File size: 12,098 Bytes
dcf8a98
 
 
 
 
 
7d39cf2
 
 
 
 
dcf8a98
 
 
7d39cf2
 
 
dcf8a98
7d39cf2
63fe26b
7d39cf2
dcf8a98
 
7d39cf2
dcf8a98
63fe26b
 
 
 
7d39cf2
dcf8a98
 
7d39cf2
 
dcf8a98
 
7d39cf2
63fe26b
7d39cf2
 
 
63fe26b
dcf8a98
 
7d39cf2
dcf8a98
 
 
 
 
 
7d39cf2
 
dcf8a98
 
7d39cf2
 
63fe26b
7d39cf2
dcf8a98
7d39cf2
 
 
 
63fe26b
 
7d39cf2
 
dcf8a98
7d39cf2
63fe26b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcf8a98
63fe26b
dcf8a98
7d39cf2
dcf8a98
63fe26b
7d39cf2
dcf8a98
7d39cf2
dcf8a98
7d39cf2
 
63fe26b
dcf8a98
63fe26b
 
7d39cf2
63fe26b
7d39cf2
 
63fe26b
 
7d39cf2
 
63fe26b
 
 
 
7d39cf2
 
63fe26b
7d39cf2
dcf8a98
 
 
 
 
63fe26b
 
dcf8a98
 
63fe26b
 
 
dcf8a98
7d39cf2
63fe26b
 
 
 
 
 
7d39cf2
dcf8a98
7d39cf2
63fe26b
 
 
 
 
 
 
 
 
 
 
 
dcf8a98
7d39cf2
63fe26b
 
 
7d39cf2
 
63fe26b
 
 
7d39cf2
63fe26b
 
 
7d39cf2
63fe26b
 
 
 
 
 
7d39cf2
63fe26b
7d39cf2
63fe26b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d39cf2
63fe26b
 
 
 
7d39cf2
 
63fe26b
 
 
 
7d39cf2
 
63fe26b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcf8a98
63fe26b
 
 
 
 
 
 
dcf8a98
63fe26b
 
dcf8a98
63fe26b
 
 
 
 
 
7d39cf2
63fe26b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcf8a98
63fe26b
7d39cf2
 
 
 
63fe26b
 
 
 
dcf8a98
7d39cf2
63fe26b
 
 
 
 
 
 
 
 
 
dcf8a98
63fe26b
 
 
 
dcf8a98
63fe26b
 
 
7d39cf2
63fe26b
 
 
dcf8a98
63fe26b
7d39cf2
 
 
63fe26b
 
dcf8a98
7d39cf2
 
dcf8a98
 
63fe26b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import os
import json
import logging
import re
import requests
import hashlib
import PyPDF2
import numpy as np
import pandas as pd
from io import BytesIO
from typing import List, Dict, Optional
from urllib.parse import urlparse, urljoin
from concurrent.futures import ThreadPoolExecutor, as_completed
from bs4 import BeautifulSoup
from pathlib import Path
from datetime import datetime
from collections import defaultdict
from sklearn.feature_extraction.text import TfidfVectorizer
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry
from transformers import pipeline, AutoModelForQuestionAnswering, AutoTokenizer
from sentence_transformers import SentenceTransformer
import spacy
import torch

import gradio as gr
import matplotlib.pyplot as plt

# Configuración de logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class SEOSpaceAnalyzer:
    def __init__(self):
        self.session = self._configure_session()
        self.models = self._load_models()
        self.base_dir = Path("content_storage")
        self.base_dir.mkdir(exist_ok=True)
        self.current_analysis = {}
        
    def _configure_session(self):
        """Configura sesión HTTP con reintentos"""
        session = requests.Session()
        retry = Retry(
            total=3,
            backoff_factor=1,
            status_forcelist=[500, 502, 503, 504]
        )
        adapter = HTTPAdapter(max_retries=retry)
        session.mount('https://', adapter)
        session.headers.update({
            'User-Agent': 'Mozilla/5.0 (compatible; SEOBot/1.0)',
            'Accept-Language': 'es-ES,es;q=0.9'
        })
        return session
    
    def _load_models(self):
        """Carga modelos optimizados para Hugging Face"""
        device = 0 if torch.cuda.is_available() else -1
        return {
            'summarizer': pipeline("summarization", 
                                 model="facebook/bart-large-cnn",
                                 device=device),
            'ner': pipeline("ner", 
                          model="dslim/bert-base-NER",
                          device=device),
            'semantic': SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2'),
            'spacy': spacy.load("es_core_news_lg")
        }
    
    def analyze_sitemap(self, sitemap_url: str):
        """Analiza un sitemap completo"""
        try:
            urls = self._parse_sitemap(sitemap_url)
            if not urls:
                return {"error": "No se pudieron extraer URLs del sitemap"}
            
            results = []
            with ThreadPoolExecutor(max_workers=4) as executor:
                futures = [executor.submit(self._process_url, url) for url in urls[:50]]  # Limitar para demo
                for future in as_completed(futures):
                    results.append(future.result())
            
            self.current_analysis = {
                'stats': self._calculate_stats(results),
                'content_analysis': self._analyze_content(results),
                'links': self._analyze_links(results),
                'recommendations': self._generate_seo_recommendations(results)
            }
            
            return self.current_analysis
            
        except Exception as e:
            logger.error(f"Error en análisis: {str(e)}")
            return {"error": str(e)}
    
    def _process_url(self, url: str):
        """Procesa una URL individual"""
        try:
            response = self.session.get(url, timeout=10)
            response.raise_for_status()
            
            content_type = response.headers.get('Content-Type', '')
            result = {'url': url, 'status': 'success'}
            
            if 'application/pdf' in content_type:
                result.update(self._process_pdf(response.content))
            elif 'text/html' in content_type:
                result.update(self._process_html(response.text, url))
            
            return result
        except Exception as e:
            logger.warning(f"Error procesando {url}: {str(e)}")
            return {'url': url, 'status': 'error', 'error': str(e)}
    
    def _process_html(self, html: str, base_url: str):
        """Procesa contenido HTML"""
        soup = BeautifulSoup(html, 'lxml')
        clean_text = self._clean_text(soup.get_text())
        
        return {
            'type': 'html',
            'content': clean_text,
            'word_count': len(clean_text.split()),
            'links': self._extract_links(soup, base_url),
            'metadata': self._extract_metadata(soup)
        }
    
    def _process_pdf(self, content: bytes):
        """Procesa documentos PDF"""
        text = ""
        with BytesIO(content) as pdf_file:
            reader = PyPDF2.PdfReader(pdf_file)
            for page in reader.pages:
                text += page.extract_text()
        
        clean_text = self._clean_text(text)
        return {
            'type': 'pdf',
            'content': clean_text,
            'word_count': len(clean_text.split()),
            'page_count': len(reader.pages)
        }
    
    def _clean_text(self, text: str):
        """Limpieza avanzada de texto"""
        text = re.sub(r'\s+', ' ', text)
        return re.sub(r'[^\w\sáéíóúñÁÉÍÓÚÑ]', ' ', text).strip()
    
    def _extract_links(self, soup: BeautifulSoup, base_url: str):
        """Extrae y clasifica enlaces"""
        links = []
        for tag in soup.find_all('a', href=True):
            try:
                full_url = urljoin(base_url, tag['href'])
                parsed = urlparse(full_url)
                
                links.append({
                    'url': full_url,
                    'type': 'internal' if parsed.netloc == urlparse(base_url).netloc else 'external',
                    'anchor': self._clean_text(tag.text)[:100],
                    'file_type': self._get_file_type(parsed.path)
                })
            except:
                continue
        return links
    
    def _get_file_type(self, path: str):
        """Determina tipo de archivo por extensión"""
        ext = Path(path).suffix.lower()
        return ext[1:] if ext else 'html'
    
    def _extract_metadata(self, soup: BeautifulSoup):
        """Extrae metadatos SEO"""
        metadata = {'title': '', 'description': '', 'keywords': []}
        
        # Título
        if soup.title:
            metadata['title'] = soup.title.string.strip()
        
        # Meta tags
        for meta in soup.find_all('meta'):
            if meta.get('name') == 'description':
                metadata['description'] = meta.get('content', '')[:500]
            elif meta.get('name') == 'keywords':
                metadata['keywords'] = [kw.strip() for kw in meta.get('content', '').split(',')]
        
        return metadata
    
    def _parse_sitemap(self, sitemap_url: str):
        """Parsea sitemap XML básico"""
        try:
            response = self.session.get(sitemap_url)
            response.raise_for_status()
            
            urls = []
            soup = BeautifulSoup(response.text, 'lxml')
            
            # Sitemap index
            for loc in soup.find_all('loc'):
                url = loc.text.strip()
                if url.endswith('.xml') and url != sitemap_url:
                    urls.extend(self._parse_sitemap(url))
                else:
                    urls.append(url)
            
            return list(set(urls))
        except Exception as e:
            logger.error(f"Error parsing sitemap: {str(e)}")
            return []
    
    def _calculate_stats(self, results: List[Dict]):
        """Calcula estadísticas básicas"""
        successful = [r for r in results if r.get('status') == 'success']
        
        return {
            'total_urls': len(results),
            'successful': len(successful),
            'failed': len(results) - len(successful),
            'content_types': pd.Series([r.get('type', 'unknown') for r in successful]).value_counts().to_dict(),
            'avg_word_count': np.mean([r.get('word_count', 0) for r in successful])
        }
    
    def _analyze_content(self, results: List[Dict]):
        """Analiza contenido con NLP"""
        successful = [r for r in results if r.get('status') == 'success']
        texts = [r.get('content', '') for r in successful]
        
        # Análisis de temas principales
        vectorizer = TfidfVectorizer(stop_words=list(spacy.lang.es.stop_words.STOP_WORDS))
        try:
            tfidf = vectorizer.fit_transform(texts)
            top_keywords = vectorizer.get_feature_names_out()[np.argsort(tfidf.sum(axis=0).A1][-10:][::-1]
        except:
            top_keywords = []
        
        return {
            'top_keywords': list(top_keywords),
            'content_samples': [t[:500] + '...' for t in texts[:3]]  # Muestras de contenido
        }
    
    def _analyze_links(self, results: List[Dict]):
        """Analiza estructura de enlaces"""
        all_links = []
        for result in results:
            if result.get('links'):
                all_links.extend(result['links'])
        
        if not all_links:
            return {}
        
        df = pd.DataFrame(all_links)
        return {
            'internal_links': df[df['type'] == 'internal']['url'].value_counts().to_dict(),
            'external_domains': df[df['type'] == 'external']['url'].apply(lambda x: urlparse(x).netloc).value_counts().to_dict(),
            'common_anchors': df['anchor'].value_counts().head(10).to_dict()
        }
    
    def _generate_seo_recommendations(self, results: List[Dict]):
        """Genera recomendaciones SEO"""
        successful = [r for r in results if r.get('status') == 'success']
        
        recs = []
        
        # Revisar metadatos
        missing_titles = sum(1 for r in successful if not r.get('metadata', {}).get('title'))
        if missing_titles:
            recs.append(f"Añadir títulos a {missing_titles} páginas")
        
        # Revisar contenido corto
        short_content = sum(1 for r in successful if r.get('word_count', 0) < 300)
        if short_content:
            recs.append(f"Ampliar contenido en {short_content} páginas (menos de 300 palabras)")
        
        return recs if recs else ["No se detectaron problemas críticos de SEO"]

# Interfaz Gradio
def create_interface():
    analyzer = SEOSpaceAnalyzer()
    
    with gr.Blocks(title="SEO Analyzer Pro", theme=gr.themes.Soft()) as interface:
        gr.Markdown("""
        # 🕵️ SEO Analyzer Pro
        *Analizador SEO avanzado con modelos de lenguaje*
        """)
        
        with gr.Row():
            with gr.Column():
                sitemap_url = gr.Textbox(
                    label="URL del Sitemap",
                    placeholder="https://ejemplo.com/sitemap.xml",
                    interactive=True
                )
                analyze_btn = gr.Button("Analizar", variant="primary")
            
            with gr.Column():
                status = gr.Textbox(label="Estado", interactive=False)
        
        with gr.Tabs():
            with gr.Tab("Resumen"):
                stats = gr.JSON(label="Estadísticas")
                recommendations = gr.JSON(label="Recomendaciones SEO")
            
            with gr.Tab("Contenido"):
                content_analysis = gr.JSON(label="Análisis de Contenido")
                content_samples = gr.JSON(label="Muestras de Contenido")
            
            with gr.Tab("Enlaces"):
                links_analysis = gr.JSON(label="Análisis de Enlaces")
                links_plot = gr.Plot()
        
        # Event handlers
        analyze_btn.click(
            fn=analyzer.analyze_sitemap,
            inputs=sitemap_url,
            outputs=[stats, recommendations, content_analysis, links_analysis],
            api_name="analyze"
        )
        
    return interface

if __name__ == "__main__":
    app = create_interface()
    app.launch(server_name="0.0.0.0", server_port=7860)