Spaces:
Running
on
Zero
Running
on
Zero
This PR upgrades the space to Llama 3.2V 11B Cot
#30
by
Fabrice-TIERCELIN
- opened
- README.md +4 -4
- app.py +81 -89
- requirements.txt +1 -3
README.md
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: 🔥
|
4 |
colorFrom: yellow
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
license: apache-2.0
|
11 |
-
short_description: Meta Llama3
|
12 |
---
|
13 |
|
14 |
-
|
|
|
1 |
---
|
2 |
+
title: Llama 3.2V 11B Cot
|
3 |
emoji: 🔥
|
4 |
colorFrom: yellow
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.0.1
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
license: apache-2.0
|
11 |
+
short_description: Meta Llama3 3.2V 11B Cot Multimodal
|
12 |
---
|
13 |
|
14 |
+
An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
|
app.py
CHANGED
@@ -1,105 +1,97 @@
|
|
1 |
-
import
|
|
|
|
|
|
|
2 |
from threading import Thread
|
3 |
-
|
4 |
import gradio as gr
|
5 |
-
import
|
6 |
-
|
7 |
-
from transformers import AutoProcessor, LlavaForConditionalGeneration
|
8 |
-
from transformers import TextIteratorStreamer
|
9 |
-
|
10 |
import spaces
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">LLaVA-Llama-3-8B</h1>
|
17 |
-
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Llava-Llama-3-8b is a LLaVA model fine-tuned from Meta-Llama-3-8B-Instruct and CLIP-ViT-Large-patch14-336 with ShareGPT4V-PT and InternVL-SFT by XTuner</p>
|
18 |
-
</div>
|
19 |
-
"""
|
20 |
-
|
21 |
-
|
22 |
-
model_id = "xtuner/llava-llama-3-8b-v1_1-transformers"
|
23 |
-
|
24 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
25 |
-
|
26 |
-
model = LlavaForConditionalGeneration.from_pretrained(
|
27 |
-
model_id,
|
28 |
-
torch_dtype=torch.float16,
|
29 |
-
low_cpu_mem_usage=True,
|
30 |
-
)
|
31 |
-
|
32 |
-
model.to("cuda:0")
|
33 |
-
model.generation_config.eos_token_id = 128009
|
34 |
|
35 |
|
36 |
@spaces.GPU
|
37 |
-
def bot_streaming(message, history):
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
else:
|
46 |
-
|
47 |
-
# kept inside tuples, take the last one
|
48 |
-
for hist in history:
|
49 |
-
if type(hist[0]) == tuple:
|
50 |
-
image = hist[0][0]
|
51 |
-
try:
|
52 |
-
if image is None:
|
53 |
-
# Handle the case where image is None
|
54 |
-
gr.Error("You need to upload an image for LLaVA to work.")
|
55 |
-
except NameError:
|
56 |
-
# Handle the case where 'image' is not defined at all
|
57 |
-
gr.Error("You need to upload an image for LLaVA to work.")
|
58 |
|
59 |
-
prompt = f"<|start_header_id|>user<|end_header_id|>\n\n<image>\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
|
60 |
-
# print(f"prompt: {prompt}")
|
61 |
-
image = Image.open(image)
|
62 |
-
inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16)
|
63 |
|
64 |
-
|
65 |
-
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False)
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
68 |
thread.start()
|
69 |
-
|
70 |
-
text_prompt = f"<|start_header_id|>user<|end_header_id|>\n\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
|
71 |
-
# print(f"text_prompt: {text_prompt}")
|
72 |
-
|
73 |
buffer = ""
|
74 |
-
|
75 |
for new_text in streamer:
|
76 |
-
# find <|eot_id|> and remove it from the new_text
|
77 |
-
if "<|eot_id|>" in new_text:
|
78 |
-
new_text = new_text.split("<|eot_id|>")[0]
|
79 |
buffer += new_text
|
80 |
-
|
81 |
-
# generated_text_without_prompt = buffer[len(text_prompt):]
|
82 |
generated_text_without_prompt = buffer
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer
|
2 |
+
from PIL import Image
|
3 |
+
import requests
|
4 |
+
import torch
|
5 |
from threading import Thread
|
|
|
6 |
import gradio as gr
|
7 |
+
from gradio import FileData
|
8 |
+
import time
|
|
|
|
|
|
|
9 |
import spaces
|
10 |
+
import re
|
11 |
+
ckpt = "Xkev/Llama-3.2V-11B-cot"
|
12 |
+
model = MllamaForConditionalGeneration.from_pretrained(ckpt,
|
13 |
+
torch_dtype=torch.bfloat16).to("cuda")
|
14 |
+
processor = AutoProcessor.from_pretrained(ckpt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
|
17 |
@spaces.GPU
|
18 |
+
def bot_streaming(message, history, max_new_tokens=250):
|
19 |
+
|
20 |
+
txt = message["text"]
|
21 |
+
ext_buffer = f"{txt}"
|
22 |
+
|
23 |
+
messages= []
|
24 |
+
images = []
|
25 |
+
|
26 |
+
|
27 |
+
for i, msg in enumerate(history):
|
28 |
+
if isinstance(msg[0], tuple):
|
29 |
+
messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]})
|
30 |
+
messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
|
31 |
+
images.append(Image.open(msg[0][0]).convert("RGB"))
|
32 |
+
elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
|
33 |
+
# messages are already handled
|
34 |
+
pass
|
35 |
+
elif isinstance(history[i-1][0], str) and isinstance(msg[0], str): # text only turn
|
36 |
+
messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
|
37 |
+
messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
|
38 |
+
|
39 |
+
# add current message
|
40 |
+
if len(message["files"]) == 1:
|
41 |
+
|
42 |
+
if isinstance(message["files"][0], str): # examples
|
43 |
+
image = Image.open(message["files"][0]).convert("RGB")
|
44 |
+
else: # regular input
|
45 |
+
image = Image.open(message["files"][0]["path"]).convert("RGB")
|
46 |
+
images.append(image)
|
47 |
+
messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
|
48 |
else:
|
49 |
+
messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
texts = processor.apply_chat_template(messages, add_generation_prompt=True)
|
|
|
53 |
|
54 |
+
if images == []:
|
55 |
+
inputs = processor(text=texts, return_tensors="pt").to("cuda")
|
56 |
+
else:
|
57 |
+
inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda")
|
58 |
+
|
59 |
+
streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
|
60 |
+
|
61 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
|
62 |
+
generated_text = ""
|
63 |
+
|
64 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
65 |
thread.start()
|
|
|
|
|
|
|
|
|
66 |
buffer = ""
|
67 |
+
|
68 |
for new_text in streamer:
|
|
|
|
|
|
|
69 |
buffer += new_text
|
|
|
|
|
70 |
generated_text_without_prompt = buffer
|
71 |
+
time.sleep(0.01)
|
72 |
+
|
73 |
+
buffer = re.sub(r"<(\w+)>", r"(Here begins the \1 stage)", buffer)
|
74 |
+
buffer = re.sub(r"</(\w+)>", r"(Here ends the \1 stage)", buffer)
|
75 |
+
|
76 |
+
yield buffer
|
77 |
+
|
78 |
+
|
79 |
+
demo = gr.ChatInterface(fn=bot_streaming, title="LLaVA-CoT",
|
80 |
+
textbox=gr.MultimodalTextbox(),
|
81 |
+
additional_inputs = [gr.Slider(
|
82 |
+
minimum=512,
|
83 |
+
maximum=1024,
|
84 |
+
value=512,
|
85 |
+
step=1,
|
86 |
+
label="Maximum number of new tokens to generate",
|
87 |
+
)
|
88 |
+
],
|
89 |
+
examples=[[{"text": "What is on the flower?", "files": ["./bee.jpg"]},512],
|
90 |
+
[{"text": "How to make this pastry?", "files": ["./baklava.png"]},512]],
|
91 |
+
cache_examples=False,
|
92 |
+
description="Upload an image, and start chatting about it. To learn more about LLaVA-CoT, visit [our GitHub page](https://github.com/PKU-YuanGroup/LLaVA-CoT). Note: Since Gradio currently does not support displaying the special markings in the output, we have replaced it with the expression (Here begins the X phase).",
|
93 |
+
stop_btn="Stop Generation",
|
94 |
+
fill_height=True,
|
95 |
+
multimodal=True)
|
96 |
+
|
97 |
+
demo.launch(debug=True)
|
requirements.txt
CHANGED
@@ -1,5 +1,3 @@
|
|
1 |
torch
|
2 |
-
git+https://github.com/huggingface/transformers.git
|
3 |
spaces
|
4 |
-
|
5 |
-
accelerate
|
|
|
1 |
torch
|
|
|
2 |
spaces
|
3 |
+
git+https://github.com/huggingface/transformers.git
|
|