File size: 12,098 Bytes
dcf8a98 7d39cf2 dcf8a98 7d39cf2 dcf8a98 7d39cf2 63fe26b 7d39cf2 dcf8a98 7d39cf2 dcf8a98 63fe26b 7d39cf2 dcf8a98 7d39cf2 dcf8a98 7d39cf2 63fe26b 7d39cf2 63fe26b dcf8a98 7d39cf2 dcf8a98 7d39cf2 dcf8a98 7d39cf2 63fe26b 7d39cf2 dcf8a98 7d39cf2 63fe26b 7d39cf2 dcf8a98 7d39cf2 63fe26b dcf8a98 63fe26b dcf8a98 7d39cf2 dcf8a98 63fe26b 7d39cf2 dcf8a98 7d39cf2 dcf8a98 7d39cf2 63fe26b dcf8a98 63fe26b 7d39cf2 63fe26b 7d39cf2 63fe26b 7d39cf2 63fe26b 7d39cf2 63fe26b 7d39cf2 dcf8a98 63fe26b dcf8a98 63fe26b dcf8a98 7d39cf2 63fe26b 7d39cf2 dcf8a98 7d39cf2 63fe26b dcf8a98 7d39cf2 63fe26b 7d39cf2 63fe26b 7d39cf2 63fe26b 7d39cf2 63fe26b 7d39cf2 63fe26b 7d39cf2 63fe26b 7d39cf2 63fe26b 7d39cf2 63fe26b 7d39cf2 63fe26b dcf8a98 63fe26b dcf8a98 63fe26b dcf8a98 63fe26b 7d39cf2 63fe26b dcf8a98 63fe26b 7d39cf2 63fe26b dcf8a98 7d39cf2 63fe26b dcf8a98 63fe26b dcf8a98 63fe26b 7d39cf2 63fe26b dcf8a98 63fe26b 7d39cf2 63fe26b dcf8a98 7d39cf2 dcf8a98 63fe26b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
import os
import json
import logging
import re
import requests
import hashlib
import PyPDF2
import numpy as np
import pandas as pd
from io import BytesIO
from typing import List, Dict, Optional
from urllib.parse import urlparse, urljoin
from concurrent.futures import ThreadPoolExecutor, as_completed
from bs4 import BeautifulSoup
from pathlib import Path
from datetime import datetime
from collections import defaultdict
from sklearn.feature_extraction.text import TfidfVectorizer
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry
from transformers import pipeline, AutoModelForQuestionAnswering, AutoTokenizer
from sentence_transformers import SentenceTransformer
import spacy
import torch
import gradio as gr
import matplotlib.pyplot as plt
# Configuración de logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class SEOSpaceAnalyzer:
def __init__(self):
self.session = self._configure_session()
self.models = self._load_models()
self.base_dir = Path("content_storage")
self.base_dir.mkdir(exist_ok=True)
self.current_analysis = {}
def _configure_session(self):
"""Configura sesión HTTP con reintentos"""
session = requests.Session()
retry = Retry(
total=3,
backoff_factor=1,
status_forcelist=[500, 502, 503, 504]
)
adapter = HTTPAdapter(max_retries=retry)
session.mount('https://', adapter)
session.headers.update({
'User-Agent': 'Mozilla/5.0 (compatible; SEOBot/1.0)',
'Accept-Language': 'es-ES,es;q=0.9'
})
return session
def _load_models(self):
"""Carga modelos optimizados para Hugging Face"""
device = 0 if torch.cuda.is_available() else -1
return {
'summarizer': pipeline("summarization",
model="facebook/bart-large-cnn",
device=device),
'ner': pipeline("ner",
model="dslim/bert-base-NER",
device=device),
'semantic': SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2'),
'spacy': spacy.load("es_core_news_lg")
}
def analyze_sitemap(self, sitemap_url: str):
"""Analiza un sitemap completo"""
try:
urls = self._parse_sitemap(sitemap_url)
if not urls:
return {"error": "No se pudieron extraer URLs del sitemap"}
results = []
with ThreadPoolExecutor(max_workers=4) as executor:
futures = [executor.submit(self._process_url, url) for url in urls[:50]] # Limitar para demo
for future in as_completed(futures):
results.append(future.result())
self.current_analysis = {
'stats': self._calculate_stats(results),
'content_analysis': self._analyze_content(results),
'links': self._analyze_links(results),
'recommendations': self._generate_seo_recommendations(results)
}
return self.current_analysis
except Exception as e:
logger.error(f"Error en análisis: {str(e)}")
return {"error": str(e)}
def _process_url(self, url: str):
"""Procesa una URL individual"""
try:
response = self.session.get(url, timeout=10)
response.raise_for_status()
content_type = response.headers.get('Content-Type', '')
result = {'url': url, 'status': 'success'}
if 'application/pdf' in content_type:
result.update(self._process_pdf(response.content))
elif 'text/html' in content_type:
result.update(self._process_html(response.text, url))
return result
except Exception as e:
logger.warning(f"Error procesando {url}: {str(e)}")
return {'url': url, 'status': 'error', 'error': str(e)}
def _process_html(self, html: str, base_url: str):
"""Procesa contenido HTML"""
soup = BeautifulSoup(html, 'lxml')
clean_text = self._clean_text(soup.get_text())
return {
'type': 'html',
'content': clean_text,
'word_count': len(clean_text.split()),
'links': self._extract_links(soup, base_url),
'metadata': self._extract_metadata(soup)
}
def _process_pdf(self, content: bytes):
"""Procesa documentos PDF"""
text = ""
with BytesIO(content) as pdf_file:
reader = PyPDF2.PdfReader(pdf_file)
for page in reader.pages:
text += page.extract_text()
clean_text = self._clean_text(text)
return {
'type': 'pdf',
'content': clean_text,
'word_count': len(clean_text.split()),
'page_count': len(reader.pages)
}
def _clean_text(self, text: str):
"""Limpieza avanzada de texto"""
text = re.sub(r'\s+', ' ', text)
return re.sub(r'[^\w\sáéíóúñÁÉÍÓÚÑ]', ' ', text).strip()
def _extract_links(self, soup: BeautifulSoup, base_url: str):
"""Extrae y clasifica enlaces"""
links = []
for tag in soup.find_all('a', href=True):
try:
full_url = urljoin(base_url, tag['href'])
parsed = urlparse(full_url)
links.append({
'url': full_url,
'type': 'internal' if parsed.netloc == urlparse(base_url).netloc else 'external',
'anchor': self._clean_text(tag.text)[:100],
'file_type': self._get_file_type(parsed.path)
})
except:
continue
return links
def _get_file_type(self, path: str):
"""Determina tipo de archivo por extensión"""
ext = Path(path).suffix.lower()
return ext[1:] if ext else 'html'
def _extract_metadata(self, soup: BeautifulSoup):
"""Extrae metadatos SEO"""
metadata = {'title': '', 'description': '', 'keywords': []}
# Título
if soup.title:
metadata['title'] = soup.title.string.strip()
# Meta tags
for meta in soup.find_all('meta'):
if meta.get('name') == 'description':
metadata['description'] = meta.get('content', '')[:500]
elif meta.get('name') == 'keywords':
metadata['keywords'] = [kw.strip() for kw in meta.get('content', '').split(',')]
return metadata
def _parse_sitemap(self, sitemap_url: str):
"""Parsea sitemap XML básico"""
try:
response = self.session.get(sitemap_url)
response.raise_for_status()
urls = []
soup = BeautifulSoup(response.text, 'lxml')
# Sitemap index
for loc in soup.find_all('loc'):
url = loc.text.strip()
if url.endswith('.xml') and url != sitemap_url:
urls.extend(self._parse_sitemap(url))
else:
urls.append(url)
return list(set(urls))
except Exception as e:
logger.error(f"Error parsing sitemap: {str(e)}")
return []
def _calculate_stats(self, results: List[Dict]):
"""Calcula estadísticas básicas"""
successful = [r for r in results if r.get('status') == 'success']
return {
'total_urls': len(results),
'successful': len(successful),
'failed': len(results) - len(successful),
'content_types': pd.Series([r.get('type', 'unknown') for r in successful]).value_counts().to_dict(),
'avg_word_count': np.mean([r.get('word_count', 0) for r in successful])
}
def _analyze_content(self, results: List[Dict]):
"""Analiza contenido con NLP"""
successful = [r for r in results if r.get('status') == 'success']
texts = [r.get('content', '') for r in successful]
# Análisis de temas principales
vectorizer = TfidfVectorizer(stop_words=list(spacy.lang.es.stop_words.STOP_WORDS))
try:
tfidf = vectorizer.fit_transform(texts)
top_keywords = vectorizer.get_feature_names_out()[np.argsort(tfidf.sum(axis=0).A1][-10:][::-1]
except:
top_keywords = []
return {
'top_keywords': list(top_keywords),
'content_samples': [t[:500] + '...' for t in texts[:3]] # Muestras de contenido
}
def _analyze_links(self, results: List[Dict]):
"""Analiza estructura de enlaces"""
all_links = []
for result in results:
if result.get('links'):
all_links.extend(result['links'])
if not all_links:
return {}
df = pd.DataFrame(all_links)
return {
'internal_links': df[df['type'] == 'internal']['url'].value_counts().to_dict(),
'external_domains': df[df['type'] == 'external']['url'].apply(lambda x: urlparse(x).netloc).value_counts().to_dict(),
'common_anchors': df['anchor'].value_counts().head(10).to_dict()
}
def _generate_seo_recommendations(self, results: List[Dict]):
"""Genera recomendaciones SEO"""
successful = [r for r in results if r.get('status') == 'success']
recs = []
# Revisar metadatos
missing_titles = sum(1 for r in successful if not r.get('metadata', {}).get('title'))
if missing_titles:
recs.append(f"Añadir títulos a {missing_titles} páginas")
# Revisar contenido corto
short_content = sum(1 for r in successful if r.get('word_count', 0) < 300)
if short_content:
recs.append(f"Ampliar contenido en {short_content} páginas (menos de 300 palabras)")
return recs if recs else ["No se detectaron problemas críticos de SEO"]
# Interfaz Gradio
def create_interface():
analyzer = SEOSpaceAnalyzer()
with gr.Blocks(title="SEO Analyzer Pro", theme=gr.themes.Soft()) as interface:
gr.Markdown("""
# 🕵️ SEO Analyzer Pro
*Analizador SEO avanzado con modelos de lenguaje*
""")
with gr.Row():
with gr.Column():
sitemap_url = gr.Textbox(
label="URL del Sitemap",
placeholder="https://ejemplo.com/sitemap.xml",
interactive=True
)
analyze_btn = gr.Button("Analizar", variant="primary")
with gr.Column():
status = gr.Textbox(label="Estado", interactive=False)
with gr.Tabs():
with gr.Tab("Resumen"):
stats = gr.JSON(label="Estadísticas")
recommendations = gr.JSON(label="Recomendaciones SEO")
with gr.Tab("Contenido"):
content_analysis = gr.JSON(label="Análisis de Contenido")
content_samples = gr.JSON(label="Muestras de Contenido")
with gr.Tab("Enlaces"):
links_analysis = gr.JSON(label="Análisis de Enlaces")
links_plot = gr.Plot()
# Event handlers
analyze_btn.click(
fn=analyzer.analyze_sitemap,
inputs=sitemap_url,
outputs=[stats, recommendations, content_analysis, links_analysis],
api_name="analyze"
)
return interface
if __name__ == "__main__":
app = create_interface()
app.launch(server_name="0.0.0.0", server_port=7860) |