Spaces:
Runtime error
Runtime error
# Adapted from Open-Sora-Plan | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# -------------------------------------------------------- | |
# References: | |
# Open-Sora-Plan: https://github.com/PKU-YuanGroup/Open-Sora-Plan | |
# -------------------------------------------------------- | |
from importlib import import_module | |
from typing import Any, Callable, Dict, Optional, Tuple | |
import numpy as np | |
import torch | |
import collections | |
import torch.nn.functional as F | |
from torch.nn.attention import SDPBackend, sdpa_kernel | |
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU | |
from diffusers.models.attention_processor import ( | |
AttnAddedKVProcessor, | |
AttnAddedKVProcessor2_0, | |
AttnProcessor, | |
CustomDiffusionAttnProcessor, | |
CustomDiffusionAttnProcessor2_0, | |
CustomDiffusionXFormersAttnProcessor, | |
LoRAAttnAddedKVProcessor, | |
LoRAAttnProcessor, | |
LoRAAttnProcessor2_0, | |
LoRAXFormersAttnProcessor, | |
SlicedAttnAddedKVProcessor, | |
SlicedAttnProcessor, | |
SpatialNorm, | |
XFormersAttnAddedKVProcessor, | |
XFormersAttnProcessor, | |
) | |
from diffusers.models.embeddings import SinusoidalPositionalEmbedding | |
from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormZero | |
from diffusers.utils import USE_PEFT_BACKEND, deprecate, is_xformers_available | |
from diffusers.utils.torch_utils import maybe_allow_in_graph | |
from torch import nn | |
from allegro.models.transformers.rope import RoPE3D, PositionGetter3D | |
from allegro.models.transformers.embedding import CombinedTimestepSizeEmbeddings | |
if is_xformers_available(): | |
import xformers | |
import xformers.ops | |
else: | |
xformers = None | |
from diffusers.utils import logging | |
logger = logging.get_logger(__name__) | |
def to_2tuple(x): | |
if isinstance(x, collections.abc.Iterable): | |
return x | |
return (x, x) | |
class Attention(nn.Module): | |
r""" | |
A cross attention layer. | |
Parameters: | |
query_dim (`int`): | |
The number of channels in the query. | |
cross_attention_dim (`int`, *optional*): | |
The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`. | |
heads (`int`, *optional*, defaults to 8): | |
The number of heads to use for multi-head attention. | |
dim_head (`int`, *optional*, defaults to 64): | |
The number of channels in each head. | |
dropout (`float`, *optional*, defaults to 0.0): | |
The dropout probability to use. | |
bias (`bool`, *optional*, defaults to False): | |
Set to `True` for the query, key, and value linear layers to contain a bias parameter. | |
upcast_attention (`bool`, *optional*, defaults to False): | |
Set to `True` to upcast the attention computation to `float32`. | |
upcast_softmax (`bool`, *optional*, defaults to False): | |
Set to `True` to upcast the softmax computation to `float32`. | |
cross_attention_norm (`str`, *optional*, defaults to `None`): | |
The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`. | |
cross_attention_norm_num_groups (`int`, *optional*, defaults to 32): | |
The number of groups to use for the group norm in the cross attention. | |
added_kv_proj_dim (`int`, *optional*, defaults to `None`): | |
The number of channels to use for the added key and value projections. If `None`, no projection is used. | |
norm_num_groups (`int`, *optional*, defaults to `None`): | |
The number of groups to use for the group norm in the attention. | |
spatial_norm_dim (`int`, *optional*, defaults to `None`): | |
The number of channels to use for the spatial normalization. | |
out_bias (`bool`, *optional*, defaults to `True`): | |
Set to `True` to use a bias in the output linear layer. | |
scale_qk (`bool`, *optional*, defaults to `True`): | |
Set to `True` to scale the query and key by `1 / sqrt(dim_head)`. | |
only_cross_attention (`bool`, *optional*, defaults to `False`): | |
Set to `True` to only use cross attention and not added_kv_proj_dim. Can only be set to `True` if | |
`added_kv_proj_dim` is not `None`. | |
eps (`float`, *optional*, defaults to 1e-5): | |
An additional value added to the denominator in group normalization that is used for numerical stability. | |
rescale_output_factor (`float`, *optional*, defaults to 1.0): | |
A factor to rescale the output by dividing it with this value. | |
residual_connection (`bool`, *optional*, defaults to `False`): | |
Set to `True` to add the residual connection to the output. | |
_from_deprecated_attn_block (`bool`, *optional*, defaults to `False`): | |
Set to `True` if the attention block is loaded from a deprecated state dict. | |
processor (`AttnProcessor`, *optional*, defaults to `None`): | |
The attention processor to use. If `None`, defaults to `AttnProcessor2_0` if `torch 2.x` is used and | |
`AttnProcessor` otherwise. | |
""" | |
def __init__( | |
self, | |
query_dim: int, | |
cross_attention_dim: Optional[int] = None, | |
heads: int = 8, | |
dim_head: int = 64, | |
dropout: float = 0.0, | |
bias: bool = False, | |
upcast_attention: bool = False, | |
upcast_softmax: bool = False, | |
cross_attention_norm: Optional[str] = None, | |
cross_attention_norm_num_groups: int = 32, | |
added_kv_proj_dim: Optional[int] = None, | |
norm_num_groups: Optional[int] = None, | |
spatial_norm_dim: Optional[int] = None, | |
out_bias: bool = True, | |
scale_qk: bool = True, | |
only_cross_attention: bool = False, | |
eps: float = 1e-5, | |
rescale_output_factor: float = 1.0, | |
residual_connection: bool = False, | |
_from_deprecated_attn_block: bool = False, | |
processor: Optional["AttnProcessor"] = None, | |
attention_mode: str = "xformers", | |
use_rope: bool = False, | |
interpolation_scale_thw=None, | |
): | |
super().__init__() | |
self.inner_dim = dim_head * heads | |
self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim | |
self.upcast_attention = upcast_attention | |
self.upcast_softmax = upcast_softmax | |
self.rescale_output_factor = rescale_output_factor | |
self.residual_connection = residual_connection | |
self.dropout = dropout | |
self.use_rope = use_rope | |
# we make use of this private variable to know whether this class is loaded | |
# with an deprecated state dict so that we can convert it on the fly | |
self._from_deprecated_attn_block = _from_deprecated_attn_block | |
self.scale_qk = scale_qk | |
self.scale = dim_head**-0.5 if self.scale_qk else 1.0 | |
self.heads = heads | |
# for slice_size > 0 the attention score computation | |
# is split across the batch axis to save memory | |
# You can set slice_size with `set_attention_slice` | |
self.sliceable_head_dim = heads | |
self.added_kv_proj_dim = added_kv_proj_dim | |
self.only_cross_attention = only_cross_attention | |
if self.added_kv_proj_dim is None and self.only_cross_attention: | |
raise ValueError( | |
"`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`." | |
) | |
if norm_num_groups is not None: | |
self.group_norm = nn.GroupNorm(num_channels=query_dim, num_groups=norm_num_groups, eps=eps, affine=True) | |
else: | |
self.group_norm = None | |
if spatial_norm_dim is not None: | |
self.spatial_norm = SpatialNorm(f_channels=query_dim, zq_channels=spatial_norm_dim) | |
else: | |
self.spatial_norm = None | |
if cross_attention_norm is None: | |
self.norm_cross = None | |
elif cross_attention_norm == "layer_norm": | |
self.norm_cross = nn.LayerNorm(self.cross_attention_dim) | |
elif cross_attention_norm == "group_norm": | |
if self.added_kv_proj_dim is not None: | |
# The given `encoder_hidden_states` are initially of shape | |
# (batch_size, seq_len, added_kv_proj_dim) before being projected | |
# to (batch_size, seq_len, cross_attention_dim). The norm is applied | |
# before the projection, so we need to use `added_kv_proj_dim` as | |
# the number of channels for the group norm. | |
norm_cross_num_channels = added_kv_proj_dim | |
else: | |
norm_cross_num_channels = self.cross_attention_dim | |
self.norm_cross = nn.GroupNorm( | |
num_channels=norm_cross_num_channels, num_groups=cross_attention_norm_num_groups, eps=1e-5, affine=True | |
) | |
else: | |
raise ValueError( | |
f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'" | |
) | |
linear_cls = nn.Linear | |
self.to_q = linear_cls(query_dim, self.inner_dim, bias=bias) | |
if not self.only_cross_attention: | |
# only relevant for the `AddedKVProcessor` classes | |
self.to_k = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias) | |
self.to_v = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias) | |
else: | |
self.to_k = None | |
self.to_v = None | |
if self.added_kv_proj_dim is not None: | |
self.add_k_proj = linear_cls(added_kv_proj_dim, self.inner_dim) | |
self.add_v_proj = linear_cls(added_kv_proj_dim, self.inner_dim) | |
self.to_out = nn.ModuleList([]) | |
self.to_out.append(linear_cls(self.inner_dim, query_dim, bias=out_bias)) | |
self.to_out.append(nn.Dropout(dropout)) | |
# set attention processor | |
# We use the AttnProcessor2_0 by default when torch 2.x is used which uses | |
# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention | |
# but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1 | |
if processor is None: | |
processor = ( | |
AttnProcessor2_0( | |
attention_mode, | |
use_rope, | |
interpolation_scale_thw=interpolation_scale_thw, | |
) | |
if hasattr(F, "scaled_dot_product_attention") and self.scale_qk | |
else AttnProcessor() | |
) | |
self.set_processor(processor) | |
def set_use_memory_efficient_attention_xformers( | |
self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None | |
) -> None: | |
r""" | |
Set whether to use memory efficient attention from `xformers` or not. | |
Args: | |
use_memory_efficient_attention_xformers (`bool`): | |
Whether to use memory efficient attention from `xformers` or not. | |
attention_op (`Callable`, *optional*): | |
The attention operation to use. Defaults to `None` which uses the default attention operation from | |
`xformers`. | |
""" | |
is_lora = hasattr(self, "processor") | |
is_custom_diffusion = hasattr(self, "processor") and isinstance( | |
self.processor, | |
(CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor, CustomDiffusionAttnProcessor2_0), | |
) | |
is_added_kv_processor = hasattr(self, "processor") and isinstance( | |
self.processor, | |
( | |
AttnAddedKVProcessor, | |
AttnAddedKVProcessor2_0, | |
SlicedAttnAddedKVProcessor, | |
XFormersAttnAddedKVProcessor, | |
LoRAAttnAddedKVProcessor, | |
), | |
) | |
if use_memory_efficient_attention_xformers: | |
if is_added_kv_processor and (is_lora or is_custom_diffusion): | |
raise NotImplementedError( | |
f"Memory efficient attention is currently not supported for LoRA or custom diffusion for attention processor type {self.processor}" | |
) | |
if not is_xformers_available(): | |
raise ModuleNotFoundError( | |
( | |
"Refer to https://github.com/facebookresearch/xformers for more information on how to install" | |
" xformers" | |
), | |
name="xformers", | |
) | |
elif not torch.cuda.is_available(): | |
raise ValueError( | |
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is" | |
" only available for GPU " | |
) | |
else: | |
try: | |
# Make sure we can run the memory efficient attention | |
_ = xformers.ops.memory_efficient_attention( | |
torch.randn((1, 2, 40), device="cuda"), | |
torch.randn((1, 2, 40), device="cuda"), | |
torch.randn((1, 2, 40), device="cuda"), | |
) | |
except Exception as e: | |
raise e | |
if is_lora: | |
# TODO (sayakpaul): should we throw a warning if someone wants to use the xformers | |
# variant when using PT 2.0 now that we have LoRAAttnProcessor2_0? | |
processor = LoRAXFormersAttnProcessor( | |
hidden_size=self.processor.hidden_size, | |
cross_attention_dim=self.processor.cross_attention_dim, | |
rank=self.processor.rank, | |
attention_op=attention_op, | |
) | |
processor.load_state_dict(self.processor.state_dict()) | |
processor.to(self.processor.to_q_lora.up.weight.device) | |
elif is_custom_diffusion: | |
processor = CustomDiffusionXFormersAttnProcessor( | |
train_kv=self.processor.train_kv, | |
train_q_out=self.processor.train_q_out, | |
hidden_size=self.processor.hidden_size, | |
cross_attention_dim=self.processor.cross_attention_dim, | |
attention_op=attention_op, | |
) | |
processor.load_state_dict(self.processor.state_dict()) | |
if hasattr(self.processor, "to_k_custom_diffusion"): | |
processor.to(self.processor.to_k_custom_diffusion.weight.device) | |
elif is_added_kv_processor: | |
# TODO(Patrick, Suraj, William) - currently xformers doesn't work for UnCLIP | |
# which uses this type of cross attention ONLY because the attention mask of format | |
# [0, ..., -10.000, ..., 0, ...,] is not supported | |
# throw warning | |
logger.info( | |
"Memory efficient attention with `xformers` might currently not work correctly if an attention mask is required for the attention operation." | |
) | |
processor = XFormersAttnAddedKVProcessor(attention_op=attention_op) | |
else: | |
processor = XFormersAttnProcessor(attention_op=attention_op) | |
else: | |
if is_lora: | |
attn_processor_class = ( | |
LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor | |
) | |
processor = attn_processor_class( | |
hidden_size=self.processor.hidden_size, | |
cross_attention_dim=self.processor.cross_attention_dim, | |
rank=self.processor.rank, | |
) | |
processor.load_state_dict(self.processor.state_dict()) | |
processor.to(self.processor.to_q_lora.up.weight.device) | |
elif is_custom_diffusion: | |
attn_processor_class = ( | |
CustomDiffusionAttnProcessor2_0 | |
if hasattr(F, "scaled_dot_product_attention") | |
else CustomDiffusionAttnProcessor | |
) | |
processor = attn_processor_class( | |
train_kv=self.processor.train_kv, | |
train_q_out=self.processor.train_q_out, | |
hidden_size=self.processor.hidden_size, | |
cross_attention_dim=self.processor.cross_attention_dim, | |
) | |
processor.load_state_dict(self.processor.state_dict()) | |
if hasattr(self.processor, "to_k_custom_diffusion"): | |
processor.to(self.processor.to_k_custom_diffusion.weight.device) | |
else: | |
# set attention processor | |
# We use the AttnProcessor2_0 by default when torch 2.x is used which uses | |
# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention | |
# but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1 | |
processor = ( | |
AttnProcessor2_0() | |
if hasattr(F, "scaled_dot_product_attention") and self.scale_qk | |
else AttnProcessor() | |
) | |
self.set_processor(processor) | |
def set_attention_slice(self, slice_size: int) -> None: | |
r""" | |
Set the slice size for attention computation. | |
Args: | |
slice_size (`int`): | |
The slice size for attention computation. | |
""" | |
if slice_size is not None and slice_size > self.sliceable_head_dim: | |
raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.") | |
if slice_size is not None and self.added_kv_proj_dim is not None: | |
processor = SlicedAttnAddedKVProcessor(slice_size) | |
elif slice_size is not None: | |
processor = SlicedAttnProcessor(slice_size) | |
elif self.added_kv_proj_dim is not None: | |
processor = AttnAddedKVProcessor() | |
else: | |
# set attention processor | |
# We use the AttnProcessor2_0 by default when torch 2.x is used which uses | |
# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention | |
# but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1 | |
processor = ( | |
AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor() | |
) | |
self.set_processor(processor) | |
def set_processor(self, processor: "AttnProcessor", _remove_lora: bool = False) -> None: | |
r""" | |
Set the attention processor to use. | |
Args: | |
processor (`AttnProcessor`): | |
The attention processor to use. | |
_remove_lora (`bool`, *optional*, defaults to `False`): | |
Set to `True` to remove LoRA layers from the model. | |
""" | |
if not USE_PEFT_BACKEND and hasattr(self, "processor") and _remove_lora and self.to_q.lora_layer is not None: | |
deprecate( | |
"set_processor to offload LoRA", | |
"0.26.0", | |
"In detail, removing LoRA layers via calling `set_default_attn_processor` is deprecated. Please make sure to call `pipe.unload_lora_weights()` instead.", | |
) | |
# TODO(Patrick, Sayak) - this can be deprecated once PEFT LoRA integration is complete | |
# We need to remove all LoRA layers | |
# Don't forget to remove ALL `_remove_lora` from the codebase | |
for module in self.modules(): | |
if hasattr(module, "set_lora_layer"): | |
module.set_lora_layer(None) | |
# if current processor is in `self._modules` and if passed `processor` is not, we need to | |
# pop `processor` from `self._modules` | |
if ( | |
hasattr(self, "processor") | |
and isinstance(self.processor, torch.nn.Module) | |
and not isinstance(processor, torch.nn.Module) | |
): | |
logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}") | |
self._modules.pop("processor") | |
self.processor = processor | |
def get_processor(self, return_deprecated_lora: bool = False): | |
r""" | |
Get the attention processor in use. | |
Args: | |
return_deprecated_lora (`bool`, *optional*, defaults to `False`): | |
Set to `True` to return the deprecated LoRA attention processor. | |
Returns: | |
"AttentionProcessor": The attention processor in use. | |
""" | |
if not return_deprecated_lora: | |
return self.processor | |
# TODO(Sayak, Patrick). The rest of the function is needed to ensure backwards compatible | |
# serialization format for LoRA Attention Processors. It should be deleted once the integration | |
# with PEFT is completed. | |
is_lora_activated = { | |
name: module.lora_layer is not None | |
for name, module in self.named_modules() | |
if hasattr(module, "lora_layer") | |
} | |
# 1. if no layer has a LoRA activated we can return the processor as usual | |
if not any(is_lora_activated.values()): | |
return self.processor | |
# If doesn't apply LoRA do `add_k_proj` or `add_v_proj` | |
is_lora_activated.pop("add_k_proj", None) | |
is_lora_activated.pop("add_v_proj", None) | |
# 2. else it is not posssible that only some layers have LoRA activated | |
if not all(is_lora_activated.values()): | |
raise ValueError( | |
f"Make sure that either all layers or no layers have LoRA activated, but have {is_lora_activated}" | |
) | |
# 3. And we need to merge the current LoRA layers into the corresponding LoRA attention processor | |
non_lora_processor_cls_name = self.processor.__class__.__name__ | |
lora_processor_cls = getattr(import_module(__name__), "LoRA" + non_lora_processor_cls_name) | |
hidden_size = self.inner_dim | |
# now create a LoRA attention processor from the LoRA layers | |
if lora_processor_cls in [LoRAAttnProcessor, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor]: | |
kwargs = { | |
"cross_attention_dim": self.cross_attention_dim, | |
"rank": self.to_q.lora_layer.rank, | |
"network_alpha": self.to_q.lora_layer.network_alpha, | |
"q_rank": self.to_q.lora_layer.rank, | |
"q_hidden_size": self.to_q.lora_layer.out_features, | |
"k_rank": self.to_k.lora_layer.rank, | |
"k_hidden_size": self.to_k.lora_layer.out_features, | |
"v_rank": self.to_v.lora_layer.rank, | |
"v_hidden_size": self.to_v.lora_layer.out_features, | |
"out_rank": self.to_out[0].lora_layer.rank, | |
"out_hidden_size": self.to_out[0].lora_layer.out_features, | |
} | |
if hasattr(self.processor, "attention_op"): | |
kwargs["attention_op"] = self.processor.attention_op | |
lora_processor = lora_processor_cls(hidden_size, **kwargs) | |
lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict()) | |
lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict()) | |
lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict()) | |
lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict()) | |
elif lora_processor_cls == LoRAAttnAddedKVProcessor: | |
lora_processor = lora_processor_cls( | |
hidden_size, | |
cross_attention_dim=self.add_k_proj.weight.shape[0], | |
rank=self.to_q.lora_layer.rank, | |
network_alpha=self.to_q.lora_layer.network_alpha, | |
) | |
lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict()) | |
lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict()) | |
lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict()) | |
lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict()) | |
# only save if used | |
if self.add_k_proj.lora_layer is not None: | |
lora_processor.add_k_proj_lora.load_state_dict(self.add_k_proj.lora_layer.state_dict()) | |
lora_processor.add_v_proj_lora.load_state_dict(self.add_v_proj.lora_layer.state_dict()) | |
else: | |
lora_processor.add_k_proj_lora = None | |
lora_processor.add_v_proj_lora = None | |
else: | |
raise ValueError(f"{lora_processor_cls} does not exist.") | |
return lora_processor | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
**cross_attention_kwargs, | |
) -> torch.Tensor: | |
r""" | |
The forward method of the `Attention` class. | |
Args: | |
hidden_states (`torch.Tensor`): | |
The hidden states of the query. | |
encoder_hidden_states (`torch.Tensor`, *optional*): | |
The hidden states of the encoder. | |
attention_mask (`torch.Tensor`, *optional*): | |
The attention mask to use. If `None`, no mask is applied. | |
**cross_attention_kwargs: | |
Additional keyword arguments to pass along to the cross attention. | |
Returns: | |
`torch.Tensor`: The output of the attention layer. | |
""" | |
# The `Attention` class can call different attention processors / attention functions | |
# here we simply pass along all tensors to the selected processor class | |
# For standard processors that are defined here, `**cross_attention_kwargs` is empty | |
return self.processor( | |
self, | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
def batch_to_head_dim(self, tensor: torch.Tensor) -> torch.Tensor: | |
r""" | |
Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size // heads, seq_len, dim * heads]`. `heads` | |
is the number of heads initialized while constructing the `Attention` class. | |
Args: | |
tensor (`torch.Tensor`): The tensor to reshape. | |
Returns: | |
`torch.Tensor`: The reshaped tensor. | |
""" | |
head_size = self.heads | |
batch_size, seq_len, dim = tensor.shape | |
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) | |
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) | |
return tensor | |
def head_to_batch_dim(self, tensor: torch.Tensor, out_dim: int = 3) -> torch.Tensor: | |
r""" | |
Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size, seq_len, heads, dim // heads]` `heads` is | |
the number of heads initialized while constructing the `Attention` class. | |
Args: | |
tensor (`torch.Tensor`): The tensor to reshape. | |
out_dim (`int`, *optional*, defaults to `3`): The output dimension of the tensor. If `3`, the tensor is | |
reshaped to `[batch_size * heads, seq_len, dim // heads]`. | |
Returns: | |
`torch.Tensor`: The reshaped tensor. | |
""" | |
head_size = self.heads | |
batch_size, seq_len, dim = tensor.shape | |
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) | |
tensor = tensor.permute(0, 2, 1, 3) | |
if out_dim == 3: | |
tensor = tensor.reshape(batch_size * head_size, seq_len, dim // head_size) | |
return tensor | |
def get_attention_scores( | |
self, query: torch.Tensor, key: torch.Tensor, attention_mask: torch.Tensor = None | |
) -> torch.Tensor: | |
r""" | |
Compute the attention scores. | |
Args: | |
query (`torch.Tensor`): The query tensor. | |
key (`torch.Tensor`): The key tensor. | |
attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied. | |
Returns: | |
`torch.Tensor`: The attention probabilities/scores. | |
""" | |
dtype = query.dtype | |
if self.upcast_attention: | |
query = query.float() | |
key = key.float() | |
if attention_mask is None: | |
baddbmm_input = torch.empty( | |
query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device | |
) | |
beta = 0 | |
else: | |
baddbmm_input = attention_mask | |
beta = 1 | |
attention_scores = torch.baddbmm( | |
baddbmm_input, | |
query, | |
key.transpose(-1, -2), | |
beta=beta, | |
alpha=self.scale, | |
) | |
del baddbmm_input | |
if self.upcast_softmax: | |
attention_scores = attention_scores.float() | |
attention_probs = attention_scores.softmax(dim=-1) | |
del attention_scores | |
attention_probs = attention_probs.to(dtype) | |
return attention_probs | |
def prepare_attention_mask( | |
self, attention_mask: torch.Tensor, target_length: int, batch_size: int, out_dim: int = 3, head_size = None, | |
) -> torch.Tensor: | |
r""" | |
Prepare the attention mask for the attention computation. | |
Args: | |
attention_mask (`torch.Tensor`): | |
The attention mask to prepare. | |
target_length (`int`): | |
The target length of the attention mask. This is the length of the attention mask after padding. | |
batch_size (`int`): | |
The batch size, which is used to repeat the attention mask. | |
out_dim (`int`, *optional*, defaults to `3`): | |
The output dimension of the attention mask. Can be either `3` or `4`. | |
Returns: | |
`torch.Tensor`: The prepared attention mask. | |
""" | |
head_size = head_size if head_size is not None else self.heads | |
if attention_mask is None: | |
return attention_mask | |
current_length: int = attention_mask.shape[-1] | |
if current_length != target_length: | |
if attention_mask.device.type == "mps": | |
# HACK: MPS: Does not support padding by greater than dimension of input tensor. | |
# Instead, we can manually construct the padding tensor. | |
padding_shape = (attention_mask.shape[0], attention_mask.shape[1], target_length) | |
padding = torch.zeros(padding_shape, dtype=attention_mask.dtype, device=attention_mask.device) | |
attention_mask = torch.cat([attention_mask, padding], dim=2) | |
else: | |
# TODO: for pipelines such as stable-diffusion, padding cross-attn mask: | |
# we want to instead pad by (0, remaining_length), where remaining_length is: | |
# remaining_length: int = target_length - current_length | |
# TODO: re-enable tests/models/test_models_unet_2d_condition.py#test_model_xattn_padding | |
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) | |
if out_dim == 3: | |
if attention_mask.shape[0] < batch_size * head_size: | |
attention_mask = attention_mask.repeat_interleave(head_size, dim=0) | |
elif out_dim == 4: | |
attention_mask = attention_mask.unsqueeze(1) | |
attention_mask = attention_mask.repeat_interleave(head_size, dim=1) | |
return attention_mask | |
def norm_encoder_hidden_states(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor: | |
r""" | |
Normalize the encoder hidden states. Requires `self.norm_cross` to be specified when constructing the | |
`Attention` class. | |
Args: | |
encoder_hidden_states (`torch.Tensor`): Hidden states of the encoder. | |
Returns: | |
`torch.Tensor`: The normalized encoder hidden states. | |
""" | |
assert self.norm_cross is not None, "self.norm_cross must be defined to call self.norm_encoder_hidden_states" | |
if isinstance(self.norm_cross, nn.LayerNorm): | |
encoder_hidden_states = self.norm_cross(encoder_hidden_states) | |
elif isinstance(self.norm_cross, nn.GroupNorm): | |
# Group norm norms along the channels dimension and expects | |
# input to be in the shape of (N, C, *). In this case, we want | |
# to norm along the hidden dimension, so we need to move | |
# (batch_size, sequence_length, hidden_size) -> | |
# (batch_size, hidden_size, sequence_length) | |
encoder_hidden_states = encoder_hidden_states.transpose(1, 2) | |
encoder_hidden_states = self.norm_cross(encoder_hidden_states) | |
encoder_hidden_states = encoder_hidden_states.transpose(1, 2) | |
else: | |
assert False | |
return encoder_hidden_states | |
def _init_compress(self): | |
self.sr.bias.data.zero_() | |
self.norm = nn.LayerNorm(self.inner_dim) | |
class AttnProcessor2_0(nn.Module): | |
r""" | |
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). | |
""" | |
def __init__(self, attention_mode="xformers", use_rope=False, interpolation_scale_thw=None): | |
super().__init__() | |
self.attention_mode = attention_mode | |
self.use_rope = use_rope | |
self.interpolation_scale_thw = interpolation_scale_thw | |
if self.use_rope: | |
self._init_rope(interpolation_scale_thw) | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
def _init_rope(self, interpolation_scale_thw): | |
self.rope = RoPE3D(interpolation_scale_thw=interpolation_scale_thw) | |
self.position_getter = PositionGetter3D() | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states: torch.FloatTensor, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
temb: Optional[torch.FloatTensor] = None, | |
frame: int = 8, | |
height: int = 16, | |
width: int = 16, | |
) -> torch.FloatTensor: | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
if attention_mask is not None and self.attention_mode == 'xformers': | |
attention_heads = attn.heads | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size, head_size=attention_heads) | |
attention_mask = attention_mask.view(batch_size, attention_heads, -1, attention_mask.shape[-1]) | |
else: | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
# scaled_dot_product_attention expects attention_mask shape to be | |
# (batch, heads, source_length, target_length) | |
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
attn_heads = attn.heads | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn_heads | |
query = query.view(batch_size, -1, attn_heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn_heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn_heads, head_dim).transpose(1, 2) | |
if self.use_rope: | |
# require the shape of (batch_size x nheads x ntokens x dim) | |
pos_thw = self.position_getter(batch_size, t=frame, h=height, w=width, device=query.device) | |
query = self.rope(query, pos_thw) | |
key = self.rope(key, pos_thw) | |
# the output of sdp = (batch, num_heads, seq_len, head_dim) | |
# TODO: add support for attn.scale when we move to Torch 2.1 | |
if self.attention_mode == 'flash': | |
# assert attention_mask is None, 'flash-attn do not support attention_mask' | |
with sdpa_kernel(SDPBackend.FLASH_ATTENTION): | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, dropout_p=0.0, is_causal=False | |
) | |
elif self.attention_mode == 'xformers': | |
with sdpa_kernel(SDPBackend.EFFICIENT_ATTENTION): | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn_heads * head_dim) | |
hidden_states = hidden_states.to(query.dtype) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |
class FeedForward(nn.Module): | |
r""" | |
A feed-forward layer. | |
Parameters: | |
dim (`int`): The number of channels in the input. | |
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. | |
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
dim_out: Optional[int] = None, | |
mult: int = 4, | |
dropout: float = 0.0, | |
activation_fn: str = "geglu", | |
final_dropout: bool = False, | |
): | |
super().__init__() | |
inner_dim = int(dim * mult) | |
dim_out = dim_out if dim_out is not None else dim | |
linear_cls = nn.Linear | |
if activation_fn == "gelu": | |
act_fn = GELU(dim, inner_dim) | |
if activation_fn == "gelu-approximate": | |
act_fn = GELU(dim, inner_dim, approximate="tanh") | |
elif activation_fn == "geglu": | |
act_fn = GEGLU(dim, inner_dim) | |
elif activation_fn == "geglu-approximate": | |
act_fn = ApproximateGELU(dim, inner_dim) | |
self.net = nn.ModuleList([]) | |
# project in | |
self.net.append(act_fn) | |
# project dropout | |
self.net.append(nn.Dropout(dropout)) | |
# project out | |
self.net.append(linear_cls(inner_dim, dim_out)) | |
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout | |
if final_dropout: | |
self.net.append(nn.Dropout(dropout)) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
for module in self.net: | |
hidden_states = module(hidden_states) | |
return hidden_states | |
class BasicTransformerBlock(nn.Module): | |
r""" | |
A basic Transformer block. | |
Parameters: | |
dim (`int`): The number of channels in the input and output. | |
num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): The number of channels in each head. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
num_embeds_ada_norm (: | |
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. | |
attention_bias (: | |
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. | |
only_cross_attention (`bool`, *optional*): | |
Whether to use only cross-attention layers. In this case two cross attention layers are used. | |
double_self_attention (`bool`, *optional*): | |
Whether to use two self-attention layers. In this case no cross attention layers are used. | |
upcast_attention (`bool`, *optional*): | |
Whether to upcast the attention computation to float32. This is useful for mixed precision training. | |
norm_elementwise_affine (`bool`, *optional*, defaults to `True`): | |
Whether to use learnable elementwise affine parameters for normalization. | |
norm_type (`str`, *optional*, defaults to `"layer_norm"`): | |
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`. | |
final_dropout (`bool` *optional*, defaults to False): | |
Whether to apply a final dropout after the last feed-forward layer. | |
positional_embeddings (`str`, *optional*, defaults to `None`): | |
The type of positional embeddings to apply to. | |
num_positional_embeddings (`int`, *optional*, defaults to `None`): | |
The maximum number of positional embeddings to apply. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout=0.0, | |
cross_attention_dim: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
attention_bias: bool = False, | |
only_cross_attention: bool = False, | |
double_self_attention: bool = False, | |
upcast_attention: bool = False, | |
norm_elementwise_affine: bool = True, | |
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single' | |
norm_eps: float = 1e-5, | |
final_dropout: bool = False, | |
positional_embeddings: Optional[str] = None, | |
num_positional_embeddings: Optional[int] = None, | |
sa_attention_mode: str = "flash", | |
ca_attention_mode: str = "xformers", | |
use_rope: bool = False, | |
interpolation_scale_thw: Tuple[int] = (1, 1, 1), | |
block_idx: Optional[int] = None, | |
): | |
super().__init__() | |
self.only_cross_attention = only_cross_attention | |
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" | |
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" | |
self.use_ada_layer_norm_single = norm_type == "ada_norm_single" | |
self.use_layer_norm = norm_type == "layer_norm" | |
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: | |
raise ValueError( | |
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" | |
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." | |
) | |
if positional_embeddings and (num_positional_embeddings is None): | |
raise ValueError( | |
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined." | |
) | |
if positional_embeddings == "sinusoidal": | |
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings) | |
else: | |
self.pos_embed = None | |
# Define 3 blocks. Each block has its own normalization layer. | |
# 1. Self-Attn | |
if self.use_ada_layer_norm: | |
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) | |
elif self.use_ada_layer_norm_zero: | |
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) | |
else: | |
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
self.attn1 = Attention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
upcast_attention=upcast_attention, | |
attention_mode=sa_attention_mode, | |
use_rope=use_rope, | |
interpolation_scale_thw=interpolation_scale_thw, | |
) | |
# 2. Cross-Attn | |
if cross_attention_dim is not None or double_self_attention: | |
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block. | |
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during | |
# the second cross attention block. | |
self.norm2 = ( | |
AdaLayerNorm(dim, num_embeds_ada_norm) | |
if self.use_ada_layer_norm | |
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
) | |
self.attn2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim if not double_self_attention else None, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
attention_mode=ca_attention_mode, # only xformers support attention_mask | |
use_rope=False, # do not position in cross attention | |
interpolation_scale_thw=interpolation_scale_thw, | |
) # is self-attn if encoder_hidden_states is none | |
else: | |
self.norm2 = None | |
self.attn2 = None | |
# 3. Feed-forward | |
if not self.use_ada_layer_norm_single: | |
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
self.ff = FeedForward( | |
dim, | |
dropout=dropout, | |
activation_fn=activation_fn, | |
final_dropout=final_dropout, | |
) | |
# 5. Scale-shift for PixArt-Alpha. | |
if self.use_ada_layer_norm_single: | |
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
timestep: Optional[torch.LongTensor] = None, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
class_labels: Optional[torch.LongTensor] = None, | |
frame: int = None, | |
height: int = None, | |
width: int = None, | |
) -> torch.FloatTensor: | |
# Notice that normalization is always applied before the real computation in the following blocks. | |
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} | |
# 0. Self-Attention | |
batch_size = hidden_states.shape[0] | |
if self.use_ada_layer_norm: | |
norm_hidden_states = self.norm1(hidden_states, timestep) | |
elif self.use_ada_layer_norm_zero: | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( | |
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype | |
) | |
elif self.use_layer_norm: | |
norm_hidden_states = self.norm1(hidden_states) | |
elif self.use_ada_layer_norm_single: | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( | |
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) | |
).chunk(6, dim=1) | |
norm_hidden_states = self.norm1(hidden_states) | |
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa | |
norm_hidden_states = norm_hidden_states.squeeze(1) | |
else: | |
raise ValueError("Incorrect norm used") | |
if self.pos_embed is not None: | |
norm_hidden_states = self.pos_embed(norm_hidden_states) | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
attention_mask=attention_mask, | |
frame=frame, | |
height=height, | |
width=width, | |
**cross_attention_kwargs, | |
) | |
if self.use_ada_layer_norm_zero: | |
attn_output = gate_msa.unsqueeze(1) * attn_output | |
elif self.use_ada_layer_norm_single: | |
attn_output = gate_msa * attn_output | |
hidden_states = attn_output + hidden_states | |
if hidden_states.ndim == 4: | |
hidden_states = hidden_states.squeeze(1) | |
# 1. Cross-Attention | |
if self.attn2 is not None: | |
if self.use_ada_layer_norm: | |
norm_hidden_states = self.norm2(hidden_states, timestep) | |
elif self.use_ada_layer_norm_zero or self.use_layer_norm: | |
norm_hidden_states = self.norm2(hidden_states) | |
elif self.use_ada_layer_norm_single: | |
# For PixArt norm2 isn't applied here: | |
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103 | |
norm_hidden_states = hidden_states | |
else: | |
raise ValueError("Incorrect norm") | |
if self.pos_embed is not None and self.use_ada_layer_norm_single is False: | |
norm_hidden_states = self.pos_embed(norm_hidden_states) | |
attn_output = self.attn2( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
**cross_attention_kwargs, | |
) | |
hidden_states = attn_output + hidden_states | |
# 2. Feed-forward | |
if not self.use_ada_layer_norm_single: | |
norm_hidden_states = self.norm3(hidden_states) | |
if self.use_ada_layer_norm_zero: | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
if self.use_ada_layer_norm_single: | |
norm_hidden_states = self.norm2(hidden_states) | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp | |
ff_output = self.ff(norm_hidden_states) | |
if self.use_ada_layer_norm_zero: | |
ff_output = gate_mlp.unsqueeze(1) * ff_output | |
elif self.use_ada_layer_norm_single: | |
ff_output = gate_mlp * ff_output | |
hidden_states = ff_output + hidden_states | |
if hidden_states.ndim == 4: | |
hidden_states = hidden_states.squeeze(1) | |
return hidden_states | |
class AdaLayerNormSingle(nn.Module): | |
r""" | |
Norm layer adaptive layer norm single (adaLN-single). | |
As proposed in PixArt-Alpha (see: https://arxiv.org/abs/2310.00426; Section 2.3). | |
Parameters: | |
embedding_dim (`int`): The size of each embedding vector. | |
use_additional_conditions (`bool`): To use additional conditions for normalization or not. | |
""" | |
def __init__(self, embedding_dim: int, use_additional_conditions: bool = False): | |
super().__init__() | |
self.emb = CombinedTimestepSizeEmbeddings( | |
embedding_dim, size_emb_dim=embedding_dim // 3, use_additional_conditions=use_additional_conditions | |
) | |
self.silu = nn.SiLU() | |
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True) | |
def forward( | |
self, | |
timestep: torch.Tensor, | |
added_cond_kwargs: Dict[str, torch.Tensor] = None, | |
batch_size: int = None, | |
hidden_dtype: Optional[torch.dtype] = None, | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
# No modulation happening here. | |
embedded_timestep = self.emb( | |
timestep, batch_size=batch_size, hidden_dtype=hidden_dtype, resolution=None, aspect_ratio=None | |
) | |
return self.linear(self.silu(embedded_timestep)), embedded_timestep | |