Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -86,6 +86,9 @@ for url_embed in DOWNLOAD_EMBEDS:
|
|
86 |
|
87 |
# Build list models
|
88 |
embed_list = get_model_list(DIRECTORY_EMBEDS)
|
|
|
|
|
|
|
89 |
model_list = get_model_list(DIRECTORY_MODELS)
|
90 |
model_list = LOAD_DIFFUSERS_FORMAT_MODEL + model_list
|
91 |
lora_model_list = get_model_list(DIRECTORY_LORAS)
|
@@ -424,7 +427,7 @@ class GuiSD:
|
|
424 |
"lora_scale_D": lora_scale4,
|
425 |
"lora_E": lora5 if lora5 != "None" else None,
|
426 |
"lora_scale_E": lora_scale5,
|
427 |
-
"textual_inversion": embed_list if textual_inversion
|
428 |
"syntax_weights": syntax_weights, # "Classic"
|
429 |
"sampler": sampler,
|
430 |
"xformers_memory_efficient_attention": xformers_memory_efficient_attention,
|
@@ -484,6 +487,11 @@ class GuiSD:
|
|
484 |
if vae_msg:
|
485 |
info_images = info_images + "<br>" + vae_msg
|
486 |
|
|
|
|
|
|
|
|
|
|
|
487 |
for status, lora in zip(self.model.lora_status, self.model.lora_memory):
|
488 |
if status:
|
489 |
msg_lora += f"<br>Loaded: {lora}"
|
@@ -567,11 +575,11 @@ def sd_gen_generate_pipeline(*args):
|
|
567 |
)
|
568 |
gr.Info(f"LoRAs in cache: {lora_cache_msg}")
|
569 |
|
570 |
-
msg_request = f"Requesting {gpu_duration_arg}s. of GPU time
|
571 |
if verbose_arg:
|
572 |
gr.Info(msg_request)
|
573 |
print(msg_request)
|
574 |
-
yield msg_request, gr.update(), gr.update()
|
575 |
|
576 |
start_time = time.time()
|
577 |
|
@@ -585,7 +593,7 @@ def sd_gen_generate_pipeline(*args):
|
|
585 |
end_time = time.time()
|
586 |
execution_time = end_time - start_time
|
587 |
msg_task_complete = (
|
588 |
-
f"GPU task complete in: {round(execution_time, 0) + 1} seconds"
|
589 |
)
|
590 |
|
591 |
if verbose_arg:
|
@@ -595,7 +603,7 @@ def sd_gen_generate_pipeline(*args):
|
|
595 |
yield msg_task_complete, gr.update(), gr.update()
|
596 |
|
597 |
|
598 |
-
@spaces.GPU(duration=
|
599 |
def esrgan_upscale(image, upscaler_name, upscaler_size):
|
600 |
if image is None: return None
|
601 |
|
@@ -809,11 +817,13 @@ with gr.Blocks(theme="NoCrypt/miku", css=CSS) as app:
|
|
809 |
|
810 |
with gr.Accordion("From URL", open=False, visible=True):
|
811 |
text_lora = gr.Textbox(label="LoRA URL", placeholder="https://civitai.com/api/download/models/28907", lines=1)
|
812 |
-
|
|
|
|
|
813 |
button_lora.click(
|
814 |
get_my_lora,
|
815 |
-
[text_lora],
|
816 |
-
[lora1_gui, lora2_gui, lora3_gui, lora4_gui, lora5_gui]
|
817 |
)
|
818 |
|
819 |
with gr.Accordion("IP-Adapter", open=False, visible=True):
|
|
|
86 |
|
87 |
# Build list models
|
88 |
embed_list = get_model_list(DIRECTORY_EMBEDS)
|
89 |
+
embed_list = [
|
90 |
+
(os.path.splitext(os.path.basename(emb))[0], emb) for emb in embed_list
|
91 |
+
]
|
92 |
model_list = get_model_list(DIRECTORY_MODELS)
|
93 |
model_list = LOAD_DIFFUSERS_FORMAT_MODEL + model_list
|
94 |
lora_model_list = get_model_list(DIRECTORY_LORAS)
|
|
|
427 |
"lora_scale_D": lora_scale4,
|
428 |
"lora_E": lora5 if lora5 != "None" else None,
|
429 |
"lora_scale_E": lora_scale5,
|
430 |
+
"textual_inversion": embed_list if textual_inversion else [],
|
431 |
"syntax_weights": syntax_weights, # "Classic"
|
432 |
"sampler": sampler,
|
433 |
"xformers_memory_efficient_attention": xformers_memory_efficient_attention,
|
|
|
487 |
if vae_msg:
|
488 |
info_images = info_images + "<br>" + vae_msg
|
489 |
|
490 |
+
if "Cannot copy out of meta tensor; no data!" in self.model.last_lora_error:
|
491 |
+
msg_ram = "Unable to process the LoRAs due to high RAM usage; please try again later."
|
492 |
+
print(msg_ram)
|
493 |
+
msg_lora += f"<br>{msg_ram}"
|
494 |
+
|
495 |
for status, lora in zip(self.model.lora_status, self.model.lora_memory):
|
496 |
if status:
|
497 |
msg_lora += f"<br>Loaded: {lora}"
|
|
|
575 |
)
|
576 |
gr.Info(f"LoRAs in cache: {lora_cache_msg}")
|
577 |
|
578 |
+
msg_request = f"Requesting {gpu_duration_arg}s. of GPU time.\nModel: {sd_gen.model.base_model_id}"
|
579 |
if verbose_arg:
|
580 |
gr.Info(msg_request)
|
581 |
print(msg_request)
|
582 |
+
yield msg_request.replace("\n", "<br>"), gr.update(), gr.update()
|
583 |
|
584 |
start_time = time.time()
|
585 |
|
|
|
593 |
end_time = time.time()
|
594 |
execution_time = end_time - start_time
|
595 |
msg_task_complete = (
|
596 |
+
f"GPU task complete in: {int(round(execution_time, 0) + 1)} seconds"
|
597 |
)
|
598 |
|
599 |
if verbose_arg:
|
|
|
603 |
yield msg_task_complete, gr.update(), gr.update()
|
604 |
|
605 |
|
606 |
+
@spaces.GPU(duration=15)
|
607 |
def esrgan_upscale(image, upscaler_name, upscaler_size):
|
608 |
if image is None: return None
|
609 |
|
|
|
817 |
|
818 |
with gr.Accordion("From URL", open=False, visible=True):
|
819 |
text_lora = gr.Textbox(label="LoRA URL", placeholder="https://civitai.com/api/download/models/28907", lines=1)
|
820 |
+
romanize_text = gr.Checkbox(value=False, label="Transliterate name")
|
821 |
+
button_lora = gr.Button("Obtain and refresh the LoRAs lists")
|
822 |
+
new_lora_status = gr.HTML()
|
823 |
button_lora.click(
|
824 |
get_my_lora,
|
825 |
+
[text_lora, romanize_text],
|
826 |
+
[lora1_gui, lora2_gui, lora3_gui, lora4_gui, lora5_gui, new_lora_status]
|
827 |
)
|
828 |
|
829 |
with gr.Accordion("IP-Adapter", open=False, visible=True):
|