Spaces:
Running
on
Zero
Running
on
Zero
File size: 51,863 Bytes
e522f71 1fdf747 e522f71 9071247 481fe70 d348ae1 1fdf747 4b273e2 e522f71 d348ae1 1fdf747 d4ab718 1fdf747 e522f71 1fdf747 e522f71 1fdf747 e522f71 1fdf747 e522f71 1fdf747 e522f71 1fdf747 e522f71 1fdf747 e522f71 1fdf747 4d027fa 1fdf747 e522f71 481fe70 1fdf747 e522f71 4b273e2 e10b013 4b273e2 897a02d 4b273e2 1fdf747 4b273e2 b647d6d e522f71 9071247 e522f71 1fdf747 7ed22bc 9071247 b647d6d 1fdf747 9071247 b647d6d 4b273e2 b647d6d 1fdf747 9071247 1fdf747 20d8039 1fdf747 4b273e2 897a02d c28cabc 481fe70 1fdf747 e522f71 6115e23 e522f71 9071247 c28cabc e522f71 1fdf747 c28cabc baddd7a 7ed22bc 897a02d 481fe70 baddd7a b647d6d 7ed22bc 4b273e2 e522f71 9071247 1fdf747 c28cabc e522f71 4b273e2 e522f71 4b273e2 e522f71 4b273e2 e522f71 5ccf4ca e522f71 b647d6d e522f71 b647d6d e522f71 b647d6d e522f71 b647d6d e522f71 b647d6d e522f71 b647d6d e522f71 c28cabc e522f71 4d027fa e522f71 9071247 e522f71 d2b1c6e b647d6d 1fdf747 c9bc7d9 1fdf747 c9bc7d9 1fdf747 897a02d 1fdf747 481fe70 4d027fa 481fe70 897a02d 1fdf747 c9bc7d9 1fdf747 c28cabc e10b013 3e25783 1fdf747 e522f71 1fdf747 e522f71 1fdf747 63aba14 481fe70 1fdf747 481fe70 63aba14 481fe70 1fdf747 481fe70 4d027fa 1fdf747 481fe70 4d027fa 4b273e2 481fe70 4b273e2 1fdf747 481fe70 1fdf747 4d027fa 1fdf747 4b273e2 481fe70 4b273e2 1fdf747 4b273e2 d348ae1 4d027fa d348ae1 481fe70 4b273e2 b647d6d e522f71 b647d6d e522f71 63aba14 e522f71 63aba14 1fdf747 b647d6d e522f71 f4ef5e2 9071247 27fa464 e10b013 63aba14 1fdf747 e10b013 e522f71 9366af3 e522f71 7ed22bc e522f71 7ed22bc 9071247 c28cabc 481fe70 e522f71 27fa464 e522f71 f4ef5e2 e522f71 c28cabc 9071247 27fa464 9071247 27fa464 9071247 27fa464 9071247 27fa464 9071247 27fa464 9071247 d4ab718 4b273e2 d4ab718 9071247 27fa464 9071247 27fa464 9071247 c28cabc 9071247 27fa464 1fdf747 27fa464 9071247 4b273e2 d348ae1 9071247 3e25783 9071247 e10b013 c2668d0 e10b013 9071247 897a02d e10b013 4d027fa 897a02d 4d027fa 897a02d e10b013 9071247 e522f71 63aba14 e522f71 4b273e2 9071247 e522f71 4b273e2 e522f71 4b273e2 e522f71 9071247 e522f71 27fa464 e522f71 9071247 e522f71 4b273e2 e522f71 9071247 e522f71 9071247 e522f71 9071247 e522f71 63aba14 1372fa8 e522f71 9071247 e522f71 9071247 e522f71 3e25783 9071247 e522f71 1fdf747 e522f71 9071247 e522f71 1fdf747 e522f71 1372fa8 3e25783 e522f71 1372fa8 e522f71 9071247 e522f71 1fdf747 3e25783 e522f71 897a02d 1fdf747 6115e23 1fdf747 6115e23 481fe70 6115e23 1fdf747 6115e23 1fdf747 63aba14 e522f71 63aba14 e522f71 4b273e2 9071247 e522f71 4b273e2 e522f71 3e25783 d4ab718 d348ae1 e522f71 9071247 481fe70 e522f71 6115e23 e522f71 9071247 c28cabc 481fe70 e522f71 1fdf747 e522f71 9071247 e522f71 63aba14 e522f71 e10b013 1fdf747 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 |
import spaces
import os
from stablepy import Model_Diffusers
from constants import (
DIRECTORY_MODELS,
DIRECTORY_LORAS,
DIRECTORY_VAES,
DIRECTORY_EMBEDS,
DOWNLOAD_MODEL,
DOWNLOAD_VAE,
DOWNLOAD_LORA,
LOAD_DIFFUSERS_FORMAT_MODEL,
DIFFUSERS_FORMAT_LORAS,
DOWNLOAD_EMBEDS,
CIVITAI_API_KEY,
HF_TOKEN,
PREPROCESSOR_CONTROLNET,
TASK_STABLEPY,
TASK_MODEL_LIST,
UPSCALER_DICT_GUI,
UPSCALER_KEYS,
PROMPT_W_OPTIONS,
WARNING_MSG_VAE,
SDXL_TASK,
MODEL_TYPE_TASK,
POST_PROCESSING_SAMPLER,
SUBTITLE_GUI,
HELP_GUI,
EXAMPLES_GUI_HELP,
EXAMPLES_GUI,
RESOURCES,
)
from stablepy.diffusers_vanilla.style_prompt_config import STYLE_NAMES
import torch
import re
from stablepy import (
scheduler_names,
IP_ADAPTERS_SD,
IP_ADAPTERS_SDXL,
)
import time
from PIL import ImageFile
from utils import (
download_things,
get_model_list,
extract_parameters,
get_my_lora,
get_model_type,
extract_exif_data,
create_mask_now,
download_diffuser_repo,
progress_step_bar,
html_template_message,
)
from datetime import datetime
import gradio as gr
import logging
import diffusers
import warnings
from stablepy import logger
# import urllib.parse
ImageFile.LOAD_TRUNCATED_IMAGES = True
# os.environ["PYTORCH_NO_CUDA_MEMORY_CACHING"] = "1"
print(os.getenv("SPACES_ZERO_GPU"))
directories = [DIRECTORY_MODELS, DIRECTORY_LORAS, DIRECTORY_VAES, DIRECTORY_EMBEDS]
for directory in directories:
os.makedirs(directory, exist_ok=True)
# Download stuffs
for url in [url.strip() for url in DOWNLOAD_MODEL.split(',')]:
if not os.path.exists(f"./models/{url.split('/')[-1]}"):
download_things(DIRECTORY_MODELS, url, HF_TOKEN, CIVITAI_API_KEY)
for url in [url.strip() for url in DOWNLOAD_VAE.split(',')]:
if not os.path.exists(f"./vaes/{url.split('/')[-1]}"):
download_things(DIRECTORY_VAES, url, HF_TOKEN, CIVITAI_API_KEY)
for url in [url.strip() for url in DOWNLOAD_LORA.split(',')]:
if not os.path.exists(f"./loras/{url.split('/')[-1]}"):
download_things(DIRECTORY_LORAS, url, HF_TOKEN, CIVITAI_API_KEY)
# Download Embeddings
for url_embed in DOWNLOAD_EMBEDS:
if not os.path.exists(f"./embedings/{url_embed.split('/')[-1]}"):
download_things(DIRECTORY_EMBEDS, url_embed, HF_TOKEN, CIVITAI_API_KEY)
# Build list models
embed_list = get_model_list(DIRECTORY_EMBEDS)
embed_list = [
(os.path.splitext(os.path.basename(emb))[0], emb) for emb in embed_list
]
model_list = get_model_list(DIRECTORY_MODELS)
model_list = LOAD_DIFFUSERS_FORMAT_MODEL + model_list
lora_model_list = get_model_list(DIRECTORY_LORAS)
lora_model_list.insert(0, "None")
lora_model_list = lora_model_list + DIFFUSERS_FORMAT_LORAS
vae_model_list = get_model_list(DIRECTORY_VAES)
vae_model_list.insert(0, "None")
print('\033[33m🏁 Download and listing of valid models completed.\033[0m')
#######################
# GUI
#######################
logging.getLogger("diffusers").setLevel(logging.ERROR)
diffusers.utils.logging.set_verbosity(40)
warnings.filterwarnings(action="ignore", category=FutureWarning, module="diffusers")
warnings.filterwarnings(action="ignore", category=UserWarning, module="diffusers")
warnings.filterwarnings(action="ignore", category=FutureWarning, module="transformers")
logger.setLevel(logging.DEBUG)
CSS = """
.contain { display: flex; flex-direction: column; }
#component-0 { height: 100%; }
#gallery { flex-grow: 1; }
#load_model { height: 50px; }
"""
class GuiSD:
def __init__(self, stream=True):
self.model = None
self.status_loading = False
self.sleep_loading = 4
self.last_load = datetime.now()
def load_new_model(self, model_name, vae_model, task, progress=gr.Progress(track_tqdm=True)):
vae_model = vae_model if vae_model != "None" else None
model_type = get_model_type(model_name)
dtype_model = torch.bfloat16 if model_type == "FLUX" else torch.float16
if not os.path.exists(model_name):
_ = download_diffuser_repo(
repo_name=model_name,
model_type=model_type,
revision="main",
token=True,
)
for i in range(68):
if not self.status_loading:
self.status_loading = True
if i > 0:
time.sleep(self.sleep_loading)
print("Previous model ops...")
break
time.sleep(0.5)
print(f"Waiting queue {i}")
yield "Waiting queue"
self.status_loading = True
yield f"Loading model: {model_name}"
if vae_model:
vae_type = "SDXL" if "sdxl" in vae_model.lower() else "SD 1.5"
if model_type != vae_type:
gr.Warning(WARNING_MSG_VAE)
print("Loading model...")
try:
start_time = time.time()
if self.model is None:
self.model = Model_Diffusers(
base_model_id=model_name,
task_name=TASK_STABLEPY[task],
vae_model=vae_model,
type_model_precision=dtype_model,
retain_task_model_in_cache=False,
device="cpu",
)
else:
if self.model.base_model_id != model_name:
load_now_time = datetime.now()
elapsed_time = (load_now_time - self.last_load).total_seconds()
if elapsed_time <= 8:
print("Waiting for the previous model's time ops...")
time.sleep(8-elapsed_time)
self.model.device = torch.device("cpu")
self.model.load_pipe(
model_name,
task_name=TASK_STABLEPY[task],
vae_model=vae_model,
type_model_precision=dtype_model,
retain_task_model_in_cache=False,
)
end_time = time.time()
self.sleep_loading = max(min(int(end_time - start_time), 10), 4)
except Exception as e:
self.last_load = datetime.now()
self.status_loading = False
self.sleep_loading = 4
raise e
self.last_load = datetime.now()
self.status_loading = False
yield f"Model loaded: {model_name}"
# @spaces.GPU(duration=59)
# @torch.inference_mode()
def generate_pipeline(
self,
prompt,
neg_prompt,
num_images,
steps,
cfg,
clip_skip,
seed,
lora1,
lora_scale1,
lora2,
lora_scale2,
lora3,
lora_scale3,
lora4,
lora_scale4,
lora5,
lora_scale5,
sampler,
img_height,
img_width,
model_name,
vae_model,
task,
image_control,
preprocessor_name,
preprocess_resolution,
image_resolution,
style_prompt, # list []
style_json_file,
image_mask,
strength,
low_threshold,
high_threshold,
value_threshold,
distance_threshold,
controlnet_output_scaling_in_unet,
controlnet_start_threshold,
controlnet_stop_threshold,
textual_inversion,
syntax_weights,
upscaler_model_path,
upscaler_increases_size,
esrgan_tile,
esrgan_tile_overlap,
hires_steps,
hires_denoising_strength,
hires_sampler,
hires_prompt,
hires_negative_prompt,
hires_before_adetailer,
hires_after_adetailer,
loop_generation,
leave_progress_bar,
disable_progress_bar,
image_previews,
display_images,
save_generated_images,
image_storage_location,
retain_compel_previous_load,
retain_detailfix_model_previous_load,
retain_hires_model_previous_load,
t2i_adapter_preprocessor,
t2i_adapter_conditioning_scale,
t2i_adapter_conditioning_factor,
xformers_memory_efficient_attention,
freeu,
generator_in_cpu,
adetailer_inpaint_only,
adetailer_verbose,
adetailer_sampler,
adetailer_active_a,
prompt_ad_a,
negative_prompt_ad_a,
strength_ad_a,
face_detector_ad_a,
person_detector_ad_a,
hand_detector_ad_a,
mask_dilation_a,
mask_blur_a,
mask_padding_a,
adetailer_active_b,
prompt_ad_b,
negative_prompt_ad_b,
strength_ad_b,
face_detector_ad_b,
person_detector_ad_b,
hand_detector_ad_b,
mask_dilation_b,
mask_blur_b,
mask_padding_b,
retain_task_cache_gui,
image_ip1,
mask_ip1,
model_ip1,
mode_ip1,
scale_ip1,
image_ip2,
mask_ip2,
model_ip2,
mode_ip2,
scale_ip2,
pag_scale,
):
info_state = html_template_message("Navigating latent space...")
yield info_state, gr.update(), gr.update()
vae_model = vae_model if vae_model != "None" else None
loras_list = [lora1, lora2, lora3, lora4, lora5]
vae_msg = f"VAE: {vae_model}" if vae_model else ""
msg_lora = ""
print("Config model:", model_name, vae_model, loras_list)
task = TASK_STABLEPY[task]
params_ip_img = []
params_ip_msk = []
params_ip_model = []
params_ip_mode = []
params_ip_scale = []
all_adapters = [
(image_ip1, mask_ip1, model_ip1, mode_ip1, scale_ip1),
(image_ip2, mask_ip2, model_ip2, mode_ip2, scale_ip2),
]
for imgip, mskip, modelip, modeip, scaleip in all_adapters:
if imgip:
params_ip_img.append(imgip)
if mskip:
params_ip_msk.append(mskip)
params_ip_model.append(modelip)
params_ip_mode.append(modeip)
params_ip_scale.append(scaleip)
concurrency = 5
self.model.stream_config(concurrency=concurrency, latent_resize_by=1, vae_decoding=False)
if task != "txt2img" and not image_control:
raise ValueError("No control image found: To use this function, you have to upload an image in 'Image ControlNet/Inpaint/Img2img'")
if task == "inpaint" and not image_mask:
raise ValueError("No mask image found: Specify one in 'Image Mask'")
if upscaler_model_path in UPSCALER_KEYS[:9]:
upscaler_model = upscaler_model_path
else:
directory_upscalers = 'upscalers'
os.makedirs(directory_upscalers, exist_ok=True)
url_upscaler = UPSCALER_DICT_GUI[upscaler_model_path]
if not os.path.exists(f"./upscalers/{url_upscaler.split('/')[-1]}"):
download_things(directory_upscalers, url_upscaler, HF_TOKEN)
upscaler_model = f"./upscalers/{url_upscaler.split('/')[-1]}"
logging.getLogger("ultralytics").setLevel(logging.INFO if adetailer_verbose else logging.ERROR)
adetailer_params_A = {
"face_detector_ad": face_detector_ad_a,
"person_detector_ad": person_detector_ad_a,
"hand_detector_ad": hand_detector_ad_a,
"prompt": prompt_ad_a,
"negative_prompt": negative_prompt_ad_a,
"strength": strength_ad_a,
# "image_list_task" : None,
"mask_dilation": mask_dilation_a,
"mask_blur": mask_blur_a,
"mask_padding": mask_padding_a,
"inpaint_only": adetailer_inpaint_only,
"sampler": adetailer_sampler,
}
adetailer_params_B = {
"face_detector_ad": face_detector_ad_b,
"person_detector_ad": person_detector_ad_b,
"hand_detector_ad": hand_detector_ad_b,
"prompt": prompt_ad_b,
"negative_prompt": negative_prompt_ad_b,
"strength": strength_ad_b,
# "image_list_task" : None,
"mask_dilation": mask_dilation_b,
"mask_blur": mask_blur_b,
"mask_padding": mask_padding_b,
}
pipe_params = {
"prompt": prompt,
"negative_prompt": neg_prompt,
"img_height": img_height,
"img_width": img_width,
"num_images": num_images,
"num_steps": steps,
"guidance_scale": cfg,
"clip_skip": clip_skip,
"pag_scale": float(pag_scale),
"seed": seed,
"image": image_control,
"preprocessor_name": preprocessor_name,
"preprocess_resolution": preprocess_resolution,
"image_resolution": image_resolution,
"style_prompt": style_prompt if style_prompt else "",
"style_json_file": "",
"image_mask": image_mask, # only for Inpaint
"strength": strength, # only for Inpaint or ...
"low_threshold": low_threshold,
"high_threshold": high_threshold,
"value_threshold": value_threshold,
"distance_threshold": distance_threshold,
"lora_A": lora1 if lora1 != "None" else None,
"lora_scale_A": lora_scale1,
"lora_B": lora2 if lora2 != "None" else None,
"lora_scale_B": lora_scale2,
"lora_C": lora3 if lora3 != "None" else None,
"lora_scale_C": lora_scale3,
"lora_D": lora4 if lora4 != "None" else None,
"lora_scale_D": lora_scale4,
"lora_E": lora5 if lora5 != "None" else None,
"lora_scale_E": lora_scale5,
"textual_inversion": embed_list if textual_inversion else [],
"syntax_weights": syntax_weights, # "Classic"
"sampler": sampler,
"xformers_memory_efficient_attention": xformers_memory_efficient_attention,
"gui_active": True,
"loop_generation": loop_generation,
"controlnet_conditioning_scale": float(controlnet_output_scaling_in_unet),
"control_guidance_start": float(controlnet_start_threshold),
"control_guidance_end": float(controlnet_stop_threshold),
"generator_in_cpu": generator_in_cpu,
"FreeU": freeu,
"adetailer_A": adetailer_active_a,
"adetailer_A_params": adetailer_params_A,
"adetailer_B": adetailer_active_b,
"adetailer_B_params": adetailer_params_B,
"leave_progress_bar": leave_progress_bar,
"disable_progress_bar": disable_progress_bar,
"image_previews": image_previews,
"display_images": display_images,
"save_generated_images": save_generated_images,
"image_storage_location": image_storage_location,
"retain_compel_previous_load": retain_compel_previous_load,
"retain_detailfix_model_previous_load": retain_detailfix_model_previous_load,
"retain_hires_model_previous_load": retain_hires_model_previous_load,
"t2i_adapter_preprocessor": t2i_adapter_preprocessor,
"t2i_adapter_conditioning_scale": float(t2i_adapter_conditioning_scale),
"t2i_adapter_conditioning_factor": float(t2i_adapter_conditioning_factor),
"upscaler_model_path": upscaler_model,
"upscaler_increases_size": upscaler_increases_size,
"esrgan_tile": esrgan_tile,
"esrgan_tile_overlap": esrgan_tile_overlap,
"hires_steps": hires_steps,
"hires_denoising_strength": hires_denoising_strength,
"hires_prompt": hires_prompt,
"hires_negative_prompt": hires_negative_prompt,
"hires_sampler": hires_sampler,
"hires_before_adetailer": hires_before_adetailer,
"hires_after_adetailer": hires_after_adetailer,
"ip_adapter_image": params_ip_img,
"ip_adapter_mask": params_ip_msk,
"ip_adapter_model": params_ip_model,
"ip_adapter_mode": params_ip_mode,
"ip_adapter_scale": params_ip_scale,
}
self.model.device = torch.device("cuda:0")
if hasattr(self.model.pipe, "transformer") and loras_list != ["None"] * 5:
self.model.pipe.transformer.to(self.model.device)
print("transformer to cuda")
actual_progress = 0
info_images = gr.update()
for img, seed, image_path, metadata in self.model(**pipe_params):
info_state = progress_step_bar(actual_progress, steps)
actual_progress += concurrency
if image_path:
info_images = f"Seeds: {str(seed)}"
if vae_msg:
info_images = info_images + "<br>" + vae_msg
if "Cannot copy out of meta tensor; no data!" in self.model.last_lora_error:
msg_ram = "Unable to process the LoRAs due to high RAM usage; please try again later."
print(msg_ram)
msg_lora += f"<br>{msg_ram}"
for status, lora in zip(self.model.lora_status, self.model.lora_memory):
if status:
msg_lora += f"<br>Loaded: {lora}"
elif status is not None:
msg_lora += f"<br>Error with: {lora}"
if msg_lora:
info_images += msg_lora
info_images = info_images + "<br>" + "GENERATION DATA:<br>" + metadata[0].replace("\n", "<br>") + "<br>-------<br>"
download_links = "<br>".join(
[
f'<a href="{path.replace("/images/", "/file=/home/user/app/images/")}" download="{os.path.basename(path)}">Download Image {i + 1}</a>'
for i, path in enumerate(image_path)
]
)
if save_generated_images:
info_images += f"<br>{download_links}"
info_state = "COMPLETE"
yield info_state, img, info_images
def dynamic_gpu_duration(func, duration, *args):
@torch.inference_mode()
@spaces.GPU(duration=duration)
def wrapped_func():
yield from func(*args)
return wrapped_func()
@spaces.GPU
def dummy_gpu():
return None
def sd_gen_generate_pipeline(*args):
gpu_duration_arg = int(args[-1]) if args[-1] else 59
verbose_arg = int(args[-2])
load_lora_cpu = args[-3]
generation_args = args[:-3]
lora_list = [
None if item == "None" else item
for item in [args[7], args[9], args[11], args[13], args[15]]
]
lora_status = [None] * 5
msg_load_lora = "Updating LoRAs in GPU..."
if load_lora_cpu:
msg_load_lora = "Updating LoRAs in CPU (Slow but saves GPU usage)..."
if lora_list != sd_gen.model.lora_memory and lora_list != [None] * 5:
yield msg_load_lora, gr.update(), gr.update()
# Load lora in CPU
if load_lora_cpu:
lora_status = sd_gen.model.lora_merge(
lora_A=lora_list[0], lora_scale_A=args[8],
lora_B=lora_list[1], lora_scale_B=args[10],
lora_C=lora_list[2], lora_scale_C=args[12],
lora_D=lora_list[3], lora_scale_D=args[14],
lora_E=lora_list[4], lora_scale_E=args[16],
)
print(lora_status)
if verbose_arg:
for status, lora in zip(lora_status, lora_list):
if status:
gr.Info(f"LoRA loaded in CPU: {lora}")
elif status is not None:
gr.Warning(f"Failed to load LoRA: {lora}")
if lora_status == [None] * 5 and sd_gen.model.lora_memory != [None] * 5 and load_lora_cpu:
lora_cache_msg = ", ".join(
str(x) for x in sd_gen.model.lora_memory if x is not None
)
gr.Info(f"LoRAs in cache: {lora_cache_msg}")
msg_request = f"Requesting {gpu_duration_arg}s. of GPU time.\nModel: {sd_gen.model.base_model_id}"
if verbose_arg:
gr.Info(msg_request)
print(msg_request)
yield msg_request.replace("\n", "<br>"), gr.update(), gr.update()
start_time = time.time()
# yield from sd_gen.generate_pipeline(*generation_args)
yield from dynamic_gpu_duration(
sd_gen.generate_pipeline,
gpu_duration_arg,
*generation_args,
)
end_time = time.time()
execution_time = end_time - start_time
msg_task_complete = (
f"GPU task complete in: {int(round(execution_time, 0) + 1)} seconds"
)
if verbose_arg:
gr.Info(msg_task_complete)
print(msg_task_complete)
yield msg_task_complete, gr.update(), gr.update()
@spaces.GPU(duration=15)
def esrgan_upscale(image, upscaler_name, upscaler_size):
if image is None: return None
from stablepy.diffusers_vanilla.utils import save_pil_image_with_metadata
from stablepy import UpscalerESRGAN
exif_image = extract_exif_data(image)
url_upscaler = UPSCALER_DICT_GUI[upscaler_name]
directory_upscalers = 'upscalers'
os.makedirs(directory_upscalers, exist_ok=True)
if not os.path.exists(f"./upscalers/{url_upscaler.split('/')[-1]}"):
download_things(directory_upscalers, url_upscaler, HF_TOKEN)
scaler_beta = UpscalerESRGAN(0, 0)
image_up = scaler_beta.upscale(image, upscaler_size, f"./upscalers/{url_upscaler.split('/')[-1]}")
image_path = save_pil_image_with_metadata(image_up, f'{os.getcwd()}/up_images', exif_image)
return image_path
dynamic_gpu_duration.zerogpu = True
sd_gen_generate_pipeline.zerogpu = True
sd_gen = GuiSD()
with gr.Blocks(theme="NoCrypt/miku", css=CSS) as app:
gr.Markdown("# 🧩 DiffuseCraft")
gr.Markdown(SUBTITLE_GUI)
with gr.Tab("Generation"):
with gr.Row():
with gr.Column(scale=2):
def update_task_options(model_name, task_name):
new_choices = MODEL_TYPE_TASK[get_model_type(model_name)]
if task_name not in new_choices:
task_name = "txt2img"
return gr.update(value=task_name, choices=new_choices)
task_gui = gr.Dropdown(label="Task", choices=SDXL_TASK, value=TASK_MODEL_LIST[0])
model_name_gui = gr.Dropdown(label="Model", choices=model_list, value=model_list[0], allow_custom_value=True)
prompt_gui = gr.Textbox(lines=5, placeholder="Enter prompt", label="Prompt")
neg_prompt_gui = gr.Textbox(lines=3, placeholder="Enter Neg prompt", label="Negative prompt")
with gr.Row(equal_height=False):
set_params_gui = gr.Button(value="↙️", variant="secondary", size="sm")
clear_prompt_gui = gr.Button(value="🗑️", variant="secondary", size="sm")
set_random_seed = gr.Button(value="🎲", variant="secondary", size="sm")
generate_button = gr.Button(value="GENERATE IMAGE", variant="primary")
model_name_gui.change(
update_task_options,
[model_name_gui, task_gui],
[task_gui],
)
load_model_gui = gr.HTML(elem_id="load_model", elem_classes="contain")
result_images = gr.Gallery(
label="Generated images",
show_label=False,
elem_id="gallery",
columns=[2],
rows=[2],
object_fit="contain",
# height="auto",
interactive=False,
preview=False,
selected_index=50,
)
actual_task_info = gr.HTML()
with gr.Row(equal_height=False, variant="default"):
gpu_duration_gui = gr.Number(minimum=5, maximum=240, value=59, show_label=False, container=False, info="GPU time duration (seconds)")
with gr.Column():
verbose_info_gui = gr.Checkbox(value=False, container=False, label="Status info")
load_lora_cpu_gui = gr.Checkbox(value=False, container=False, label="Load LoRAs on CPU (Save GPU time)")
with gr.Column(scale=1):
steps_gui = gr.Slider(minimum=1, maximum=100, step=1, value=30, label="Steps")
cfg_gui = gr.Slider(minimum=0, maximum=30, step=0.5, value=7., label="CFG")
sampler_gui = gr.Dropdown(label="Sampler", choices=scheduler_names, value="Euler a")
img_width_gui = gr.Slider(minimum=64, maximum=4096, step=8, value=1024, label="Img Width")
img_height_gui = gr.Slider(minimum=64, maximum=4096, step=8, value=1024, label="Img Height")
seed_gui = gr.Number(minimum=-1, maximum=9999999999, value=-1, label="Seed")
pag_scale_gui = gr.Slider(minimum=0.0, maximum=10.0, step=0.1, value=0.0, label="PAG Scale")
with gr.Row():
clip_skip_gui = gr.Checkbox(value=True, label="Layer 2 Clip Skip")
free_u_gui = gr.Checkbox(value=False, label="FreeU")
with gr.Row(equal_height=False):
def run_set_params_gui(base_prompt, name_model):
valid_receptors = { # default values
"prompt": gr.update(value=base_prompt),
"neg_prompt": gr.update(value=""),
"Steps": gr.update(value=30),
"width": gr.update(value=1024),
"height": gr.update(value=1024),
"Seed": gr.update(value=-1),
"Sampler": gr.update(value="Euler a"),
"scale": gr.update(value=7.), # cfg
"skip": gr.update(value=True),
"Model": gr.update(value=name_model),
}
valid_keys = list(valid_receptors.keys())
parameters = extract_parameters(base_prompt)
for key, val in parameters.items():
# print(val)
if key in valid_keys:
try:
if key == "Sampler":
if val not in scheduler_names:
continue
elif key == "skip":
if "," in str(val):
val = val.replace(",", "")
if int(val) >= 2:
val = True
if key == "prompt":
if ">" in val and "<" in val:
val = re.sub(r'<[^>]+>', '', val)
print("Removed LoRA written in the prompt")
if key in ["prompt", "neg_prompt"]:
val = re.sub(r'\s+', ' ', re.sub(r',+', ',', val)).strip()
if key in ["Steps", "width", "height", "Seed"]:
val = int(val)
if key == "scale":
val = float(val)
if key == "Model":
filtered_models = [m for m in model_list if val in m]
if filtered_models:
val = filtered_models[0]
else:
val = name_model
if key == "Seed":
continue
valid_receptors[key] = gr.update(value=val)
# print(val, type(val))
# print(valid_receptors)
except Exception as e:
print(str(e))
return [value for value in valid_receptors.values()]
set_params_gui.click(
run_set_params_gui, [prompt_gui, model_name_gui], [
prompt_gui,
neg_prompt_gui,
steps_gui,
img_width_gui,
img_height_gui,
seed_gui,
sampler_gui,
cfg_gui,
clip_skip_gui,
model_name_gui,
],
)
def run_clear_prompt_gui():
return gr.update(value=""), gr.update(value="")
clear_prompt_gui.click(
run_clear_prompt_gui, [], [prompt_gui, neg_prompt_gui]
)
def run_set_random_seed():
return -1
set_random_seed.click(
run_set_random_seed, [], seed_gui
)
num_images_gui = gr.Slider(minimum=1, maximum=5, step=1, value=1, label="Images")
prompt_syntax_gui = gr.Dropdown(label="Prompt Syntax", choices=PROMPT_W_OPTIONS, value=PROMPT_W_OPTIONS[1][1])
vae_model_gui = gr.Dropdown(label="VAE Model", choices=vae_model_list, value=vae_model_list[0])
with gr.Accordion("Hires fix", open=False, visible=True):
upscaler_model_path_gui = gr.Dropdown(label="Upscaler", choices=UPSCALER_KEYS, value=UPSCALER_KEYS[0])
upscaler_increases_size_gui = gr.Slider(minimum=1.1, maximum=4., step=0.1, value=1.2, label="Upscale by")
esrgan_tile_gui = gr.Slider(minimum=0, value=0, maximum=500, step=1, label="ESRGAN Tile")
esrgan_tile_overlap_gui = gr.Slider(minimum=1, maximum=200, step=1, value=8, label="ESRGAN Tile Overlap")
hires_steps_gui = gr.Slider(minimum=0, value=30, maximum=100, step=1, label="Hires Steps")
hires_denoising_strength_gui = gr.Slider(minimum=0.1, maximum=1.0, step=0.01, value=0.55, label="Hires Denoising Strength")
hires_sampler_gui = gr.Dropdown(label="Hires Sampler", choices=POST_PROCESSING_SAMPLER, value=POST_PROCESSING_SAMPLER[0])
hires_prompt_gui = gr.Textbox(label="Hires Prompt", placeholder="Main prompt will be use", lines=3)
hires_negative_prompt_gui = gr.Textbox(label="Hires Negative Prompt", placeholder="Main negative prompt will be use", lines=3)
with gr.Accordion("LoRA", open=False, visible=True):
def lora_dropdown(label):
return gr.Dropdown(label=label, choices=lora_model_list, value="None", allow_custom_value=True)
def lora_scale_slider(label):
return gr.Slider(minimum=-2, maximum=2, step=0.01, value=0.33, label=label)
lora1_gui = lora_dropdown("Lora1")
lora_scale_1_gui = lora_scale_slider("Lora Scale 1")
lora2_gui = lora_dropdown("Lora2")
lora_scale_2_gui = lora_scale_slider("Lora Scale 2")
lora3_gui = lora_dropdown("Lora3")
lora_scale_3_gui = lora_scale_slider("Lora Scale 3")
lora4_gui = lora_dropdown("Lora4")
lora_scale_4_gui = lora_scale_slider("Lora Scale 4")
lora5_gui = lora_dropdown("Lora5")
lora_scale_5_gui = lora_scale_slider("Lora Scale 5")
with gr.Accordion("From URL", open=False, visible=True):
text_lora = gr.Textbox(label="LoRA URL", placeholder="https://civitai.com/api/download/models/28907", lines=1)
romanize_text = gr.Checkbox(value=False, label="Transliterate name")
button_lora = gr.Button("Obtain and refresh the LoRAs lists")
new_lora_status = gr.HTML()
button_lora.click(
get_my_lora,
[text_lora, romanize_text],
[lora1_gui, lora2_gui, lora3_gui, lora4_gui, lora5_gui, new_lora_status]
)
with gr.Accordion("IP-Adapter", open=False, visible=True):
IP_MODELS = sorted(list(set(IP_ADAPTERS_SD + IP_ADAPTERS_SDXL)))
MODE_IP_OPTIONS = ["original", "style", "layout", "style+layout"]
with gr.Accordion("IP-Adapter 1", open=False, visible=True):
image_ip1 = gr.Image(label="IP Image", type="filepath")
mask_ip1 = gr.Image(label="IP Mask", type="filepath")
model_ip1 = gr.Dropdown(value="plus_face", label="Model", choices=IP_MODELS)
mode_ip1 = gr.Dropdown(value="original", label="Mode", choices=MODE_IP_OPTIONS)
scale_ip1 = gr.Slider(minimum=0., maximum=2., step=0.01, value=0.7, label="Scale")
with gr.Accordion("IP-Adapter 2", open=False, visible=True):
image_ip2 = gr.Image(label="IP Image", type="filepath")
mask_ip2 = gr.Image(label="IP Mask (optional)", type="filepath")
model_ip2 = gr.Dropdown(value="base", label="Model", choices=IP_MODELS)
mode_ip2 = gr.Dropdown(value="style", label="Mode", choices=MODE_IP_OPTIONS)
scale_ip2 = gr.Slider(minimum=0., maximum=2., step=0.01, value=0.7, label="Scale")
with gr.Accordion("ControlNet / Img2img / Inpaint", open=False, visible=True):
image_control = gr.Image(label="Image ControlNet/Inpaint/Img2img", type="filepath")
image_mask_gui = gr.Image(label="Image Mask", type="filepath")
strength_gui = gr.Slider(
minimum=0.01, maximum=1.0, step=0.01, value=0.55, label="Strength",
info="This option adjusts the level of changes for img2img and inpainting."
)
image_resolution_gui = gr.Slider(minimum=64, maximum=2048, step=64, value=1024, label="Image Resolution")
preprocessor_name_gui = gr.Dropdown(label="Preprocessor Name", choices=PREPROCESSOR_CONTROLNET["canny"])
def change_preprocessor_choices(task):
task = TASK_STABLEPY[task]
if task in PREPROCESSOR_CONTROLNET.keys():
choices_task = PREPROCESSOR_CONTROLNET[task]
else:
choices_task = PREPROCESSOR_CONTROLNET["canny"]
return gr.update(choices=choices_task, value=choices_task[0])
task_gui.change(
change_preprocessor_choices,
[task_gui],
[preprocessor_name_gui],
)
preprocess_resolution_gui = gr.Slider(minimum=64, maximum=2048, step=64, value=512, label="Preprocess Resolution")
low_threshold_gui = gr.Slider(minimum=1, maximum=255, step=1, value=100, label="Canny low threshold")
high_threshold_gui = gr.Slider(minimum=1, maximum=255, step=1, value=200, label="Canny high threshold")
value_threshold_gui = gr.Slider(minimum=1, maximum=2.0, step=0.01, value=0.1, label="Hough value threshold (MLSD)")
distance_threshold_gui = gr.Slider(minimum=1, maximum=20.0, step=0.01, value=0.1, label="Hough distance threshold (MLSD)")
control_net_output_scaling_gui = gr.Slider(minimum=0, maximum=5.0, step=0.1, value=1, label="ControlNet Output Scaling in UNet")
control_net_start_threshold_gui = gr.Slider(minimum=0, maximum=1, step=0.01, value=0, label="ControlNet Start Threshold (%)")
control_net_stop_threshold_gui = gr.Slider(minimum=0, maximum=1, step=0.01, value=1, label="ControlNet Stop Threshold (%)")
with gr.Accordion("T2I adapter", open=False, visible=False):
t2i_adapter_preprocessor_gui = gr.Checkbox(value=True, label="T2i Adapter Preprocessor")
adapter_conditioning_scale_gui = gr.Slider(minimum=0, maximum=5., step=0.1, value=1, label="Adapter Conditioning Scale")
adapter_conditioning_factor_gui = gr.Slider(minimum=0, maximum=1., step=0.01, value=0.55, label="Adapter Conditioning Factor (%)")
with gr.Accordion("Styles", open=False, visible=True):
try:
style_names_found = sd_gen.model.STYLE_NAMES
except Exception:
style_names_found = STYLE_NAMES
style_prompt_gui = gr.Dropdown(
style_names_found,
multiselect=True,
value=None,
label="Style Prompt",
interactive=True,
)
style_json_gui = gr.File(label="Style JSON File")
style_button = gr.Button("Load styles")
def load_json_style_file(json):
if not sd_gen.model:
gr.Info("First load the model")
return gr.update(value=None, choices=STYLE_NAMES)
sd_gen.model.load_style_file(json)
gr.Info(f"{len(sd_gen.model.STYLE_NAMES)} styles loaded")
return gr.update(value=None, choices=sd_gen.model.STYLE_NAMES)
style_button.click(load_json_style_file, [style_json_gui], [style_prompt_gui])
with gr.Accordion("Textual inversion", open=False, visible=False):
active_textual_inversion_gui = gr.Checkbox(value=False, label="Active Textual Inversion in prompt")
with gr.Accordion("Detailfix", open=False, visible=True):
# Adetailer Inpaint Only
adetailer_inpaint_only_gui = gr.Checkbox(label="Inpaint only", value=True)
# Adetailer Verbose
adetailer_verbose_gui = gr.Checkbox(label="Verbose", value=False)
# Adetailer Sampler
adetailer_sampler_gui = gr.Dropdown(label="Adetailer sampler:", choices=POST_PROCESSING_SAMPLER, value=POST_PROCESSING_SAMPLER[0])
with gr.Accordion("Detailfix A", open=False, visible=True):
# Adetailer A
adetailer_active_a_gui = gr.Checkbox(label="Enable Adetailer A", value=False)
prompt_ad_a_gui = gr.Textbox(label="Main prompt", placeholder="Main prompt will be use", lines=3)
negative_prompt_ad_a_gui = gr.Textbox(label="Negative prompt", placeholder="Main negative prompt will be use", lines=3)
strength_ad_a_gui = gr.Number(label="Strength:", value=0.35, step=0.01, minimum=0.01, maximum=1.0)
face_detector_ad_a_gui = gr.Checkbox(label="Face detector", value=True)
person_detector_ad_a_gui = gr.Checkbox(label="Person detector", value=False)
hand_detector_ad_a_gui = gr.Checkbox(label="Hand detector", value=False)
mask_dilation_a_gui = gr.Number(label="Mask dilation:", value=4, minimum=1)
mask_blur_a_gui = gr.Number(label="Mask blur:", value=4, minimum=1)
mask_padding_a_gui = gr.Number(label="Mask padding:", value=32, minimum=1)
with gr.Accordion("Detailfix B", open=False, visible=True):
# Adetailer B
adetailer_active_b_gui = gr.Checkbox(label="Enable Adetailer B", value=False)
prompt_ad_b_gui = gr.Textbox(label="Main prompt", placeholder="Main prompt will be use", lines=3)
negative_prompt_ad_b_gui = gr.Textbox(label="Negative prompt", placeholder="Main negative prompt will be use", lines=3)
strength_ad_b_gui = gr.Number(label="Strength:", value=0.35, step=0.01, minimum=0.01, maximum=1.0)
face_detector_ad_b_gui = gr.Checkbox(label="Face detector", value=False)
person_detector_ad_b_gui = gr.Checkbox(label="Person detector", value=True)
hand_detector_ad_b_gui = gr.Checkbox(label="Hand detector", value=False)
mask_dilation_b_gui = gr.Number(label="Mask dilation:", value=4, minimum=1)
mask_blur_b_gui = gr.Number(label="Mask blur:", value=4, minimum=1)
mask_padding_b_gui = gr.Number(label="Mask padding:", value=32, minimum=1)
with gr.Accordion("Other settings", open=False, visible=True):
save_generated_images_gui = gr.Checkbox(value=True, label="Create a download link for the images")
hires_before_adetailer_gui = gr.Checkbox(value=False, label="Hires Before Adetailer")
hires_after_adetailer_gui = gr.Checkbox(value=True, label="Hires After Adetailer")
generator_in_cpu_gui = gr.Checkbox(value=False, label="Generator in CPU")
with gr.Accordion("More settings", open=False, visible=False):
loop_generation_gui = gr.Slider(minimum=1, value=1, label="Loop Generation")
retain_task_cache_gui = gr.Checkbox(value=False, label="Retain task model in cache")
leave_progress_bar_gui = gr.Checkbox(value=True, label="Leave Progress Bar")
disable_progress_bar_gui = gr.Checkbox(value=False, label="Disable Progress Bar")
display_images_gui = gr.Checkbox(value=False, label="Display Images")
image_previews_gui = gr.Checkbox(value=True, label="Image Previews")
image_storage_location_gui = gr.Textbox(value="./images", label="Image Storage Location")
retain_compel_previous_load_gui = gr.Checkbox(value=False, label="Retain Compel Previous Load")
retain_detailfix_model_previous_load_gui = gr.Checkbox(value=False, label="Retain Detailfix Model Previous Load")
retain_hires_model_previous_load_gui = gr.Checkbox(value=False, label="Retain Hires Model Previous Load")
xformers_memory_efficient_attention_gui = gr.Checkbox(value=False, label="Xformers Memory Efficient Attention")
with gr.Accordion("Examples and help", open=False, visible=True):
gr.Markdown(HELP_GUI)
gr.Markdown(EXAMPLES_GUI_HELP)
gr.Examples(
examples=EXAMPLES_GUI,
fn=sd_gen.generate_pipeline,
inputs=[
prompt_gui,
neg_prompt_gui,
steps_gui,
cfg_gui,
seed_gui,
lora1_gui,
lora_scale_1_gui,
sampler_gui,
img_height_gui,
img_width_gui,
model_name_gui,
task_gui,
image_control,
image_resolution_gui,
strength_gui,
control_net_output_scaling_gui,
control_net_start_threshold_gui,
control_net_stop_threshold_gui,
prompt_syntax_gui,
upscaler_model_path_gui,
gpu_duration_gui,
load_lora_cpu_gui,
],
outputs=[load_model_gui, result_images, actual_task_info],
cache_examples=False,
)
gr.Markdown(RESOURCES)
with gr.Tab("Inpaint mask maker", render=True):
with gr.Row():
with gr.Column(scale=2):
image_base = gr.ImageEditor(
sources=["upload", "clipboard"],
# crop_size="1:1",
# enable crop (or disable it)
# transforms=["crop"],
brush=gr.Brush(
default_size="16", # or leave it as 'auto'
color_mode="fixed", # 'fixed' hides the user swatches and colorpicker, 'defaults' shows it
# default_color="black", # html names are supported
colors=[
"rgba(0, 0, 0, 1)", # rgb(a)
"rgba(0, 0, 0, 0.1)",
"rgba(255, 255, 255, 0.1)",
# "hsl(360, 120, 120)" # in fact any valid colorstring
]
),
eraser=gr.Eraser(default_size="16")
)
invert_mask = gr.Checkbox(value=False, label="Invert mask")
btn = gr.Button("Create mask")
with gr.Column(scale=1):
img_source = gr.Image(interactive=False)
img_result = gr.Image(label="Mask image", show_label=True, interactive=False)
btn_send = gr.Button("Send to the first tab")
btn.click(create_mask_now, [image_base, invert_mask], [img_source, img_result])
def send_img(img_source, img_result):
return img_source, img_result
btn_send.click(send_img, [img_source, img_result], [image_control, image_mask_gui])
with gr.Tab("PNG Info"):
with gr.Row():
with gr.Column():
image_metadata = gr.Image(label="Image with metadata", type="pil", sources=["upload"])
with gr.Column():
result_metadata = gr.Textbox(label="Metadata", show_label=True, show_copy_button=True, interactive=False, container=True, max_lines=99)
image_metadata.change(
fn=extract_exif_data,
inputs=[image_metadata],
outputs=[result_metadata],
)
with gr.Tab("Upscaler"):
with gr.Row():
with gr.Column():
image_up_tab = gr.Image(label="Image", type="pil", sources=["upload"])
upscaler_tab = gr.Dropdown(label="Upscaler", choices=UPSCALER_KEYS[9:], value=UPSCALER_KEYS[11])
upscaler_size_tab = gr.Slider(minimum=1., maximum=4., step=0.1, value=1.1, label="Upscale by")
generate_button_up_tab = gr.Button(value="START UPSCALE", variant="primary")
with gr.Column():
result_up_tab = gr.Image(label="Result", type="pil", interactive=False, format="png")
generate_button_up_tab.click(
fn=esrgan_upscale,
inputs=[image_up_tab, upscaler_tab, upscaler_size_tab],
outputs=[result_up_tab],
)
generate_button.click(
fn=sd_gen.load_new_model,
inputs=[
model_name_gui,
vae_model_gui,
task_gui
],
outputs=[load_model_gui],
queue=True,
show_progress="minimal",
).success(
fn=sd_gen_generate_pipeline, # fn=sd_gen.generate_pipeline,
inputs=[
prompt_gui,
neg_prompt_gui,
num_images_gui,
steps_gui,
cfg_gui,
clip_skip_gui,
seed_gui,
lora1_gui,
lora_scale_1_gui,
lora2_gui,
lora_scale_2_gui,
lora3_gui,
lora_scale_3_gui,
lora4_gui,
lora_scale_4_gui,
lora5_gui,
lora_scale_5_gui,
sampler_gui,
img_height_gui,
img_width_gui,
model_name_gui,
vae_model_gui,
task_gui,
image_control,
preprocessor_name_gui,
preprocess_resolution_gui,
image_resolution_gui,
style_prompt_gui,
style_json_gui,
image_mask_gui,
strength_gui,
low_threshold_gui,
high_threshold_gui,
value_threshold_gui,
distance_threshold_gui,
control_net_output_scaling_gui,
control_net_start_threshold_gui,
control_net_stop_threshold_gui,
active_textual_inversion_gui,
prompt_syntax_gui,
upscaler_model_path_gui,
upscaler_increases_size_gui,
esrgan_tile_gui,
esrgan_tile_overlap_gui,
hires_steps_gui,
hires_denoising_strength_gui,
hires_sampler_gui,
hires_prompt_gui,
hires_negative_prompt_gui,
hires_before_adetailer_gui,
hires_after_adetailer_gui,
loop_generation_gui,
leave_progress_bar_gui,
disable_progress_bar_gui,
image_previews_gui,
display_images_gui,
save_generated_images_gui,
image_storage_location_gui,
retain_compel_previous_load_gui,
retain_detailfix_model_previous_load_gui,
retain_hires_model_previous_load_gui,
t2i_adapter_preprocessor_gui,
adapter_conditioning_scale_gui,
adapter_conditioning_factor_gui,
xformers_memory_efficient_attention_gui,
free_u_gui,
generator_in_cpu_gui,
adetailer_inpaint_only_gui,
adetailer_verbose_gui,
adetailer_sampler_gui,
adetailer_active_a_gui,
prompt_ad_a_gui,
negative_prompt_ad_a_gui,
strength_ad_a_gui,
face_detector_ad_a_gui,
person_detector_ad_a_gui,
hand_detector_ad_a_gui,
mask_dilation_a_gui,
mask_blur_a_gui,
mask_padding_a_gui,
adetailer_active_b_gui,
prompt_ad_b_gui,
negative_prompt_ad_b_gui,
strength_ad_b_gui,
face_detector_ad_b_gui,
person_detector_ad_b_gui,
hand_detector_ad_b_gui,
mask_dilation_b_gui,
mask_blur_b_gui,
mask_padding_b_gui,
retain_task_cache_gui,
image_ip1,
mask_ip1,
model_ip1,
mode_ip1,
scale_ip1,
image_ip2,
mask_ip2,
model_ip2,
mode_ip2,
scale_ip2,
pag_scale_gui,
load_lora_cpu_gui,
verbose_info_gui,
gpu_duration_gui,
],
outputs=[load_model_gui, result_images, actual_task_info],
queue=True,
show_progress="minimal",
)
app.queue()
app.launch(
show_error=True,
debug=True,
allowed_paths=["./images/"],
)
|