(soup, base_url),
|
126 |
+
'metadata': self._extract_metadata(soup)
|
127 |
}
|
128 |
|
129 |
+
def _process_pdf(self, content: bytes):
|
130 |
"""Procesa documentos PDF"""
|
131 |
text = ""
|
132 |
with BytesIO(content) as pdf_file:
|
133 |
reader = PyPDF2.PdfReader(pdf_file)
|
134 |
for page in reader.pages:
|
135 |
text += page.extract_text()
|
136 |
+
|
137 |
+
clean_text = self._clean_text(text)
|
138 |
return {
|
|
|
139 |
'type': 'pdf',
|
140 |
+
'content': clean_text,
|
141 |
+
'word_count': len(clean_text.split()),
|
142 |
+
'page_count': len(reader.pages)
|
143 |
}
|
144 |
|
145 |
+
def _clean_text(self, text: str):
|
146 |
+
"""Limpieza avanzada de texto"""
|
147 |
+
text = re.sub(r'\s+', ' ', text)
|
148 |
+
return re.sub(r'[^\w\sáéíóúñÁÉÍÓÚÑ]', ' ', text).strip()
|
149 |
+
|
150 |
+
def _extract_links(self, soup: BeautifulSoup, base_url: str):
|
151 |
"""Extrae y clasifica enlaces"""
|
152 |
links = []
|
153 |
for tag in soup.find_all('a', href=True):
|
154 |
+
try:
|
155 |
+
full_url = urljoin(base_url, tag['href'])
|
156 |
+
parsed = urlparse(full_url)
|
157 |
+
|
158 |
+
links.append({
|
159 |
+
'url': full_url,
|
160 |
+
'type': 'internal' if parsed.netloc == urlparse(base_url).netloc else 'external',
|
161 |
+
'anchor': self._clean_text(tag.text)[:100],
|
162 |
+
'file_type': self._get_file_type(parsed.path)
|
163 |
+
})
|
164 |
+
except:
|
165 |
+
continue
|
166 |
return links
|
167 |
|
168 |
+
def _get_file_type(self, path: str):
|
169 |
+
"""Determina tipo de archivo por extensión"""
|
170 |
+
ext = Path(path).suffix.lower()
|
171 |
return ext[1:] if ext else 'html'
|
172 |
|
173 |
+
def _extract_metadata(self, soup: BeautifulSoup):
|
174 |
+
"""Extrae metadatos SEO"""
|
175 |
+
metadata = {'title': '', 'description': '', 'keywords': []}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
|
177 |
+
# Título
|
178 |
+
if soup.title:
|
179 |
+
metadata['title'] = soup.title.string.strip()
|
|
|
|
|
|
|
|
|
180 |
|
181 |
+
# Meta tags
|
182 |
+
for meta in soup.find_all('meta'):
|
183 |
+
if meta.get('name') == 'description':
|
184 |
+
metadata['description'] = meta.get('content', '')[:500]
|
185 |
+
elif meta.get('name') == 'keywords':
|
186 |
+
metadata['keywords'] = [kw.strip() for kw in meta.get('content', '').split(',')]
|
187 |
|
188 |
+
return metadata
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
|
190 |
+
def _parse_sitemap(self, sitemap_url: str):
|
191 |
+
"""Parsea sitemap XML básico"""
|
192 |
+
try:
|
193 |
+
response = self.session.get(sitemap_url)
|
194 |
+
response.raise_for_status()
|
195 |
+
|
196 |
+
urls = []
|
197 |
+
soup = BeautifulSoup(response.text, 'lxml')
|
198 |
+
|
199 |
+
# Sitemap index
|
200 |
+
for loc in soup.find_all('loc'):
|
201 |
+
url = loc.text.strip()
|
202 |
+
if url.endswith('.xml') and url != sitemap_url:
|
203 |
+
urls.extend(self._parse_sitemap(url))
|
204 |
+
else:
|
205 |
+
urls.append(url)
|
206 |
+
|
207 |
+
return list(set(urls))
|
208 |
+
except Exception as e:
|
209 |
+
logger.error(f"Error parsing sitemap: {str(e)}")
|
210 |
+
return []
|
211 |
|
212 |
+
def _calculate_stats(self, results: List[Dict]):
|
213 |
+
"""Calcula estadísticas básicas"""
|
214 |
+
successful = [r for r in results if r.get('status') == 'success']
|
215 |
+
|
216 |
return {
|
217 |
'total_urls': len(results),
|
218 |
+
'successful': len(successful),
|
219 |
+
'failed': len(results) - len(successful),
|
220 |
+
'content_types': pd.Series([r.get('type', 'unknown') for r in successful]).value_counts().to_dict(),
|
221 |
+
'avg_word_count': np.mean([r.get('word_count', 0) for r in successful])
|
222 |
}
|
223 |
|
224 |
+
def _analyze_content(self, results: List[Dict]):
|
225 |
+
"""Analiza contenido con NLP"""
|
226 |
+
successful = [r for r in results if r.get('status') == 'success']
|
227 |
+
texts = [r.get('content', '') for r in successful]
|
228 |
+
|
229 |
+
# Análisis de temas principales
|
230 |
+
vectorizer = TfidfVectorizer(stop_words=list(spacy.lang.es.stop_words.STOP_WORDS))
|
231 |
+
try:
|
232 |
+
tfidf = vectorizer.fit_transform(texts)
|
233 |
+
top_keywords = vectorizer.get_feature_names_out()[np.argsort(tfidf.sum(axis=0).A1][-10:][::-1]
|
234 |
+
except:
|
235 |
+
top_keywords = []
|
236 |
+
|
237 |
+
return {
|
238 |
+
'top_keywords': list(top_keywords),
|
239 |
+
'content_samples': [t[:500] + '...' for t in texts[:3]] # Muestras de contenido
|
240 |
}
|
241 |
+
|
242 |
+
def _analyze_links(self, results: List[Dict]):
|
243 |
+
"""Analiza estructura de enlaces"""
|
244 |
+
all_links = []
|
245 |
+
for result in results:
|
246 |
+
if result.get('links'):
|
247 |
+
all_links.extend(result['links'])
|
248 |
|
249 |
+
if not all_links:
|
250 |
+
return {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
|
252 |
+
df = pd.DataFrame(all_links)
|
253 |
+
return {
|
254 |
+
'internal_links': df[df['type'] == 'internal']['url'].value_counts().to_dict(),
|
255 |
+
'external_domains': df[df['type'] == 'external']['url'].apply(lambda x: urlparse(x).netloc).value_counts().to_dict(),
|
256 |
+
'common_anchors': df['anchor'].value_counts().head(10).to_dict()
|
257 |
+
}
|
258 |
|
259 |
+
def _generate_seo_recommendations(self, results: List[Dict]):
|
260 |
+
"""Genera recomendaciones SEO"""
|
261 |
+
successful = [r for r in results if r.get('status') == 'success']
|
262 |
+
|
263 |
+
recs = []
|
264 |
+
|
265 |
+
# Revisar metadatos
|
266 |
+
missing_titles = sum(1 for r in successful if not r.get('metadata', {}).get('title'))
|
267 |
+
if missing_titles:
|
268 |
+
recs.append(f"Añadir títulos a {missing_titles} páginas")
|
269 |
+
|
270 |
+
# Revisar contenido corto
|
271 |
+
short_content = sum(1 for r in successful if r.get('word_count', 0) < 300)
|
272 |
+
if short_content:
|
273 |
+
recs.append(f"Ampliar contenido en {short_content} páginas (menos de 300 palabras)")
|
274 |
+
|
275 |
+
return recs if recs else ["No se detectaron problemas críticos de SEO"]
|
276 |
|
277 |
+
# Interfaz Gradio
|
278 |
def create_interface():
|
279 |
analyzer = SEOSpaceAnalyzer()
|
280 |
|
281 |
with gr.Blocks(title="SEO Analyzer Pro", theme=gr.themes.Soft()) as interface:
|
282 |
+
gr.Markdown("""
|
283 |
+
# 🕵️ SEO Analyzer Pro
|
284 |
+
*Analizador SEO avanzado con modelos de lenguaje*
|
285 |
+
""")
|
286 |
|
287 |
with gr.Row():
|
288 |
+
with gr.Column():
|
289 |
+
sitemap_url = gr.Textbox(
|
290 |
+
label="URL del Sitemap",
|
291 |
+
placeholder="https://ejemplo.com/sitemap.xml",
|
292 |
+
interactive=True
|
293 |
+
)
|
294 |
+
analyze_btn = gr.Button("Analizar", variant="primary")
|
295 |
+
|
296 |
+
with gr.Column():
|
297 |
+
status = gr.Textbox(label="Estado", interactive=False)
|
298 |
|
299 |
+
with gr.Tabs():
|
300 |
+
with gr.Tab("Resumen"):
|
301 |
+
stats = gr.JSON(label="Estadísticas")
|
302 |
+
recommendations = gr.JSON(label="Recomendaciones SEO")
|
303 |
|
304 |
+
with gr.Tab("Contenido"):
|
305 |
+
content_analysis = gr.JSON(label="Análisis de Contenido")
|
306 |
+
content_samples = gr.JSON(label="Muestras de Contenido")
|
307 |
|
308 |
+
with gr.Tab("Enlaces"):
|
309 |
+
links_analysis = gr.JSON(label="Análisis de Enlaces")
|
310 |
+
links_plot = gr.Plot()
|
311 |
|
312 |
+
# Event handlers
|
313 |
analyze_btn.click(
|
314 |
fn=analyzer.analyze_sitemap,
|
315 |
inputs=sitemap_url,
|
316 |
+
outputs=[stats, recommendations, content_analysis, links_analysis],
|
317 |
+
api_name="analyze"
|
|
|
|
|
|
|
|
|
318 |
)
|
319 |
|
320 |
return interface
|
321 |
|
322 |
if __name__ == "__main__":
|
323 |
+
app = create_interface()
|
324 |
+
app.launch(server_name="0.0.0.0", server_port=7860)
|