Spaces:
Runtime error
Runtime error
Upload 15 files
Browse files- .gitattributes +1 -0
- LICENSE.txt +201 -0
- allegro/models/transformers/block.py +1195 -0
- allegro/models/transformers/embedding.py +128 -0
- allegro/models/transformers/rope.py +90 -0
- allegro/models/transformers/transformer_3d_allegro.py +416 -0
- allegro/models/vae/modules.py +415 -0
- allegro/models/vae/vae_allegro.py +568 -0
- allegro/pipelines/pipeline_allegro.py +822 -0
- assets/Allegro_banner.gif +0 -0
- assets/banner_white.gif +0 -0
- assets/demo_video.mp4 +3 -0
- assets/rhymes_1.png +0 -0
- requirements.txt +14 -0
- single_inference.py +99 -0
- vae_inference.py +50 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
assets/demo_video.mp4 filter=lfs diff=lfs merge=lfs -text
|
LICENSE.txt
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
allegro/models/transformers/block.py
ADDED
@@ -0,0 +1,1195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from Open-Sora-Plan
|
2 |
+
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
# --------------------------------------------------------
|
6 |
+
# References:
|
7 |
+
# Open-Sora-Plan: https://github.com/PKU-YuanGroup/Open-Sora-Plan
|
8 |
+
# --------------------------------------------------------
|
9 |
+
|
10 |
+
|
11 |
+
from importlib import import_module
|
12 |
+
from typing import Any, Callable, Dict, Optional, Tuple
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
import torch
|
16 |
+
import collections
|
17 |
+
import torch.nn.functional as F
|
18 |
+
from torch.nn.attention import SDPBackend, sdpa_kernel
|
19 |
+
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU
|
20 |
+
from diffusers.models.attention_processor import (
|
21 |
+
AttnAddedKVProcessor,
|
22 |
+
AttnAddedKVProcessor2_0,
|
23 |
+
AttnProcessor,
|
24 |
+
CustomDiffusionAttnProcessor,
|
25 |
+
CustomDiffusionAttnProcessor2_0,
|
26 |
+
CustomDiffusionXFormersAttnProcessor,
|
27 |
+
LoRAAttnAddedKVProcessor,
|
28 |
+
LoRAAttnProcessor,
|
29 |
+
LoRAAttnProcessor2_0,
|
30 |
+
LoRAXFormersAttnProcessor,
|
31 |
+
SlicedAttnAddedKVProcessor,
|
32 |
+
SlicedAttnProcessor,
|
33 |
+
SpatialNorm,
|
34 |
+
XFormersAttnAddedKVProcessor,
|
35 |
+
XFormersAttnProcessor,
|
36 |
+
)
|
37 |
+
from diffusers.models.embeddings import SinusoidalPositionalEmbedding
|
38 |
+
from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormZero
|
39 |
+
from diffusers.utils import USE_PEFT_BACKEND, deprecate, is_xformers_available
|
40 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
41 |
+
from torch import nn
|
42 |
+
|
43 |
+
from allegro.models.transformers.rope import RoPE3D, PositionGetter3D
|
44 |
+
from allegro.models.transformers.embedding import CombinedTimestepSizeEmbeddings
|
45 |
+
|
46 |
+
if is_xformers_available():
|
47 |
+
import xformers
|
48 |
+
import xformers.ops
|
49 |
+
else:
|
50 |
+
xformers = None
|
51 |
+
|
52 |
+
from diffusers.utils import logging
|
53 |
+
|
54 |
+
logger = logging.get_logger(__name__)
|
55 |
+
|
56 |
+
|
57 |
+
def to_2tuple(x):
|
58 |
+
if isinstance(x, collections.abc.Iterable):
|
59 |
+
return x
|
60 |
+
return (x, x)
|
61 |
+
|
62 |
+
|
63 |
+
@maybe_allow_in_graph
|
64 |
+
class Attention(nn.Module):
|
65 |
+
r"""
|
66 |
+
A cross attention layer.
|
67 |
+
|
68 |
+
Parameters:
|
69 |
+
query_dim (`int`):
|
70 |
+
The number of channels in the query.
|
71 |
+
cross_attention_dim (`int`, *optional*):
|
72 |
+
The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`.
|
73 |
+
heads (`int`, *optional*, defaults to 8):
|
74 |
+
The number of heads to use for multi-head attention.
|
75 |
+
dim_head (`int`, *optional*, defaults to 64):
|
76 |
+
The number of channels in each head.
|
77 |
+
dropout (`float`, *optional*, defaults to 0.0):
|
78 |
+
The dropout probability to use.
|
79 |
+
bias (`bool`, *optional*, defaults to False):
|
80 |
+
Set to `True` for the query, key, and value linear layers to contain a bias parameter.
|
81 |
+
upcast_attention (`bool`, *optional*, defaults to False):
|
82 |
+
Set to `True` to upcast the attention computation to `float32`.
|
83 |
+
upcast_softmax (`bool`, *optional*, defaults to False):
|
84 |
+
Set to `True` to upcast the softmax computation to `float32`.
|
85 |
+
cross_attention_norm (`str`, *optional*, defaults to `None`):
|
86 |
+
The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`.
|
87 |
+
cross_attention_norm_num_groups (`int`, *optional*, defaults to 32):
|
88 |
+
The number of groups to use for the group norm in the cross attention.
|
89 |
+
added_kv_proj_dim (`int`, *optional*, defaults to `None`):
|
90 |
+
The number of channels to use for the added key and value projections. If `None`, no projection is used.
|
91 |
+
norm_num_groups (`int`, *optional*, defaults to `None`):
|
92 |
+
The number of groups to use for the group norm in the attention.
|
93 |
+
spatial_norm_dim (`int`, *optional*, defaults to `None`):
|
94 |
+
The number of channels to use for the spatial normalization.
|
95 |
+
out_bias (`bool`, *optional*, defaults to `True`):
|
96 |
+
Set to `True` to use a bias in the output linear layer.
|
97 |
+
scale_qk (`bool`, *optional*, defaults to `True`):
|
98 |
+
Set to `True` to scale the query and key by `1 / sqrt(dim_head)`.
|
99 |
+
only_cross_attention (`bool`, *optional*, defaults to `False`):
|
100 |
+
Set to `True` to only use cross attention and not added_kv_proj_dim. Can only be set to `True` if
|
101 |
+
`added_kv_proj_dim` is not `None`.
|
102 |
+
eps (`float`, *optional*, defaults to 1e-5):
|
103 |
+
An additional value added to the denominator in group normalization that is used for numerical stability.
|
104 |
+
rescale_output_factor (`float`, *optional*, defaults to 1.0):
|
105 |
+
A factor to rescale the output by dividing it with this value.
|
106 |
+
residual_connection (`bool`, *optional*, defaults to `False`):
|
107 |
+
Set to `True` to add the residual connection to the output.
|
108 |
+
_from_deprecated_attn_block (`bool`, *optional*, defaults to `False`):
|
109 |
+
Set to `True` if the attention block is loaded from a deprecated state dict.
|
110 |
+
processor (`AttnProcessor`, *optional*, defaults to `None`):
|
111 |
+
The attention processor to use. If `None`, defaults to `AttnProcessor2_0` if `torch 2.x` is used and
|
112 |
+
`AttnProcessor` otherwise.
|
113 |
+
"""
|
114 |
+
|
115 |
+
def __init__(
|
116 |
+
self,
|
117 |
+
query_dim: int,
|
118 |
+
cross_attention_dim: Optional[int] = None,
|
119 |
+
heads: int = 8,
|
120 |
+
dim_head: int = 64,
|
121 |
+
dropout: float = 0.0,
|
122 |
+
bias: bool = False,
|
123 |
+
upcast_attention: bool = False,
|
124 |
+
upcast_softmax: bool = False,
|
125 |
+
cross_attention_norm: Optional[str] = None,
|
126 |
+
cross_attention_norm_num_groups: int = 32,
|
127 |
+
added_kv_proj_dim: Optional[int] = None,
|
128 |
+
norm_num_groups: Optional[int] = None,
|
129 |
+
spatial_norm_dim: Optional[int] = None,
|
130 |
+
out_bias: bool = True,
|
131 |
+
scale_qk: bool = True,
|
132 |
+
only_cross_attention: bool = False,
|
133 |
+
eps: float = 1e-5,
|
134 |
+
rescale_output_factor: float = 1.0,
|
135 |
+
residual_connection: bool = False,
|
136 |
+
_from_deprecated_attn_block: bool = False,
|
137 |
+
processor: Optional["AttnProcessor"] = None,
|
138 |
+
attention_mode: str = "xformers",
|
139 |
+
use_rope: bool = False,
|
140 |
+
interpolation_scale_thw=None,
|
141 |
+
):
|
142 |
+
super().__init__()
|
143 |
+
self.inner_dim = dim_head * heads
|
144 |
+
self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
|
145 |
+
self.upcast_attention = upcast_attention
|
146 |
+
self.upcast_softmax = upcast_softmax
|
147 |
+
self.rescale_output_factor = rescale_output_factor
|
148 |
+
self.residual_connection = residual_connection
|
149 |
+
self.dropout = dropout
|
150 |
+
self.use_rope = use_rope
|
151 |
+
|
152 |
+
# we make use of this private variable to know whether this class is loaded
|
153 |
+
# with an deprecated state dict so that we can convert it on the fly
|
154 |
+
self._from_deprecated_attn_block = _from_deprecated_attn_block
|
155 |
+
|
156 |
+
self.scale_qk = scale_qk
|
157 |
+
self.scale = dim_head**-0.5 if self.scale_qk else 1.0
|
158 |
+
|
159 |
+
self.heads = heads
|
160 |
+
# for slice_size > 0 the attention score computation
|
161 |
+
# is split across the batch axis to save memory
|
162 |
+
# You can set slice_size with `set_attention_slice`
|
163 |
+
self.sliceable_head_dim = heads
|
164 |
+
|
165 |
+
self.added_kv_proj_dim = added_kv_proj_dim
|
166 |
+
self.only_cross_attention = only_cross_attention
|
167 |
+
|
168 |
+
if self.added_kv_proj_dim is None and self.only_cross_attention:
|
169 |
+
raise ValueError(
|
170 |
+
"`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`."
|
171 |
+
)
|
172 |
+
|
173 |
+
if norm_num_groups is not None:
|
174 |
+
self.group_norm = nn.GroupNorm(num_channels=query_dim, num_groups=norm_num_groups, eps=eps, affine=True)
|
175 |
+
else:
|
176 |
+
self.group_norm = None
|
177 |
+
|
178 |
+
if spatial_norm_dim is not None:
|
179 |
+
self.spatial_norm = SpatialNorm(f_channels=query_dim, zq_channels=spatial_norm_dim)
|
180 |
+
else:
|
181 |
+
self.spatial_norm = None
|
182 |
+
|
183 |
+
if cross_attention_norm is None:
|
184 |
+
self.norm_cross = None
|
185 |
+
elif cross_attention_norm == "layer_norm":
|
186 |
+
self.norm_cross = nn.LayerNorm(self.cross_attention_dim)
|
187 |
+
elif cross_attention_norm == "group_norm":
|
188 |
+
if self.added_kv_proj_dim is not None:
|
189 |
+
# The given `encoder_hidden_states` are initially of shape
|
190 |
+
# (batch_size, seq_len, added_kv_proj_dim) before being projected
|
191 |
+
# to (batch_size, seq_len, cross_attention_dim). The norm is applied
|
192 |
+
# before the projection, so we need to use `added_kv_proj_dim` as
|
193 |
+
# the number of channels for the group norm.
|
194 |
+
norm_cross_num_channels = added_kv_proj_dim
|
195 |
+
else:
|
196 |
+
norm_cross_num_channels = self.cross_attention_dim
|
197 |
+
|
198 |
+
self.norm_cross = nn.GroupNorm(
|
199 |
+
num_channels=norm_cross_num_channels, num_groups=cross_attention_norm_num_groups, eps=1e-5, affine=True
|
200 |
+
)
|
201 |
+
else:
|
202 |
+
raise ValueError(
|
203 |
+
f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'"
|
204 |
+
)
|
205 |
+
|
206 |
+
linear_cls = nn.Linear
|
207 |
+
|
208 |
+
|
209 |
+
self.to_q = linear_cls(query_dim, self.inner_dim, bias=bias)
|
210 |
+
|
211 |
+
if not self.only_cross_attention:
|
212 |
+
# only relevant for the `AddedKVProcessor` classes
|
213 |
+
self.to_k = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias)
|
214 |
+
self.to_v = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias)
|
215 |
+
else:
|
216 |
+
self.to_k = None
|
217 |
+
self.to_v = None
|
218 |
+
|
219 |
+
if self.added_kv_proj_dim is not None:
|
220 |
+
self.add_k_proj = linear_cls(added_kv_proj_dim, self.inner_dim)
|
221 |
+
self.add_v_proj = linear_cls(added_kv_proj_dim, self.inner_dim)
|
222 |
+
|
223 |
+
self.to_out = nn.ModuleList([])
|
224 |
+
self.to_out.append(linear_cls(self.inner_dim, query_dim, bias=out_bias))
|
225 |
+
self.to_out.append(nn.Dropout(dropout))
|
226 |
+
|
227 |
+
# set attention processor
|
228 |
+
# We use the AttnProcessor2_0 by default when torch 2.x is used which uses
|
229 |
+
# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
|
230 |
+
# but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
|
231 |
+
if processor is None:
|
232 |
+
processor = (
|
233 |
+
AttnProcessor2_0(
|
234 |
+
attention_mode,
|
235 |
+
use_rope,
|
236 |
+
interpolation_scale_thw=interpolation_scale_thw,
|
237 |
+
)
|
238 |
+
if hasattr(F, "scaled_dot_product_attention") and self.scale_qk
|
239 |
+
else AttnProcessor()
|
240 |
+
)
|
241 |
+
self.set_processor(processor)
|
242 |
+
|
243 |
+
def set_use_memory_efficient_attention_xformers(
|
244 |
+
self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None
|
245 |
+
) -> None:
|
246 |
+
r"""
|
247 |
+
Set whether to use memory efficient attention from `xformers` or not.
|
248 |
+
|
249 |
+
Args:
|
250 |
+
use_memory_efficient_attention_xformers (`bool`):
|
251 |
+
Whether to use memory efficient attention from `xformers` or not.
|
252 |
+
attention_op (`Callable`, *optional*):
|
253 |
+
The attention operation to use. Defaults to `None` which uses the default attention operation from
|
254 |
+
`xformers`.
|
255 |
+
"""
|
256 |
+
is_lora = hasattr(self, "processor")
|
257 |
+
is_custom_diffusion = hasattr(self, "processor") and isinstance(
|
258 |
+
self.processor,
|
259 |
+
(CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor, CustomDiffusionAttnProcessor2_0),
|
260 |
+
)
|
261 |
+
is_added_kv_processor = hasattr(self, "processor") and isinstance(
|
262 |
+
self.processor,
|
263 |
+
(
|
264 |
+
AttnAddedKVProcessor,
|
265 |
+
AttnAddedKVProcessor2_0,
|
266 |
+
SlicedAttnAddedKVProcessor,
|
267 |
+
XFormersAttnAddedKVProcessor,
|
268 |
+
LoRAAttnAddedKVProcessor,
|
269 |
+
),
|
270 |
+
)
|
271 |
+
|
272 |
+
if use_memory_efficient_attention_xformers:
|
273 |
+
if is_added_kv_processor and (is_lora or is_custom_diffusion):
|
274 |
+
raise NotImplementedError(
|
275 |
+
f"Memory efficient attention is currently not supported for LoRA or custom diffusion for attention processor type {self.processor}"
|
276 |
+
)
|
277 |
+
if not is_xformers_available():
|
278 |
+
raise ModuleNotFoundError(
|
279 |
+
(
|
280 |
+
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
|
281 |
+
" xformers"
|
282 |
+
),
|
283 |
+
name="xformers",
|
284 |
+
)
|
285 |
+
elif not torch.cuda.is_available():
|
286 |
+
raise ValueError(
|
287 |
+
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is"
|
288 |
+
" only available for GPU "
|
289 |
+
)
|
290 |
+
else:
|
291 |
+
try:
|
292 |
+
# Make sure we can run the memory efficient attention
|
293 |
+
_ = xformers.ops.memory_efficient_attention(
|
294 |
+
torch.randn((1, 2, 40), device="cuda"),
|
295 |
+
torch.randn((1, 2, 40), device="cuda"),
|
296 |
+
torch.randn((1, 2, 40), device="cuda"),
|
297 |
+
)
|
298 |
+
except Exception as e:
|
299 |
+
raise e
|
300 |
+
|
301 |
+
if is_lora:
|
302 |
+
# TODO (sayakpaul): should we throw a warning if someone wants to use the xformers
|
303 |
+
# variant when using PT 2.0 now that we have LoRAAttnProcessor2_0?
|
304 |
+
processor = LoRAXFormersAttnProcessor(
|
305 |
+
hidden_size=self.processor.hidden_size,
|
306 |
+
cross_attention_dim=self.processor.cross_attention_dim,
|
307 |
+
rank=self.processor.rank,
|
308 |
+
attention_op=attention_op,
|
309 |
+
)
|
310 |
+
processor.load_state_dict(self.processor.state_dict())
|
311 |
+
processor.to(self.processor.to_q_lora.up.weight.device)
|
312 |
+
elif is_custom_diffusion:
|
313 |
+
processor = CustomDiffusionXFormersAttnProcessor(
|
314 |
+
train_kv=self.processor.train_kv,
|
315 |
+
train_q_out=self.processor.train_q_out,
|
316 |
+
hidden_size=self.processor.hidden_size,
|
317 |
+
cross_attention_dim=self.processor.cross_attention_dim,
|
318 |
+
attention_op=attention_op,
|
319 |
+
)
|
320 |
+
processor.load_state_dict(self.processor.state_dict())
|
321 |
+
if hasattr(self.processor, "to_k_custom_diffusion"):
|
322 |
+
processor.to(self.processor.to_k_custom_diffusion.weight.device)
|
323 |
+
elif is_added_kv_processor:
|
324 |
+
# TODO(Patrick, Suraj, William) - currently xformers doesn't work for UnCLIP
|
325 |
+
# which uses this type of cross attention ONLY because the attention mask of format
|
326 |
+
# [0, ..., -10.000, ..., 0, ...,] is not supported
|
327 |
+
# throw warning
|
328 |
+
logger.info(
|
329 |
+
"Memory efficient attention with `xformers` might currently not work correctly if an attention mask is required for the attention operation."
|
330 |
+
)
|
331 |
+
processor = XFormersAttnAddedKVProcessor(attention_op=attention_op)
|
332 |
+
else:
|
333 |
+
processor = XFormersAttnProcessor(attention_op=attention_op)
|
334 |
+
else:
|
335 |
+
if is_lora:
|
336 |
+
attn_processor_class = (
|
337 |
+
LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
|
338 |
+
)
|
339 |
+
processor = attn_processor_class(
|
340 |
+
hidden_size=self.processor.hidden_size,
|
341 |
+
cross_attention_dim=self.processor.cross_attention_dim,
|
342 |
+
rank=self.processor.rank,
|
343 |
+
)
|
344 |
+
processor.load_state_dict(self.processor.state_dict())
|
345 |
+
processor.to(self.processor.to_q_lora.up.weight.device)
|
346 |
+
elif is_custom_diffusion:
|
347 |
+
attn_processor_class = (
|
348 |
+
CustomDiffusionAttnProcessor2_0
|
349 |
+
if hasattr(F, "scaled_dot_product_attention")
|
350 |
+
else CustomDiffusionAttnProcessor
|
351 |
+
)
|
352 |
+
processor = attn_processor_class(
|
353 |
+
train_kv=self.processor.train_kv,
|
354 |
+
train_q_out=self.processor.train_q_out,
|
355 |
+
hidden_size=self.processor.hidden_size,
|
356 |
+
cross_attention_dim=self.processor.cross_attention_dim,
|
357 |
+
)
|
358 |
+
processor.load_state_dict(self.processor.state_dict())
|
359 |
+
if hasattr(self.processor, "to_k_custom_diffusion"):
|
360 |
+
processor.to(self.processor.to_k_custom_diffusion.weight.device)
|
361 |
+
else:
|
362 |
+
# set attention processor
|
363 |
+
# We use the AttnProcessor2_0 by default when torch 2.x is used which uses
|
364 |
+
# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
|
365 |
+
# but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
|
366 |
+
processor = (
|
367 |
+
AttnProcessor2_0()
|
368 |
+
if hasattr(F, "scaled_dot_product_attention") and self.scale_qk
|
369 |
+
else AttnProcessor()
|
370 |
+
)
|
371 |
+
|
372 |
+
self.set_processor(processor)
|
373 |
+
|
374 |
+
def set_attention_slice(self, slice_size: int) -> None:
|
375 |
+
r"""
|
376 |
+
Set the slice size for attention computation.
|
377 |
+
|
378 |
+
Args:
|
379 |
+
slice_size (`int`):
|
380 |
+
The slice size for attention computation.
|
381 |
+
"""
|
382 |
+
if slice_size is not None and slice_size > self.sliceable_head_dim:
|
383 |
+
raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.")
|
384 |
+
|
385 |
+
if slice_size is not None and self.added_kv_proj_dim is not None:
|
386 |
+
processor = SlicedAttnAddedKVProcessor(slice_size)
|
387 |
+
elif slice_size is not None:
|
388 |
+
processor = SlicedAttnProcessor(slice_size)
|
389 |
+
elif self.added_kv_proj_dim is not None:
|
390 |
+
processor = AttnAddedKVProcessor()
|
391 |
+
else:
|
392 |
+
# set attention processor
|
393 |
+
# We use the AttnProcessor2_0 by default when torch 2.x is used which uses
|
394 |
+
# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
|
395 |
+
# but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
|
396 |
+
processor = (
|
397 |
+
AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor()
|
398 |
+
)
|
399 |
+
|
400 |
+
self.set_processor(processor)
|
401 |
+
|
402 |
+
def set_processor(self, processor: "AttnProcessor", _remove_lora: bool = False) -> None:
|
403 |
+
r"""
|
404 |
+
Set the attention processor to use.
|
405 |
+
|
406 |
+
Args:
|
407 |
+
processor (`AttnProcessor`):
|
408 |
+
The attention processor to use.
|
409 |
+
_remove_lora (`bool`, *optional*, defaults to `False`):
|
410 |
+
Set to `True` to remove LoRA layers from the model.
|
411 |
+
"""
|
412 |
+
if not USE_PEFT_BACKEND and hasattr(self, "processor") and _remove_lora and self.to_q.lora_layer is not None:
|
413 |
+
deprecate(
|
414 |
+
"set_processor to offload LoRA",
|
415 |
+
"0.26.0",
|
416 |
+
"In detail, removing LoRA layers via calling `set_default_attn_processor` is deprecated. Please make sure to call `pipe.unload_lora_weights()` instead.",
|
417 |
+
)
|
418 |
+
# TODO(Patrick, Sayak) - this can be deprecated once PEFT LoRA integration is complete
|
419 |
+
# We need to remove all LoRA layers
|
420 |
+
# Don't forget to remove ALL `_remove_lora` from the codebase
|
421 |
+
for module in self.modules():
|
422 |
+
if hasattr(module, "set_lora_layer"):
|
423 |
+
module.set_lora_layer(None)
|
424 |
+
|
425 |
+
# if current processor is in `self._modules` and if passed `processor` is not, we need to
|
426 |
+
# pop `processor` from `self._modules`
|
427 |
+
if (
|
428 |
+
hasattr(self, "processor")
|
429 |
+
and isinstance(self.processor, torch.nn.Module)
|
430 |
+
and not isinstance(processor, torch.nn.Module)
|
431 |
+
):
|
432 |
+
logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}")
|
433 |
+
self._modules.pop("processor")
|
434 |
+
|
435 |
+
self.processor = processor
|
436 |
+
|
437 |
+
def get_processor(self, return_deprecated_lora: bool = False):
|
438 |
+
r"""
|
439 |
+
Get the attention processor in use.
|
440 |
+
|
441 |
+
Args:
|
442 |
+
return_deprecated_lora (`bool`, *optional*, defaults to `False`):
|
443 |
+
Set to `True` to return the deprecated LoRA attention processor.
|
444 |
+
|
445 |
+
Returns:
|
446 |
+
"AttentionProcessor": The attention processor in use.
|
447 |
+
"""
|
448 |
+
if not return_deprecated_lora:
|
449 |
+
return self.processor
|
450 |
+
|
451 |
+
# TODO(Sayak, Patrick). The rest of the function is needed to ensure backwards compatible
|
452 |
+
# serialization format for LoRA Attention Processors. It should be deleted once the integration
|
453 |
+
# with PEFT is completed.
|
454 |
+
is_lora_activated = {
|
455 |
+
name: module.lora_layer is not None
|
456 |
+
for name, module in self.named_modules()
|
457 |
+
if hasattr(module, "lora_layer")
|
458 |
+
}
|
459 |
+
|
460 |
+
# 1. if no layer has a LoRA activated we can return the processor as usual
|
461 |
+
if not any(is_lora_activated.values()):
|
462 |
+
return self.processor
|
463 |
+
|
464 |
+
# If doesn't apply LoRA do `add_k_proj` or `add_v_proj`
|
465 |
+
is_lora_activated.pop("add_k_proj", None)
|
466 |
+
is_lora_activated.pop("add_v_proj", None)
|
467 |
+
# 2. else it is not posssible that only some layers have LoRA activated
|
468 |
+
if not all(is_lora_activated.values()):
|
469 |
+
raise ValueError(
|
470 |
+
f"Make sure that either all layers or no layers have LoRA activated, but have {is_lora_activated}"
|
471 |
+
)
|
472 |
+
|
473 |
+
# 3. And we need to merge the current LoRA layers into the corresponding LoRA attention processor
|
474 |
+
non_lora_processor_cls_name = self.processor.__class__.__name__
|
475 |
+
lora_processor_cls = getattr(import_module(__name__), "LoRA" + non_lora_processor_cls_name)
|
476 |
+
|
477 |
+
hidden_size = self.inner_dim
|
478 |
+
|
479 |
+
# now create a LoRA attention processor from the LoRA layers
|
480 |
+
if lora_processor_cls in [LoRAAttnProcessor, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor]:
|
481 |
+
kwargs = {
|
482 |
+
"cross_attention_dim": self.cross_attention_dim,
|
483 |
+
"rank": self.to_q.lora_layer.rank,
|
484 |
+
"network_alpha": self.to_q.lora_layer.network_alpha,
|
485 |
+
"q_rank": self.to_q.lora_layer.rank,
|
486 |
+
"q_hidden_size": self.to_q.lora_layer.out_features,
|
487 |
+
"k_rank": self.to_k.lora_layer.rank,
|
488 |
+
"k_hidden_size": self.to_k.lora_layer.out_features,
|
489 |
+
"v_rank": self.to_v.lora_layer.rank,
|
490 |
+
"v_hidden_size": self.to_v.lora_layer.out_features,
|
491 |
+
"out_rank": self.to_out[0].lora_layer.rank,
|
492 |
+
"out_hidden_size": self.to_out[0].lora_layer.out_features,
|
493 |
+
}
|
494 |
+
|
495 |
+
if hasattr(self.processor, "attention_op"):
|
496 |
+
kwargs["attention_op"] = self.processor.attention_op
|
497 |
+
|
498 |
+
lora_processor = lora_processor_cls(hidden_size, **kwargs)
|
499 |
+
lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict())
|
500 |
+
lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict())
|
501 |
+
lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict())
|
502 |
+
lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict())
|
503 |
+
elif lora_processor_cls == LoRAAttnAddedKVProcessor:
|
504 |
+
lora_processor = lora_processor_cls(
|
505 |
+
hidden_size,
|
506 |
+
cross_attention_dim=self.add_k_proj.weight.shape[0],
|
507 |
+
rank=self.to_q.lora_layer.rank,
|
508 |
+
network_alpha=self.to_q.lora_layer.network_alpha,
|
509 |
+
)
|
510 |
+
lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict())
|
511 |
+
lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict())
|
512 |
+
lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict())
|
513 |
+
lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict())
|
514 |
+
|
515 |
+
# only save if used
|
516 |
+
if self.add_k_proj.lora_layer is not None:
|
517 |
+
lora_processor.add_k_proj_lora.load_state_dict(self.add_k_proj.lora_layer.state_dict())
|
518 |
+
lora_processor.add_v_proj_lora.load_state_dict(self.add_v_proj.lora_layer.state_dict())
|
519 |
+
else:
|
520 |
+
lora_processor.add_k_proj_lora = None
|
521 |
+
lora_processor.add_v_proj_lora = None
|
522 |
+
else:
|
523 |
+
raise ValueError(f"{lora_processor_cls} does not exist.")
|
524 |
+
|
525 |
+
return lora_processor
|
526 |
+
|
527 |
+
def forward(
|
528 |
+
self,
|
529 |
+
hidden_states: torch.FloatTensor,
|
530 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
531 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
532 |
+
**cross_attention_kwargs,
|
533 |
+
) -> torch.Tensor:
|
534 |
+
r"""
|
535 |
+
The forward method of the `Attention` class.
|
536 |
+
|
537 |
+
Args:
|
538 |
+
hidden_states (`torch.Tensor`):
|
539 |
+
The hidden states of the query.
|
540 |
+
encoder_hidden_states (`torch.Tensor`, *optional*):
|
541 |
+
The hidden states of the encoder.
|
542 |
+
attention_mask (`torch.Tensor`, *optional*):
|
543 |
+
The attention mask to use. If `None`, no mask is applied.
|
544 |
+
**cross_attention_kwargs:
|
545 |
+
Additional keyword arguments to pass along to the cross attention.
|
546 |
+
|
547 |
+
Returns:
|
548 |
+
`torch.Tensor`: The output of the attention layer.
|
549 |
+
"""
|
550 |
+
# The `Attention` class can call different attention processors / attention functions
|
551 |
+
# here we simply pass along all tensors to the selected processor class
|
552 |
+
# For standard processors that are defined here, `**cross_attention_kwargs` is empty
|
553 |
+
return self.processor(
|
554 |
+
self,
|
555 |
+
hidden_states,
|
556 |
+
encoder_hidden_states=encoder_hidden_states,
|
557 |
+
attention_mask=attention_mask,
|
558 |
+
**cross_attention_kwargs,
|
559 |
+
)
|
560 |
+
|
561 |
+
def batch_to_head_dim(self, tensor: torch.Tensor) -> torch.Tensor:
|
562 |
+
r"""
|
563 |
+
Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size // heads, seq_len, dim * heads]`. `heads`
|
564 |
+
is the number of heads initialized while constructing the `Attention` class.
|
565 |
+
|
566 |
+
Args:
|
567 |
+
tensor (`torch.Tensor`): The tensor to reshape.
|
568 |
+
|
569 |
+
Returns:
|
570 |
+
`torch.Tensor`: The reshaped tensor.
|
571 |
+
"""
|
572 |
+
head_size = self.heads
|
573 |
+
batch_size, seq_len, dim = tensor.shape
|
574 |
+
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
|
575 |
+
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
|
576 |
+
return tensor
|
577 |
+
|
578 |
+
def head_to_batch_dim(self, tensor: torch.Tensor, out_dim: int = 3) -> torch.Tensor:
|
579 |
+
r"""
|
580 |
+
Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size, seq_len, heads, dim // heads]` `heads` is
|
581 |
+
the number of heads initialized while constructing the `Attention` class.
|
582 |
+
|
583 |
+
Args:
|
584 |
+
tensor (`torch.Tensor`): The tensor to reshape.
|
585 |
+
out_dim (`int`, *optional*, defaults to `3`): The output dimension of the tensor. If `3`, the tensor is
|
586 |
+
reshaped to `[batch_size * heads, seq_len, dim // heads]`.
|
587 |
+
|
588 |
+
Returns:
|
589 |
+
`torch.Tensor`: The reshaped tensor.
|
590 |
+
"""
|
591 |
+
head_size = self.heads
|
592 |
+
batch_size, seq_len, dim = tensor.shape
|
593 |
+
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
|
594 |
+
tensor = tensor.permute(0, 2, 1, 3)
|
595 |
+
|
596 |
+
if out_dim == 3:
|
597 |
+
tensor = tensor.reshape(batch_size * head_size, seq_len, dim // head_size)
|
598 |
+
|
599 |
+
return tensor
|
600 |
+
|
601 |
+
def get_attention_scores(
|
602 |
+
self, query: torch.Tensor, key: torch.Tensor, attention_mask: torch.Tensor = None
|
603 |
+
) -> torch.Tensor:
|
604 |
+
r"""
|
605 |
+
Compute the attention scores.
|
606 |
+
|
607 |
+
Args:
|
608 |
+
query (`torch.Tensor`): The query tensor.
|
609 |
+
key (`torch.Tensor`): The key tensor.
|
610 |
+
attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied.
|
611 |
+
|
612 |
+
Returns:
|
613 |
+
`torch.Tensor`: The attention probabilities/scores.
|
614 |
+
"""
|
615 |
+
dtype = query.dtype
|
616 |
+
if self.upcast_attention:
|
617 |
+
query = query.float()
|
618 |
+
key = key.float()
|
619 |
+
|
620 |
+
if attention_mask is None:
|
621 |
+
baddbmm_input = torch.empty(
|
622 |
+
query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device
|
623 |
+
)
|
624 |
+
beta = 0
|
625 |
+
else:
|
626 |
+
baddbmm_input = attention_mask
|
627 |
+
beta = 1
|
628 |
+
|
629 |
+
attention_scores = torch.baddbmm(
|
630 |
+
baddbmm_input,
|
631 |
+
query,
|
632 |
+
key.transpose(-1, -2),
|
633 |
+
beta=beta,
|
634 |
+
alpha=self.scale,
|
635 |
+
)
|
636 |
+
del baddbmm_input
|
637 |
+
|
638 |
+
if self.upcast_softmax:
|
639 |
+
attention_scores = attention_scores.float()
|
640 |
+
|
641 |
+
attention_probs = attention_scores.softmax(dim=-1)
|
642 |
+
del attention_scores
|
643 |
+
|
644 |
+
attention_probs = attention_probs.to(dtype)
|
645 |
+
|
646 |
+
return attention_probs
|
647 |
+
|
648 |
+
def prepare_attention_mask(
|
649 |
+
self, attention_mask: torch.Tensor, target_length: int, batch_size: int, out_dim: int = 3, head_size = None,
|
650 |
+
) -> torch.Tensor:
|
651 |
+
r"""
|
652 |
+
Prepare the attention mask for the attention computation.
|
653 |
+
|
654 |
+
Args:
|
655 |
+
attention_mask (`torch.Tensor`):
|
656 |
+
The attention mask to prepare.
|
657 |
+
target_length (`int`):
|
658 |
+
The target length of the attention mask. This is the length of the attention mask after padding.
|
659 |
+
batch_size (`int`):
|
660 |
+
The batch size, which is used to repeat the attention mask.
|
661 |
+
out_dim (`int`, *optional*, defaults to `3`):
|
662 |
+
The output dimension of the attention mask. Can be either `3` or `4`.
|
663 |
+
|
664 |
+
Returns:
|
665 |
+
`torch.Tensor`: The prepared attention mask.
|
666 |
+
"""
|
667 |
+
head_size = head_size if head_size is not None else self.heads
|
668 |
+
if attention_mask is None:
|
669 |
+
return attention_mask
|
670 |
+
|
671 |
+
current_length: int = attention_mask.shape[-1]
|
672 |
+
if current_length != target_length:
|
673 |
+
if attention_mask.device.type == "mps":
|
674 |
+
# HACK: MPS: Does not support padding by greater than dimension of input tensor.
|
675 |
+
# Instead, we can manually construct the padding tensor.
|
676 |
+
padding_shape = (attention_mask.shape[0], attention_mask.shape[1], target_length)
|
677 |
+
padding = torch.zeros(padding_shape, dtype=attention_mask.dtype, device=attention_mask.device)
|
678 |
+
attention_mask = torch.cat([attention_mask, padding], dim=2)
|
679 |
+
else:
|
680 |
+
# TODO: for pipelines such as stable-diffusion, padding cross-attn mask:
|
681 |
+
# we want to instead pad by (0, remaining_length), where remaining_length is:
|
682 |
+
# remaining_length: int = target_length - current_length
|
683 |
+
# TODO: re-enable tests/models/test_models_unet_2d_condition.py#test_model_xattn_padding
|
684 |
+
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
|
685 |
+
|
686 |
+
if out_dim == 3:
|
687 |
+
if attention_mask.shape[0] < batch_size * head_size:
|
688 |
+
attention_mask = attention_mask.repeat_interleave(head_size, dim=0)
|
689 |
+
elif out_dim == 4:
|
690 |
+
attention_mask = attention_mask.unsqueeze(1)
|
691 |
+
attention_mask = attention_mask.repeat_interleave(head_size, dim=1)
|
692 |
+
|
693 |
+
return attention_mask
|
694 |
+
|
695 |
+
def norm_encoder_hidden_states(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
|
696 |
+
r"""
|
697 |
+
Normalize the encoder hidden states. Requires `self.norm_cross` to be specified when constructing the
|
698 |
+
`Attention` class.
|
699 |
+
|
700 |
+
Args:
|
701 |
+
encoder_hidden_states (`torch.Tensor`): Hidden states of the encoder.
|
702 |
+
|
703 |
+
Returns:
|
704 |
+
`torch.Tensor`: The normalized encoder hidden states.
|
705 |
+
"""
|
706 |
+
assert self.norm_cross is not None, "self.norm_cross must be defined to call self.norm_encoder_hidden_states"
|
707 |
+
|
708 |
+
if isinstance(self.norm_cross, nn.LayerNorm):
|
709 |
+
encoder_hidden_states = self.norm_cross(encoder_hidden_states)
|
710 |
+
elif isinstance(self.norm_cross, nn.GroupNorm):
|
711 |
+
# Group norm norms along the channels dimension and expects
|
712 |
+
# input to be in the shape of (N, C, *). In this case, we want
|
713 |
+
# to norm along the hidden dimension, so we need to move
|
714 |
+
# (batch_size, sequence_length, hidden_size) ->
|
715 |
+
# (batch_size, hidden_size, sequence_length)
|
716 |
+
encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
|
717 |
+
encoder_hidden_states = self.norm_cross(encoder_hidden_states)
|
718 |
+
encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
|
719 |
+
else:
|
720 |
+
assert False
|
721 |
+
|
722 |
+
return encoder_hidden_states
|
723 |
+
|
724 |
+
def _init_compress(self):
|
725 |
+
self.sr.bias.data.zero_()
|
726 |
+
self.norm = nn.LayerNorm(self.inner_dim)
|
727 |
+
|
728 |
+
|
729 |
+
class AttnProcessor2_0(nn.Module):
|
730 |
+
r"""
|
731 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
732 |
+
"""
|
733 |
+
|
734 |
+
def __init__(self, attention_mode="xformers", use_rope=False, interpolation_scale_thw=None):
|
735 |
+
super().__init__()
|
736 |
+
self.attention_mode = attention_mode
|
737 |
+
self.use_rope = use_rope
|
738 |
+
self.interpolation_scale_thw = interpolation_scale_thw
|
739 |
+
|
740 |
+
if self.use_rope:
|
741 |
+
self._init_rope(interpolation_scale_thw)
|
742 |
+
|
743 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
744 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
745 |
+
|
746 |
+
def _init_rope(self, interpolation_scale_thw):
|
747 |
+
self.rope = RoPE3D(interpolation_scale_thw=interpolation_scale_thw)
|
748 |
+
self.position_getter = PositionGetter3D()
|
749 |
+
|
750 |
+
def __call__(
|
751 |
+
self,
|
752 |
+
attn: Attention,
|
753 |
+
hidden_states: torch.FloatTensor,
|
754 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
755 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
756 |
+
temb: Optional[torch.FloatTensor] = None,
|
757 |
+
frame: int = 8,
|
758 |
+
height: int = 16,
|
759 |
+
width: int = 16,
|
760 |
+
) -> torch.FloatTensor:
|
761 |
+
|
762 |
+
residual = hidden_states
|
763 |
+
|
764 |
+
if attn.spatial_norm is not None:
|
765 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
766 |
+
|
767 |
+
input_ndim = hidden_states.ndim
|
768 |
+
|
769 |
+
if input_ndim == 4:
|
770 |
+
batch_size, channel, height, width = hidden_states.shape
|
771 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
772 |
+
|
773 |
+
|
774 |
+
batch_size, sequence_length, _ = (
|
775 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
776 |
+
)
|
777 |
+
|
778 |
+
if attention_mask is not None and self.attention_mode == 'xformers':
|
779 |
+
attention_heads = attn.heads
|
780 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size, head_size=attention_heads)
|
781 |
+
attention_mask = attention_mask.view(batch_size, attention_heads, -1, attention_mask.shape[-1])
|
782 |
+
else:
|
783 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
784 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
785 |
+
# (batch, heads, source_length, target_length)
|
786 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
787 |
+
|
788 |
+
if attn.group_norm is not None:
|
789 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
790 |
+
|
791 |
+
query = attn.to_q(hidden_states)
|
792 |
+
|
793 |
+
if encoder_hidden_states is None:
|
794 |
+
encoder_hidden_states = hidden_states
|
795 |
+
elif attn.norm_cross:
|
796 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
797 |
+
|
798 |
+
key = attn.to_k(encoder_hidden_states)
|
799 |
+
value = attn.to_v(encoder_hidden_states)
|
800 |
+
|
801 |
+
|
802 |
+
|
803 |
+
attn_heads = attn.heads
|
804 |
+
|
805 |
+
inner_dim = key.shape[-1]
|
806 |
+
head_dim = inner_dim // attn_heads
|
807 |
+
|
808 |
+
query = query.view(batch_size, -1, attn_heads, head_dim).transpose(1, 2)
|
809 |
+
key = key.view(batch_size, -1, attn_heads, head_dim).transpose(1, 2)
|
810 |
+
value = value.view(batch_size, -1, attn_heads, head_dim).transpose(1, 2)
|
811 |
+
|
812 |
+
|
813 |
+
if self.use_rope:
|
814 |
+
# require the shape of (batch_size x nheads x ntokens x dim)
|
815 |
+
pos_thw = self.position_getter(batch_size, t=frame, h=height, w=width, device=query.device)
|
816 |
+
query = self.rope(query, pos_thw)
|
817 |
+
key = self.rope(key, pos_thw)
|
818 |
+
|
819 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
820 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
821 |
+
if self.attention_mode == 'flash':
|
822 |
+
# assert attention_mask is None, 'flash-attn do not support attention_mask'
|
823 |
+
with sdpa_kernel(SDPBackend.FLASH_ATTENTION):
|
824 |
+
hidden_states = F.scaled_dot_product_attention(
|
825 |
+
query, key, value, dropout_p=0.0, is_causal=False
|
826 |
+
)
|
827 |
+
elif self.attention_mode == 'xformers':
|
828 |
+
with sdpa_kernel(SDPBackend.EFFICIENT_ATTENTION):
|
829 |
+
hidden_states = F.scaled_dot_product_attention(
|
830 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
831 |
+
)
|
832 |
+
|
833 |
+
|
834 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn_heads * head_dim)
|
835 |
+
hidden_states = hidden_states.to(query.dtype)
|
836 |
+
|
837 |
+
# linear proj
|
838 |
+
hidden_states = attn.to_out[0](hidden_states)
|
839 |
+
# dropout
|
840 |
+
hidden_states = attn.to_out[1](hidden_states)
|
841 |
+
|
842 |
+
if input_ndim == 4:
|
843 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
844 |
+
|
845 |
+
if attn.residual_connection:
|
846 |
+
hidden_states = hidden_states + residual
|
847 |
+
|
848 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
849 |
+
|
850 |
+
return hidden_states
|
851 |
+
|
852 |
+
class FeedForward(nn.Module):
|
853 |
+
r"""
|
854 |
+
A feed-forward layer.
|
855 |
+
|
856 |
+
Parameters:
|
857 |
+
dim (`int`): The number of channels in the input.
|
858 |
+
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
|
859 |
+
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
|
860 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
861 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
862 |
+
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
|
863 |
+
"""
|
864 |
+
|
865 |
+
def __init__(
|
866 |
+
self,
|
867 |
+
dim: int,
|
868 |
+
dim_out: Optional[int] = None,
|
869 |
+
mult: int = 4,
|
870 |
+
dropout: float = 0.0,
|
871 |
+
activation_fn: str = "geglu",
|
872 |
+
final_dropout: bool = False,
|
873 |
+
):
|
874 |
+
super().__init__()
|
875 |
+
inner_dim = int(dim * mult)
|
876 |
+
dim_out = dim_out if dim_out is not None else dim
|
877 |
+
linear_cls = nn.Linear
|
878 |
+
|
879 |
+
if activation_fn == "gelu":
|
880 |
+
act_fn = GELU(dim, inner_dim)
|
881 |
+
if activation_fn == "gelu-approximate":
|
882 |
+
act_fn = GELU(dim, inner_dim, approximate="tanh")
|
883 |
+
elif activation_fn == "geglu":
|
884 |
+
act_fn = GEGLU(dim, inner_dim)
|
885 |
+
elif activation_fn == "geglu-approximate":
|
886 |
+
act_fn = ApproximateGELU(dim, inner_dim)
|
887 |
+
|
888 |
+
self.net = nn.ModuleList([])
|
889 |
+
# project in
|
890 |
+
self.net.append(act_fn)
|
891 |
+
# project dropout
|
892 |
+
self.net.append(nn.Dropout(dropout))
|
893 |
+
# project out
|
894 |
+
self.net.append(linear_cls(inner_dim, dim_out))
|
895 |
+
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
|
896 |
+
if final_dropout:
|
897 |
+
self.net.append(nn.Dropout(dropout))
|
898 |
+
|
899 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
900 |
+
for module in self.net:
|
901 |
+
hidden_states = module(hidden_states)
|
902 |
+
return hidden_states
|
903 |
+
|
904 |
+
|
905 |
+
@maybe_allow_in_graph
|
906 |
+
class BasicTransformerBlock(nn.Module):
|
907 |
+
r"""
|
908 |
+
A basic Transformer block.
|
909 |
+
|
910 |
+
Parameters:
|
911 |
+
dim (`int`): The number of channels in the input and output.
|
912 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
913 |
+
attention_head_dim (`int`): The number of channels in each head.
|
914 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
915 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
916 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
917 |
+
num_embeds_ada_norm (:
|
918 |
+
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
919 |
+
attention_bias (:
|
920 |
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
921 |
+
only_cross_attention (`bool`, *optional*):
|
922 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
923 |
+
double_self_attention (`bool`, *optional*):
|
924 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
925 |
+
upcast_attention (`bool`, *optional*):
|
926 |
+
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
|
927 |
+
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
|
928 |
+
Whether to use learnable elementwise affine parameters for normalization.
|
929 |
+
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
|
930 |
+
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
|
931 |
+
final_dropout (`bool` *optional*, defaults to False):
|
932 |
+
Whether to apply a final dropout after the last feed-forward layer.
|
933 |
+
positional_embeddings (`str`, *optional*, defaults to `None`):
|
934 |
+
The type of positional embeddings to apply to.
|
935 |
+
num_positional_embeddings (`int`, *optional*, defaults to `None`):
|
936 |
+
The maximum number of positional embeddings to apply.
|
937 |
+
"""
|
938 |
+
|
939 |
+
def __init__(
|
940 |
+
self,
|
941 |
+
dim: int,
|
942 |
+
num_attention_heads: int,
|
943 |
+
attention_head_dim: int,
|
944 |
+
dropout=0.0,
|
945 |
+
cross_attention_dim: Optional[int] = None,
|
946 |
+
activation_fn: str = "geglu",
|
947 |
+
num_embeds_ada_norm: Optional[int] = None,
|
948 |
+
attention_bias: bool = False,
|
949 |
+
only_cross_attention: bool = False,
|
950 |
+
double_self_attention: bool = False,
|
951 |
+
upcast_attention: bool = False,
|
952 |
+
norm_elementwise_affine: bool = True,
|
953 |
+
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single'
|
954 |
+
norm_eps: float = 1e-5,
|
955 |
+
final_dropout: bool = False,
|
956 |
+
positional_embeddings: Optional[str] = None,
|
957 |
+
num_positional_embeddings: Optional[int] = None,
|
958 |
+
sa_attention_mode: str = "flash",
|
959 |
+
ca_attention_mode: str = "xformers",
|
960 |
+
use_rope: bool = False,
|
961 |
+
interpolation_scale_thw: Tuple[int] = (1, 1, 1),
|
962 |
+
block_idx: Optional[int] = None,
|
963 |
+
):
|
964 |
+
super().__init__()
|
965 |
+
self.only_cross_attention = only_cross_attention
|
966 |
+
|
967 |
+
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
968 |
+
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
969 |
+
self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
|
970 |
+
self.use_layer_norm = norm_type == "layer_norm"
|
971 |
+
|
972 |
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
973 |
+
raise ValueError(
|
974 |
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
975 |
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
976 |
+
)
|
977 |
+
|
978 |
+
if positional_embeddings and (num_positional_embeddings is None):
|
979 |
+
raise ValueError(
|
980 |
+
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
|
981 |
+
)
|
982 |
+
|
983 |
+
if positional_embeddings == "sinusoidal":
|
984 |
+
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
|
985 |
+
else:
|
986 |
+
self.pos_embed = None
|
987 |
+
|
988 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
989 |
+
# 1. Self-Attn
|
990 |
+
if self.use_ada_layer_norm:
|
991 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
992 |
+
elif self.use_ada_layer_norm_zero:
|
993 |
+
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
994 |
+
else:
|
995 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
996 |
+
|
997 |
+
self.attn1 = Attention(
|
998 |
+
query_dim=dim,
|
999 |
+
heads=num_attention_heads,
|
1000 |
+
dim_head=attention_head_dim,
|
1001 |
+
dropout=dropout,
|
1002 |
+
bias=attention_bias,
|
1003 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
1004 |
+
upcast_attention=upcast_attention,
|
1005 |
+
attention_mode=sa_attention_mode,
|
1006 |
+
use_rope=use_rope,
|
1007 |
+
interpolation_scale_thw=interpolation_scale_thw,
|
1008 |
+
)
|
1009 |
+
|
1010 |
+
# 2. Cross-Attn
|
1011 |
+
if cross_attention_dim is not None or double_self_attention:
|
1012 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
1013 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
1014 |
+
# the second cross attention block.
|
1015 |
+
self.norm2 = (
|
1016 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
1017 |
+
if self.use_ada_layer_norm
|
1018 |
+
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
1019 |
+
)
|
1020 |
+
self.attn2 = Attention(
|
1021 |
+
query_dim=dim,
|
1022 |
+
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
1023 |
+
heads=num_attention_heads,
|
1024 |
+
dim_head=attention_head_dim,
|
1025 |
+
dropout=dropout,
|
1026 |
+
bias=attention_bias,
|
1027 |
+
upcast_attention=upcast_attention,
|
1028 |
+
attention_mode=ca_attention_mode, # only xformers support attention_mask
|
1029 |
+
use_rope=False, # do not position in cross attention
|
1030 |
+
interpolation_scale_thw=interpolation_scale_thw,
|
1031 |
+
) # is self-attn if encoder_hidden_states is none
|
1032 |
+
else:
|
1033 |
+
self.norm2 = None
|
1034 |
+
self.attn2 = None
|
1035 |
+
|
1036 |
+
# 3. Feed-forward
|
1037 |
+
|
1038 |
+
if not self.use_ada_layer_norm_single:
|
1039 |
+
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
1040 |
+
|
1041 |
+
self.ff = FeedForward(
|
1042 |
+
dim,
|
1043 |
+
dropout=dropout,
|
1044 |
+
activation_fn=activation_fn,
|
1045 |
+
final_dropout=final_dropout,
|
1046 |
+
)
|
1047 |
+
|
1048 |
+
# 5. Scale-shift for PixArt-Alpha.
|
1049 |
+
if self.use_ada_layer_norm_single:
|
1050 |
+
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
|
1051 |
+
|
1052 |
+
|
1053 |
+
def forward(
|
1054 |
+
self,
|
1055 |
+
hidden_states: torch.FloatTensor,
|
1056 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1057 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
1058 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
1059 |
+
timestep: Optional[torch.LongTensor] = None,
|
1060 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
1061 |
+
class_labels: Optional[torch.LongTensor] = None,
|
1062 |
+
frame: int = None,
|
1063 |
+
height: int = None,
|
1064 |
+
width: int = None,
|
1065 |
+
) -> torch.FloatTensor:
|
1066 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
1067 |
+
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
|
1068 |
+
|
1069 |
+
# 0. Self-Attention
|
1070 |
+
batch_size = hidden_states.shape[0]
|
1071 |
+
|
1072 |
+
if self.use_ada_layer_norm:
|
1073 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
1074 |
+
elif self.use_ada_layer_norm_zero:
|
1075 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
1076 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
1077 |
+
)
|
1078 |
+
elif self.use_layer_norm:
|
1079 |
+
norm_hidden_states = self.norm1(hidden_states)
|
1080 |
+
elif self.use_ada_layer_norm_single:
|
1081 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
1082 |
+
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
|
1083 |
+
).chunk(6, dim=1)
|
1084 |
+
norm_hidden_states = self.norm1(hidden_states)
|
1085 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
1086 |
+
norm_hidden_states = norm_hidden_states.squeeze(1)
|
1087 |
+
else:
|
1088 |
+
raise ValueError("Incorrect norm used")
|
1089 |
+
|
1090 |
+
if self.pos_embed is not None:
|
1091 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
1092 |
+
|
1093 |
+
attn_output = self.attn1(
|
1094 |
+
norm_hidden_states,
|
1095 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
1096 |
+
attention_mask=attention_mask,
|
1097 |
+
frame=frame,
|
1098 |
+
height=height,
|
1099 |
+
width=width,
|
1100 |
+
**cross_attention_kwargs,
|
1101 |
+
)
|
1102 |
+
if self.use_ada_layer_norm_zero:
|
1103 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
1104 |
+
elif self.use_ada_layer_norm_single:
|
1105 |
+
attn_output = gate_msa * attn_output
|
1106 |
+
|
1107 |
+
hidden_states = attn_output + hidden_states
|
1108 |
+
if hidden_states.ndim == 4:
|
1109 |
+
hidden_states = hidden_states.squeeze(1)
|
1110 |
+
|
1111 |
+
# 1. Cross-Attention
|
1112 |
+
if self.attn2 is not None:
|
1113 |
+
|
1114 |
+
if self.use_ada_layer_norm:
|
1115 |
+
norm_hidden_states = self.norm2(hidden_states, timestep)
|
1116 |
+
elif self.use_ada_layer_norm_zero or self.use_layer_norm:
|
1117 |
+
norm_hidden_states = self.norm2(hidden_states)
|
1118 |
+
elif self.use_ada_layer_norm_single:
|
1119 |
+
# For PixArt norm2 isn't applied here:
|
1120 |
+
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
|
1121 |
+
norm_hidden_states = hidden_states
|
1122 |
+
else:
|
1123 |
+
raise ValueError("Incorrect norm")
|
1124 |
+
|
1125 |
+
if self.pos_embed is not None and self.use_ada_layer_norm_single is False:
|
1126 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
1127 |
+
|
1128 |
+
attn_output = self.attn2(
|
1129 |
+
norm_hidden_states,
|
1130 |
+
encoder_hidden_states=encoder_hidden_states,
|
1131 |
+
attention_mask=encoder_attention_mask,
|
1132 |
+
**cross_attention_kwargs,
|
1133 |
+
)
|
1134 |
+
hidden_states = attn_output + hidden_states
|
1135 |
+
|
1136 |
+
|
1137 |
+
# 2. Feed-forward
|
1138 |
+
if not self.use_ada_layer_norm_single:
|
1139 |
+
norm_hidden_states = self.norm3(hidden_states)
|
1140 |
+
|
1141 |
+
if self.use_ada_layer_norm_zero:
|
1142 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
1143 |
+
|
1144 |
+
if self.use_ada_layer_norm_single:
|
1145 |
+
norm_hidden_states = self.norm2(hidden_states)
|
1146 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
1147 |
+
|
1148 |
+
ff_output = self.ff(norm_hidden_states)
|
1149 |
+
|
1150 |
+
if self.use_ada_layer_norm_zero:
|
1151 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
1152 |
+
elif self.use_ada_layer_norm_single:
|
1153 |
+
ff_output = gate_mlp * ff_output
|
1154 |
+
|
1155 |
+
|
1156 |
+
hidden_states = ff_output + hidden_states
|
1157 |
+
if hidden_states.ndim == 4:
|
1158 |
+
hidden_states = hidden_states.squeeze(1)
|
1159 |
+
|
1160 |
+
return hidden_states
|
1161 |
+
|
1162 |
+
|
1163 |
+
class AdaLayerNormSingle(nn.Module):
|
1164 |
+
r"""
|
1165 |
+
Norm layer adaptive layer norm single (adaLN-single).
|
1166 |
+
|
1167 |
+
As proposed in PixArt-Alpha (see: https://arxiv.org/abs/2310.00426; Section 2.3).
|
1168 |
+
|
1169 |
+
Parameters:
|
1170 |
+
embedding_dim (`int`): The size of each embedding vector.
|
1171 |
+
use_additional_conditions (`bool`): To use additional conditions for normalization or not.
|
1172 |
+
"""
|
1173 |
+
|
1174 |
+
def __init__(self, embedding_dim: int, use_additional_conditions: bool = False):
|
1175 |
+
super().__init__()
|
1176 |
+
|
1177 |
+
self.emb = CombinedTimestepSizeEmbeddings(
|
1178 |
+
embedding_dim, size_emb_dim=embedding_dim // 3, use_additional_conditions=use_additional_conditions
|
1179 |
+
)
|
1180 |
+
|
1181 |
+
self.silu = nn.SiLU()
|
1182 |
+
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True)
|
1183 |
+
|
1184 |
+
def forward(
|
1185 |
+
self,
|
1186 |
+
timestep: torch.Tensor,
|
1187 |
+
added_cond_kwargs: Dict[str, torch.Tensor] = None,
|
1188 |
+
batch_size: int = None,
|
1189 |
+
hidden_dtype: Optional[torch.dtype] = None,
|
1190 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
1191 |
+
# No modulation happening here.
|
1192 |
+
embedded_timestep = self.emb(
|
1193 |
+
timestep, batch_size=batch_size, hidden_dtype=hidden_dtype, resolution=None, aspect_ratio=None
|
1194 |
+
)
|
1195 |
+
return self.linear(self.silu(embedded_timestep)), embedded_timestep
|
allegro/models/transformers/embedding.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from Open-Sora-Plan
|
2 |
+
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
# --------------------------------------------------------
|
6 |
+
# References:
|
7 |
+
# Open-Sora-Plan: https://github.com/PKU-YuanGroup/Open-Sora-Plan
|
8 |
+
# --------------------------------------------------------
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import collections
|
12 |
+
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
13 |
+
|
14 |
+
from einops import rearrange
|
15 |
+
from torch import nn
|
16 |
+
|
17 |
+
|
18 |
+
from diffusers.utils import logging
|
19 |
+
|
20 |
+
logger = logging.get_logger(__name__)
|
21 |
+
|
22 |
+
|
23 |
+
class CombinedTimestepSizeEmbeddings(nn.Module):
|
24 |
+
"""
|
25 |
+
For PixArt-Alpha.
|
26 |
+
|
27 |
+
Reference:
|
28 |
+
https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L164C9-L168C29
|
29 |
+
"""
|
30 |
+
|
31 |
+
def __init__(self, embedding_dim, size_emb_dim, use_additional_conditions: bool = False):
|
32 |
+
super().__init__()
|
33 |
+
|
34 |
+
self.outdim = size_emb_dim
|
35 |
+
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
|
36 |
+
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
37 |
+
|
38 |
+
self.use_additional_conditions = use_additional_conditions
|
39 |
+
if use_additional_conditions:
|
40 |
+
self.use_additional_conditions = True
|
41 |
+
self.additional_condition_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
|
42 |
+
self.resolution_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim)
|
43 |
+
self.aspect_ratio_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim)
|
44 |
+
|
45 |
+
def apply_condition(self, size: torch.Tensor, batch_size: int, embedder: nn.Module):
|
46 |
+
if size.ndim == 1:
|
47 |
+
size = size[:, None]
|
48 |
+
|
49 |
+
if size.shape[0] != batch_size:
|
50 |
+
size = size.repeat(batch_size // size.shape[0], 1)
|
51 |
+
if size.shape[0] != batch_size:
|
52 |
+
raise ValueError(f"`batch_size` should be {size.shape[0]} but found {batch_size}.")
|
53 |
+
|
54 |
+
current_batch_size, dims = size.shape[0], size.shape[1]
|
55 |
+
size = size.reshape(-1)
|
56 |
+
size_freq = self.additional_condition_proj(size).to(size.dtype)
|
57 |
+
|
58 |
+
size_emb = embedder(size_freq)
|
59 |
+
size_emb = size_emb.reshape(current_batch_size, dims * self.outdim)
|
60 |
+
return size_emb
|
61 |
+
|
62 |
+
def forward(self, timestep, resolution, aspect_ratio, batch_size, hidden_dtype):
|
63 |
+
timesteps_proj = self.time_proj(timestep)
|
64 |
+
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, D)
|
65 |
+
|
66 |
+
if self.use_additional_conditions:
|
67 |
+
resolution = self.apply_condition(resolution, batch_size=batch_size, embedder=self.resolution_embedder)
|
68 |
+
aspect_ratio = self.apply_condition(
|
69 |
+
aspect_ratio, batch_size=batch_size, embedder=self.aspect_ratio_embedder
|
70 |
+
)
|
71 |
+
conditioning = timesteps_emb + torch.cat([resolution, aspect_ratio], dim=1)
|
72 |
+
else:
|
73 |
+
conditioning = timesteps_emb
|
74 |
+
|
75 |
+
return conditioning
|
76 |
+
|
77 |
+
class PatchEmbed2D(nn.Module):
|
78 |
+
"""2D Image to Patch Embedding"""
|
79 |
+
|
80 |
+
def __init__(
|
81 |
+
self,
|
82 |
+
num_frames=1,
|
83 |
+
height=224,
|
84 |
+
width=224,
|
85 |
+
patch_size_t=1,
|
86 |
+
patch_size=16,
|
87 |
+
in_channels=3,
|
88 |
+
embed_dim=768,
|
89 |
+
layer_norm=False,
|
90 |
+
flatten=True,
|
91 |
+
bias=True,
|
92 |
+
interpolation_scale=(1, 1),
|
93 |
+
interpolation_scale_t=1,
|
94 |
+
use_abs_pos=False,
|
95 |
+
):
|
96 |
+
super().__init__()
|
97 |
+
self.use_abs_pos = use_abs_pos
|
98 |
+
self.flatten = flatten
|
99 |
+
self.layer_norm = layer_norm
|
100 |
+
|
101 |
+
self.proj = nn.Conv2d(
|
102 |
+
in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=(patch_size, patch_size), bias=bias
|
103 |
+
)
|
104 |
+
if layer_norm:
|
105 |
+
self.norm = nn.LayerNorm(embed_dim, elementwise_affine=False, eps=1e-6)
|
106 |
+
else:
|
107 |
+
self.norm = None
|
108 |
+
|
109 |
+
self.patch_size_t = patch_size_t
|
110 |
+
self.patch_size = patch_size
|
111 |
+
|
112 |
+
def forward(self, latent):
|
113 |
+
b, _, _, _, _ = latent.shape
|
114 |
+
video_latent = None
|
115 |
+
|
116 |
+
latent = rearrange(latent, 'b c t h w -> (b t) c h w')
|
117 |
+
|
118 |
+
latent = self.proj(latent)
|
119 |
+
if self.flatten:
|
120 |
+
latent = latent.flatten(2).transpose(1, 2) # BT C H W -> BT N C
|
121 |
+
if self.layer_norm:
|
122 |
+
latent = self.norm(latent)
|
123 |
+
|
124 |
+
latent = rearrange(latent, '(b t) n c -> b (t n) c', b=b)
|
125 |
+
video_latent = latent
|
126 |
+
|
127 |
+
return video_latent
|
128 |
+
|
allegro/models/transformers/rope.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from Diffusers and Open-Sora-Plan
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
from diffusers.utils import logging
|
7 |
+
|
8 |
+
logger = logging.get_logger(__name__)
|
9 |
+
|
10 |
+
|
11 |
+
class PositionGetter3D(object):
|
12 |
+
""" return positions of patches """
|
13 |
+
|
14 |
+
def __init__(self, ):
|
15 |
+
self.cache_positions = {}
|
16 |
+
|
17 |
+
def __call__(self, b, t, h, w, device):
|
18 |
+
if not (b, t,h,w) in self.cache_positions:
|
19 |
+
x = torch.arange(w, device=device)
|
20 |
+
y = torch.arange(h, device=device)
|
21 |
+
z = torch.arange(t, device=device)
|
22 |
+
pos = torch.cartesian_prod(z, y, x)
|
23 |
+
|
24 |
+
pos = pos.reshape(t * h * w, 3).transpose(0, 1).reshape(3, 1, -1).contiguous().expand(3, b, -1).clone()
|
25 |
+
poses = (pos[0].contiguous(), pos[1].contiguous(), pos[2].contiguous())
|
26 |
+
max_poses = (int(poses[0].max()), int(poses[1].max()), int(poses[2].max()))
|
27 |
+
|
28 |
+
self.cache_positions[b, t, h, w] = (poses, max_poses)
|
29 |
+
pos = self.cache_positions[b, t, h, w]
|
30 |
+
|
31 |
+
return pos
|
32 |
+
|
33 |
+
|
34 |
+
class RoPE3D(torch.nn.Module):
|
35 |
+
|
36 |
+
def __init__(self, freq=10000.0, F0=1.0, interpolation_scale_thw=(1, 1, 1)):
|
37 |
+
super().__init__()
|
38 |
+
self.base = freq
|
39 |
+
self.F0 = F0
|
40 |
+
self.interpolation_scale_t = interpolation_scale_thw[0]
|
41 |
+
self.interpolation_scale_h = interpolation_scale_thw[1]
|
42 |
+
self.interpolation_scale_w = interpolation_scale_thw[2]
|
43 |
+
self.cache = {}
|
44 |
+
|
45 |
+
def get_cos_sin(self, D, seq_len, device, dtype, interpolation_scale=1):
|
46 |
+
if (D, seq_len, device, dtype) not in self.cache:
|
47 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, D, 2).float().to(device) / D))
|
48 |
+
t = torch.arange(seq_len, device=device, dtype=inv_freq.dtype) / interpolation_scale
|
49 |
+
freqs = torch.einsum("i,j->ij", t, inv_freq).to(dtype)
|
50 |
+
freqs = torch.cat((freqs, freqs), dim=-1)
|
51 |
+
cos = freqs.cos() # (Seq, Dim)
|
52 |
+
sin = freqs.sin()
|
53 |
+
self.cache[D, seq_len, device, dtype] = (cos, sin)
|
54 |
+
return self.cache[D, seq_len, device, dtype]
|
55 |
+
|
56 |
+
@staticmethod
|
57 |
+
def rotate_half(x):
|
58 |
+
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
|
59 |
+
return torch.cat((-x2, x1), dim=-1)
|
60 |
+
|
61 |
+
def apply_rope1d(self, tokens, pos1d, cos, sin):
|
62 |
+
assert pos1d.ndim == 2
|
63 |
+
|
64 |
+
# for (batch_size x ntokens x nheads x dim)
|
65 |
+
cos = torch.nn.functional.embedding(pos1d, cos)[:, None, :, :]
|
66 |
+
sin = torch.nn.functional.embedding(pos1d, sin)[:, None, :, :]
|
67 |
+
return (tokens * cos) + (self.rotate_half(tokens) * sin)
|
68 |
+
|
69 |
+
def forward(self, tokens, positions):
|
70 |
+
"""
|
71 |
+
input:
|
72 |
+
* tokens: batch_size x nheads x ntokens x dim
|
73 |
+
* positions: batch_size x ntokens x 3 (t, y and x position of each token)
|
74 |
+
output:
|
75 |
+
* tokens after appplying RoPE3D (batch_size x nheads x ntokens x x dim)
|
76 |
+
"""
|
77 |
+
assert tokens.size(3) % 3 == 0, "number of dimensions should be a multiple of three"
|
78 |
+
D = tokens.size(3) // 3
|
79 |
+
poses, max_poses = positions
|
80 |
+
assert len(poses) == 3 and poses[0].ndim == 2# Batch, Seq, 3
|
81 |
+
cos_t, sin_t = self.get_cos_sin(D, max_poses[0] + 1, tokens.device, tokens.dtype, self.interpolation_scale_t)
|
82 |
+
cos_y, sin_y = self.get_cos_sin(D, max_poses[1] + 1, tokens.device, tokens.dtype, self.interpolation_scale_h)
|
83 |
+
cos_x, sin_x = self.get_cos_sin(D, max_poses[2] + 1, tokens.device, tokens.dtype, self.interpolation_scale_w)
|
84 |
+
# split features into three along the feature dimension, and apply rope1d on each half
|
85 |
+
t, y, x = tokens.chunk(3, dim=-1)
|
86 |
+
t = self.apply_rope1d(t, poses[0], cos_t, sin_t)
|
87 |
+
y = self.apply_rope1d(y, poses[1], cos_y, sin_y)
|
88 |
+
x = self.apply_rope1d(x, poses[2], cos_x, sin_x)
|
89 |
+
tokens = torch.cat((t, y, x), dim=-1)
|
90 |
+
return tokens
|
allegro/models/transformers/transformer_3d_allegro.py
ADDED
@@ -0,0 +1,416 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from Open-Sora-Plan
|
2 |
+
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
# --------------------------------------------------------
|
6 |
+
# References:
|
7 |
+
# Open-Sora-Plan: https://github.com/PKU-YuanGroup/Open-Sora-Plan
|
8 |
+
# --------------------------------------------------------
|
9 |
+
|
10 |
+
from dataclasses import dataclass
|
11 |
+
from typing import Any, Dict, Optional
|
12 |
+
|
13 |
+
import torch
|
14 |
+
import torch.nn.functional as F
|
15 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
16 |
+
|
17 |
+
|
18 |
+
from diffusers.models.modeling_utils import ModelMixin
|
19 |
+
|
20 |
+
from diffusers.utils import BaseOutput, is_xformers_available
|
21 |
+
from einops import rearrange
|
22 |
+
from torch import nn
|
23 |
+
from diffusers.models.embeddings import PixArtAlphaTextProjection
|
24 |
+
|
25 |
+
from allegro.models.transformers.block import to_2tuple, BasicTransformerBlock, AdaLayerNormSingle
|
26 |
+
from allegro.models.transformers.embedding import PatchEmbed2D
|
27 |
+
|
28 |
+
from diffusers.utils import logging
|
29 |
+
|
30 |
+
logger = logging.get_logger(__name__)
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class Transformer3DModelOutput(BaseOutput):
|
34 |
+
"""
|
35 |
+
The output of [`Transformer2DModel`].
|
36 |
+
|
37 |
+
Args:
|
38 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
|
39 |
+
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
|
40 |
+
distributions for the unnoised latent pixels.
|
41 |
+
"""
|
42 |
+
|
43 |
+
sample: torch.FloatTensor
|
44 |
+
|
45 |
+
|
46 |
+
class AllegroTransformer3DModel(ModelMixin, ConfigMixin):
|
47 |
+
_supports_gradient_checkpointing = True
|
48 |
+
|
49 |
+
"""
|
50 |
+
A 2D Transformer model for image-like data.
|
51 |
+
|
52 |
+
Parameters:
|
53 |
+
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
54 |
+
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
55 |
+
in_channels (`int`, *optional*):
|
56 |
+
The number of channels in the input and output (specify if the input is **continuous**).
|
57 |
+
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
58 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
59 |
+
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
60 |
+
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
|
61 |
+
This is fixed during training since it is used to learn a number of position embeddings.
|
62 |
+
num_vector_embeds (`int`, *optional*):
|
63 |
+
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
|
64 |
+
Includes the class for the masked latent pixel.
|
65 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
|
66 |
+
num_embeds_ada_norm ( `int`, *optional*):
|
67 |
+
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
|
68 |
+
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
|
69 |
+
added to the hidden states.
|
70 |
+
|
71 |
+
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
|
72 |
+
attention_bias (`bool`, *optional*):
|
73 |
+
Configure if the `TransformerBlocks` attention should contain a bias parameter.
|
74 |
+
"""
|
75 |
+
|
76 |
+
@register_to_config
|
77 |
+
def __init__(
|
78 |
+
self,
|
79 |
+
num_attention_heads: int = 16,
|
80 |
+
attention_head_dim: int = 88,
|
81 |
+
in_channels: Optional[int] = None,
|
82 |
+
out_channels: Optional[int] = None,
|
83 |
+
num_layers: int = 1,
|
84 |
+
dropout: float = 0.0,
|
85 |
+
cross_attention_dim: Optional[int] = None,
|
86 |
+
attention_bias: bool = False,
|
87 |
+
sample_size: Optional[int] = None,
|
88 |
+
sample_size_t: Optional[int] = None,
|
89 |
+
patch_size: Optional[int] = None,
|
90 |
+
patch_size_t: Optional[int] = None,
|
91 |
+
activation_fn: str = "geglu",
|
92 |
+
num_embeds_ada_norm: Optional[int] = None,
|
93 |
+
use_linear_projection: bool = False,
|
94 |
+
only_cross_attention: bool = False,
|
95 |
+
double_self_attention: bool = False,
|
96 |
+
upcast_attention: bool = False,
|
97 |
+
norm_type: str = "ada_norm",
|
98 |
+
norm_elementwise_affine: bool = True,
|
99 |
+
norm_eps: float = 1e-5,
|
100 |
+
caption_channels: int = None,
|
101 |
+
interpolation_scale_h: float = None,
|
102 |
+
interpolation_scale_w: float = None,
|
103 |
+
interpolation_scale_t: float = None,
|
104 |
+
use_additional_conditions: Optional[bool] = None,
|
105 |
+
sa_attention_mode: str = "flash",
|
106 |
+
ca_attention_mode: str = 'xformers',
|
107 |
+
downsampler: str = None,
|
108 |
+
use_rope: bool = False,
|
109 |
+
model_max_length: int = 300,
|
110 |
+
):
|
111 |
+
super().__init__()
|
112 |
+
self.use_linear_projection = use_linear_projection
|
113 |
+
self.interpolation_scale_t = interpolation_scale_t
|
114 |
+
self.interpolation_scale_h = interpolation_scale_h
|
115 |
+
self.interpolation_scale_w = interpolation_scale_w
|
116 |
+
self.downsampler = downsampler
|
117 |
+
self.caption_channels = caption_channels
|
118 |
+
self.num_attention_heads = num_attention_heads
|
119 |
+
self.attention_head_dim = attention_head_dim
|
120 |
+
inner_dim = num_attention_heads * attention_head_dim
|
121 |
+
self.inner_dim = inner_dim
|
122 |
+
self.in_channels = in_channels
|
123 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
124 |
+
self.use_rope = use_rope
|
125 |
+
self.model_max_length = model_max_length
|
126 |
+
self.num_layers = num_layers
|
127 |
+
self.config.hidden_size = inner_dim
|
128 |
+
|
129 |
+
|
130 |
+
# 1. Transformer3DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
|
131 |
+
# Define whether input is continuous or discrete depending on configuration
|
132 |
+
assert in_channels is not None and patch_size is not None
|
133 |
+
|
134 |
+
# 2. Initialize the right blocks.
|
135 |
+
# Initialize the output blocks and other projection blocks when necessary.
|
136 |
+
|
137 |
+
assert self.config.sample_size_t is not None, "AllegroTransformer3DModel over patched input must provide sample_size_t"
|
138 |
+
assert self.config.sample_size is not None, "AllegroTransformer3DModel over patched input must provide sample_size"
|
139 |
+
#assert not (self.config.sample_size_t == 1 and self.config.patch_size_t == 2), "Image do not need patchfy in t-dim"
|
140 |
+
|
141 |
+
self.num_frames = self.config.sample_size_t
|
142 |
+
self.config.sample_size = to_2tuple(self.config.sample_size)
|
143 |
+
self.height = self.config.sample_size[0]
|
144 |
+
self.width = self.config.sample_size[1]
|
145 |
+
self.patch_size_t = self.config.patch_size_t
|
146 |
+
self.patch_size = self.config.patch_size
|
147 |
+
interpolation_scale_t = ((self.config.sample_size_t - 1) // 16 + 1) if self.config.sample_size_t % 2 == 1 else self.config.sample_size_t / 16
|
148 |
+
interpolation_scale_t = (
|
149 |
+
self.config.interpolation_scale_t if self.config.interpolation_scale_t is not None else interpolation_scale_t
|
150 |
+
)
|
151 |
+
interpolation_scale = (
|
152 |
+
self.config.interpolation_scale_h if self.config.interpolation_scale_h is not None else self.config.sample_size[0] / 30,
|
153 |
+
self.config.interpolation_scale_w if self.config.interpolation_scale_w is not None else self.config.sample_size[1] / 40,
|
154 |
+
)
|
155 |
+
self.pos_embed = PatchEmbed2D(
|
156 |
+
num_frames=self.config.sample_size_t,
|
157 |
+
height=self.config.sample_size[0],
|
158 |
+
width=self.config.sample_size[1],
|
159 |
+
patch_size_t=self.config.patch_size_t,
|
160 |
+
patch_size=self.config.patch_size,
|
161 |
+
in_channels=self.in_channels,
|
162 |
+
embed_dim=self.inner_dim,
|
163 |
+
interpolation_scale=interpolation_scale,
|
164 |
+
interpolation_scale_t=interpolation_scale_t,
|
165 |
+
use_abs_pos=not self.config.use_rope,
|
166 |
+
)
|
167 |
+
interpolation_scale_thw = (interpolation_scale_t, *interpolation_scale)
|
168 |
+
|
169 |
+
# 3. Define transformers blocks, spatial attention
|
170 |
+
self.transformer_blocks = nn.ModuleList(
|
171 |
+
[
|
172 |
+
BasicTransformerBlock(
|
173 |
+
inner_dim,
|
174 |
+
num_attention_heads,
|
175 |
+
attention_head_dim,
|
176 |
+
dropout=dropout,
|
177 |
+
cross_attention_dim=cross_attention_dim,
|
178 |
+
activation_fn=activation_fn,
|
179 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
180 |
+
attention_bias=attention_bias,
|
181 |
+
only_cross_attention=only_cross_attention,
|
182 |
+
double_self_attention=double_self_attention,
|
183 |
+
upcast_attention=upcast_attention,
|
184 |
+
norm_type=norm_type,
|
185 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
186 |
+
norm_eps=norm_eps,
|
187 |
+
sa_attention_mode=sa_attention_mode,
|
188 |
+
ca_attention_mode=ca_attention_mode,
|
189 |
+
use_rope=use_rope,
|
190 |
+
interpolation_scale_thw=interpolation_scale_thw,
|
191 |
+
block_idx=d,
|
192 |
+
)
|
193 |
+
for d in range(num_layers)
|
194 |
+
]
|
195 |
+
)
|
196 |
+
|
197 |
+
# 4. Define output layers
|
198 |
+
|
199 |
+
if norm_type != "ada_norm_single":
|
200 |
+
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
201 |
+
self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
|
202 |
+
self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
|
203 |
+
elif norm_type == "ada_norm_single":
|
204 |
+
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
205 |
+
self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
|
206 |
+
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
|
207 |
+
|
208 |
+
# 5. PixArt-Alpha blocks.
|
209 |
+
self.adaln_single = None
|
210 |
+
self.use_additional_conditions = False
|
211 |
+
if norm_type == "ada_norm_single":
|
212 |
+
# self.use_additional_conditions = self.config.sample_size[0] == 128 # False, 128 -> 1024
|
213 |
+
# TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
|
214 |
+
# additional conditions until we find better name
|
215 |
+
self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions)
|
216 |
+
|
217 |
+
self.caption_projection = None
|
218 |
+
if caption_channels is not None:
|
219 |
+
self.caption_projection = PixArtAlphaTextProjection(
|
220 |
+
in_features=caption_channels, hidden_size=inner_dim
|
221 |
+
)
|
222 |
+
|
223 |
+
self.gradient_checkpointing = False
|
224 |
+
|
225 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
226 |
+
self.gradient_checkpointing = value
|
227 |
+
|
228 |
+
|
229 |
+
def forward(
|
230 |
+
self,
|
231 |
+
hidden_states: torch.Tensor,
|
232 |
+
timestep: Optional[torch.LongTensor] = None,
|
233 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
234 |
+
added_cond_kwargs: Dict[str, torch.Tensor] = None,
|
235 |
+
class_labels: Optional[torch.LongTensor] = None,
|
236 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
237 |
+
attention_mask: Optional[torch.Tensor] = None,
|
238 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
239 |
+
return_dict: bool = True,
|
240 |
+
):
|
241 |
+
"""
|
242 |
+
The [`Transformer2DModel`] forward method.
|
243 |
+
|
244 |
+
Args:
|
245 |
+
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, frame, channel, height, width)` if continuous):
|
246 |
+
Input `hidden_states`.
|
247 |
+
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
248 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
249 |
+
self-attention.
|
250 |
+
timestep ( `torch.LongTensor`, *optional*):
|
251 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
252 |
+
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
253 |
+
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
254 |
+
`AdaLayerZeroNorm`.
|
255 |
+
added_cond_kwargs ( `Dict[str, Any]`, *optional*):
|
256 |
+
A kwargs dictionary that if specified is passed along to the `AdaLayerNormSingle`
|
257 |
+
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
|
258 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
259 |
+
`self.processor` in
|
260 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
261 |
+
attention_mask ( `torch.Tensor`, *optional*):
|
262 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
263 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
264 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
265 |
+
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
266 |
+
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
267 |
+
|
268 |
+
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
269 |
+
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
270 |
+
|
271 |
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
272 |
+
above. This bias will be added to the cross-attention scores.
|
273 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
274 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
275 |
+
tuple.
|
276 |
+
|
277 |
+
Returns:
|
278 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
279 |
+
`tuple` where the first element is the sample tensor.
|
280 |
+
"""
|
281 |
+
batch_size, c, frame, h, w = hidden_states.shape
|
282 |
+
|
283 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
284 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
285 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
286 |
+
# expects mask of shape:
|
287 |
+
# [batch, key_tokens]
|
288 |
+
# adds singleton query_tokens dimension:
|
289 |
+
# [batch, 1, key_tokens]
|
290 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
291 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
292 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) attention_mask_vid, attention_mask_img = None, None
|
293 |
+
if attention_mask is not None and attention_mask.ndim == 4:
|
294 |
+
# assume that mask is expressed as:
|
295 |
+
# (1 = keep, 0 = discard)
|
296 |
+
# convert mask into a bias that can be added to attention scores:
|
297 |
+
# (keep = +0, discard = -10000.0)
|
298 |
+
# b, frame+use_image_num, h, w -> a video with images
|
299 |
+
# b, 1, h, w -> only images
|
300 |
+
attention_mask = attention_mask.to(self.dtype)
|
301 |
+
attention_mask_vid = attention_mask[:, :frame] # b, frame, h, w
|
302 |
+
|
303 |
+
if attention_mask_vid.numel() > 0:
|
304 |
+
attention_mask_vid = attention_mask_vid.unsqueeze(1) # b 1 t h w
|
305 |
+
attention_mask_vid = F.max_pool3d(attention_mask_vid, kernel_size=(self.patch_size_t, self.patch_size, self.patch_size),
|
306 |
+
stride=(self.patch_size_t, self.patch_size, self.patch_size))
|
307 |
+
attention_mask_vid = rearrange(attention_mask_vid, 'b 1 t h w -> (b 1) 1 (t h w)')
|
308 |
+
|
309 |
+
attention_mask_vid = (1 - attention_mask_vid.bool().to(self.dtype)) * -10000.0 if attention_mask_vid.numel() > 0 else None
|
310 |
+
|
311 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
312 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 3:
|
313 |
+
# b, 1+use_image_num, l -> a video with images
|
314 |
+
# b, 1, l -> only images
|
315 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(self.dtype)) * -10000.0
|
316 |
+
encoder_attention_mask_vid = rearrange(encoder_attention_mask, 'b 1 l -> (b 1) 1 l') if encoder_attention_mask.numel() > 0 else None
|
317 |
+
|
318 |
+
# 1. Input
|
319 |
+
frame = frame // self.patch_size_t # patchfy
|
320 |
+
# print('frame', frame)
|
321 |
+
height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
|
322 |
+
|
323 |
+
added_cond_kwargs = {"resolution": None, "aspect_ratio": None} if added_cond_kwargs is None else added_cond_kwargs
|
324 |
+
hidden_states, encoder_hidden_states_vid, \
|
325 |
+
timestep_vid, embedded_timestep_vid = self._operate_on_patched_inputs(
|
326 |
+
hidden_states, encoder_hidden_states, timestep, added_cond_kwargs, batch_size,
|
327 |
+
)
|
328 |
+
|
329 |
+
|
330 |
+
for _, block in enumerate(self.transformer_blocks):
|
331 |
+
hidden_states = block(
|
332 |
+
hidden_states,
|
333 |
+
attention_mask_vid,
|
334 |
+
encoder_hidden_states_vid,
|
335 |
+
encoder_attention_mask_vid,
|
336 |
+
timestep_vid,
|
337 |
+
cross_attention_kwargs,
|
338 |
+
class_labels,
|
339 |
+
frame=frame,
|
340 |
+
height=height,
|
341 |
+
width=width,
|
342 |
+
)
|
343 |
+
|
344 |
+
# 3. Output
|
345 |
+
output = None
|
346 |
+
if hidden_states is not None:
|
347 |
+
output = self._get_output_for_patched_inputs(
|
348 |
+
hidden_states=hidden_states,
|
349 |
+
timestep=timestep_vid,
|
350 |
+
class_labels=class_labels,
|
351 |
+
embedded_timestep=embedded_timestep_vid,
|
352 |
+
num_frames=frame,
|
353 |
+
height=height,
|
354 |
+
width=width,
|
355 |
+
) # b c t h w
|
356 |
+
|
357 |
+
if not return_dict:
|
358 |
+
return (output,)
|
359 |
+
|
360 |
+
return Transformer3DModelOutput(sample=output)
|
361 |
+
|
362 |
+
def _operate_on_patched_inputs(self, hidden_states, encoder_hidden_states, timestep, added_cond_kwargs, batch_size):
|
363 |
+
# batch_size = hidden_states.shape[0]
|
364 |
+
hidden_states_vid = self.pos_embed(hidden_states.to(self.dtype))
|
365 |
+
timestep_vid = None
|
366 |
+
embedded_timestep_vid = None
|
367 |
+
encoder_hidden_states_vid = None
|
368 |
+
|
369 |
+
if self.adaln_single is not None:
|
370 |
+
if self.use_additional_conditions and added_cond_kwargs is None:
|
371 |
+
raise ValueError(
|
372 |
+
"`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`."
|
373 |
+
)
|
374 |
+
timestep, embedded_timestep = self.adaln_single(
|
375 |
+
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=self.dtype
|
376 |
+
) # b 6d, b d
|
377 |
+
|
378 |
+
timestep_vid = timestep
|
379 |
+
embedded_timestep_vid = embedded_timestep
|
380 |
+
|
381 |
+
if self.caption_projection is not None:
|
382 |
+
encoder_hidden_states = self.caption_projection(encoder_hidden_states) # b, 1+use_image_num, l, d or b, 1, l, d
|
383 |
+
encoder_hidden_states_vid = rearrange(encoder_hidden_states[:, :1], 'b 1 l d -> (b 1) l d')
|
384 |
+
|
385 |
+
return hidden_states_vid, encoder_hidden_states_vid, timestep_vid, embedded_timestep_vid
|
386 |
+
|
387 |
+
def _get_output_for_patched_inputs(
|
388 |
+
self, hidden_states, timestep, class_labels, embedded_timestep, num_frames, height=None, width=None
|
389 |
+
):
|
390 |
+
# import ipdb;ipdb.set_trace()
|
391 |
+
if self.config.norm_type != "ada_norm_single":
|
392 |
+
conditioning = self.transformer_blocks[0].norm1.emb(
|
393 |
+
timestep, class_labels, hidden_dtype=self.dtype
|
394 |
+
)
|
395 |
+
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
|
396 |
+
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
|
397 |
+
hidden_states = self.proj_out_2(hidden_states)
|
398 |
+
elif self.config.norm_type == "ada_norm_single":
|
399 |
+
shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
|
400 |
+
hidden_states = self.norm_out(hidden_states)
|
401 |
+
# Modulation
|
402 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
403 |
+
hidden_states = self.proj_out(hidden_states)
|
404 |
+
hidden_states = hidden_states.squeeze(1)
|
405 |
+
|
406 |
+
# unpatchify
|
407 |
+
if self.adaln_single is None:
|
408 |
+
height = width = int(hidden_states.shape[1] ** 0.5)
|
409 |
+
hidden_states = hidden_states.reshape(
|
410 |
+
shape=(-1, num_frames, height, width, self.patch_size_t, self.patch_size, self.patch_size, self.out_channels)
|
411 |
+
)
|
412 |
+
hidden_states = torch.einsum("nthwopqc->nctohpwq", hidden_states)
|
413 |
+
output = hidden_states.reshape(
|
414 |
+
shape=(-1, self.out_channels, num_frames * self.patch_size_t, height * self.patch_size, width * self.patch_size)
|
415 |
+
)
|
416 |
+
return output
|
allegro/models/vae/modules.py
ADDED
@@ -0,0 +1,415 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Tuple, Union
|
2 |
+
from einops import rearrange
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from diffusers.models.attention_processor import Attention
|
7 |
+
from diffusers.models.resnet import ResnetBlock2D
|
8 |
+
from diffusers.models.upsampling import Upsample2D
|
9 |
+
from diffusers.models.downsampling import Downsample2D
|
10 |
+
|
11 |
+
|
12 |
+
class TemporalConvBlock(nn.Module):
|
13 |
+
"""
|
14 |
+
Temporal convolutional layer that can be used for video (sequence of images) input Code mostly copied from:
|
15 |
+
https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/models/multi_modal/video_synthesis/unet_sd.py#L1016
|
16 |
+
"""
|
17 |
+
|
18 |
+
def __init__(self, in_dim, out_dim=None, dropout=0.0, up_sample=False, down_sample=False, spa_stride=1):
|
19 |
+
super().__init__()
|
20 |
+
out_dim = out_dim or in_dim
|
21 |
+
self.in_dim = in_dim
|
22 |
+
self.out_dim = out_dim
|
23 |
+
spa_pad = int((spa_stride-1)*0.5)
|
24 |
+
temp_pad = 0
|
25 |
+
self.temp_pad = temp_pad
|
26 |
+
|
27 |
+
if down_sample:
|
28 |
+
self.conv1 = nn.Sequential(
|
29 |
+
nn.GroupNorm(32, in_dim),
|
30 |
+
nn.SiLU(),
|
31 |
+
nn.Conv3d(in_dim, out_dim, (2, spa_stride, spa_stride), stride=(2,1,1), padding=(0, spa_pad, spa_pad))
|
32 |
+
)
|
33 |
+
elif up_sample:
|
34 |
+
self.conv1 = nn.Sequential(
|
35 |
+
nn.GroupNorm(32, in_dim),
|
36 |
+
nn.SiLU(),
|
37 |
+
nn.Conv3d(in_dim, out_dim*2, (1, spa_stride, spa_stride), padding=(0, spa_pad, spa_pad))
|
38 |
+
)
|
39 |
+
else:
|
40 |
+
self.conv1 = nn.Sequential(
|
41 |
+
nn.GroupNorm(32, in_dim),
|
42 |
+
nn.SiLU(),
|
43 |
+
nn.Conv3d(in_dim, out_dim, (3, spa_stride, spa_stride), padding=(temp_pad, spa_pad, spa_pad))
|
44 |
+
)
|
45 |
+
self.conv2 = nn.Sequential(
|
46 |
+
nn.GroupNorm(32, out_dim),
|
47 |
+
nn.SiLU(),
|
48 |
+
nn.Dropout(dropout),
|
49 |
+
nn.Conv3d(out_dim, in_dim, (3, spa_stride, spa_stride), padding=(temp_pad, spa_pad, spa_pad)),
|
50 |
+
)
|
51 |
+
self.conv3 = nn.Sequential(
|
52 |
+
nn.GroupNorm(32, out_dim),
|
53 |
+
nn.SiLU(),
|
54 |
+
nn.Dropout(dropout),
|
55 |
+
nn.Conv3d(out_dim, in_dim, (3, spa_stride, spa_stride), padding=(temp_pad, spa_pad, spa_pad)),
|
56 |
+
)
|
57 |
+
self.conv4 = nn.Sequential(
|
58 |
+
nn.GroupNorm(32, out_dim),
|
59 |
+
nn.SiLU(),
|
60 |
+
nn.Conv3d(out_dim, in_dim, (3, spa_stride, spa_stride), padding=(temp_pad, spa_pad, spa_pad)),
|
61 |
+
)
|
62 |
+
|
63 |
+
# zero out the last layer params,so the conv block is identity
|
64 |
+
nn.init.zeros_(self.conv4[-1].weight)
|
65 |
+
nn.init.zeros_(self.conv4[-1].bias)
|
66 |
+
|
67 |
+
self.down_sample = down_sample
|
68 |
+
self.up_sample = up_sample
|
69 |
+
|
70 |
+
|
71 |
+
def forward(self, hidden_states):
|
72 |
+
identity = hidden_states
|
73 |
+
|
74 |
+
if self.down_sample:
|
75 |
+
identity = identity[:,:,::2]
|
76 |
+
elif self.up_sample:
|
77 |
+
hidden_states_new = torch.cat((hidden_states,hidden_states),dim=2)
|
78 |
+
hidden_states_new[:, :, 0::2] = hidden_states
|
79 |
+
hidden_states_new[:, :, 1::2] = hidden_states
|
80 |
+
identity = hidden_states_new
|
81 |
+
del hidden_states_new
|
82 |
+
|
83 |
+
if self.down_sample or self.up_sample:
|
84 |
+
hidden_states = self.conv1(hidden_states)
|
85 |
+
else:
|
86 |
+
hidden_states = torch.cat((hidden_states[:,:,0:1], hidden_states), dim=2)
|
87 |
+
hidden_states = torch.cat((hidden_states,hidden_states[:,:,-1:]), dim=2)
|
88 |
+
hidden_states = self.conv1(hidden_states)
|
89 |
+
|
90 |
+
|
91 |
+
if self.up_sample:
|
92 |
+
hidden_states = rearrange(hidden_states, 'b (d c) f h w -> b c (f d) h w', d=2)
|
93 |
+
|
94 |
+
hidden_states = torch.cat((hidden_states[:,:,0:1], hidden_states), dim=2)
|
95 |
+
hidden_states = torch.cat((hidden_states,hidden_states[:,:,-1:]), dim=2)
|
96 |
+
hidden_states = self.conv2(hidden_states)
|
97 |
+
hidden_states = torch.cat((hidden_states[:,:,0:1], hidden_states), dim=2)
|
98 |
+
hidden_states = torch.cat((hidden_states,hidden_states[:,:,-1:]), dim=2)
|
99 |
+
hidden_states = self.conv3(hidden_states)
|
100 |
+
hidden_states = torch.cat((hidden_states[:,:,0:1], hidden_states), dim=2)
|
101 |
+
hidden_states = torch.cat((hidden_states,hidden_states[:,:,-1:]), dim=2)
|
102 |
+
hidden_states = self.conv4(hidden_states)
|
103 |
+
|
104 |
+
hidden_states = identity + hidden_states
|
105 |
+
|
106 |
+
return hidden_states
|
107 |
+
|
108 |
+
|
109 |
+
class DownEncoderBlock3D(nn.Module):
|
110 |
+
def __init__(
|
111 |
+
self,
|
112 |
+
in_channels: int,
|
113 |
+
out_channels: int,
|
114 |
+
dropout: float = 0.0,
|
115 |
+
num_layers: int = 1,
|
116 |
+
resnet_eps: float = 1e-6,
|
117 |
+
resnet_time_scale_shift: str = "default",
|
118 |
+
resnet_act_fn: str = "swish",
|
119 |
+
resnet_groups: int = 32,
|
120 |
+
resnet_pre_norm: bool = True,
|
121 |
+
output_scale_factor=1.0,
|
122 |
+
add_downsample=True,
|
123 |
+
add_temp_downsample=False,
|
124 |
+
downsample_padding=1,
|
125 |
+
):
|
126 |
+
super().__init__()
|
127 |
+
resnets = []
|
128 |
+
temp_convs = []
|
129 |
+
|
130 |
+
for i in range(num_layers):
|
131 |
+
in_channels = in_channels if i == 0 else out_channels
|
132 |
+
resnets.append(
|
133 |
+
ResnetBlock2D(
|
134 |
+
in_channels=in_channels,
|
135 |
+
out_channels=out_channels,
|
136 |
+
temb_channels=None,
|
137 |
+
eps=resnet_eps,
|
138 |
+
groups=resnet_groups,
|
139 |
+
dropout=dropout,
|
140 |
+
time_embedding_norm=resnet_time_scale_shift,
|
141 |
+
non_linearity=resnet_act_fn,
|
142 |
+
output_scale_factor=output_scale_factor,
|
143 |
+
pre_norm=resnet_pre_norm,
|
144 |
+
)
|
145 |
+
)
|
146 |
+
temp_convs.append(
|
147 |
+
TemporalConvBlock(
|
148 |
+
out_channels,
|
149 |
+
out_channels,
|
150 |
+
dropout=0.1,
|
151 |
+
)
|
152 |
+
)
|
153 |
+
|
154 |
+
self.resnets = nn.ModuleList(resnets)
|
155 |
+
self.temp_convs = nn.ModuleList(temp_convs)
|
156 |
+
|
157 |
+
if add_temp_downsample:
|
158 |
+
self.temp_convs_down = TemporalConvBlock(
|
159 |
+
out_channels,
|
160 |
+
out_channels,
|
161 |
+
dropout=0.1,
|
162 |
+
down_sample=True,
|
163 |
+
spa_stride=3
|
164 |
+
)
|
165 |
+
self.add_temp_downsample = add_temp_downsample
|
166 |
+
|
167 |
+
if add_downsample:
|
168 |
+
self.downsamplers = nn.ModuleList(
|
169 |
+
[
|
170 |
+
Downsample2D(
|
171 |
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
172 |
+
)
|
173 |
+
]
|
174 |
+
)
|
175 |
+
else:
|
176 |
+
self.downsamplers = None
|
177 |
+
|
178 |
+
def _set_partial_grad(self):
|
179 |
+
for temp_conv in self.temp_convs:
|
180 |
+
temp_conv.requires_grad_(True)
|
181 |
+
if self.downsamplers:
|
182 |
+
for down_layer in self.downsamplers:
|
183 |
+
down_layer.requires_grad_(True)
|
184 |
+
|
185 |
+
def forward(self, hidden_states):
|
186 |
+
bz = hidden_states.shape[0]
|
187 |
+
|
188 |
+
for resnet, temp_conv in zip(self.resnets, self.temp_convs):
|
189 |
+
hidden_states = rearrange(hidden_states, 'b c n h w -> (b n) c h w')
|
190 |
+
hidden_states = resnet(hidden_states, temb=None)
|
191 |
+
hidden_states = rearrange(hidden_states, '(b n) c h w -> b c n h w', b=bz)
|
192 |
+
hidden_states = temp_conv(hidden_states)
|
193 |
+
if self.add_temp_downsample:
|
194 |
+
hidden_states = self.temp_convs_down(hidden_states)
|
195 |
+
|
196 |
+
if self.downsamplers is not None:
|
197 |
+
hidden_states = rearrange(hidden_states, 'b c n h w -> (b n) c h w')
|
198 |
+
for upsampler in self.downsamplers:
|
199 |
+
hidden_states = upsampler(hidden_states)
|
200 |
+
hidden_states = rearrange(hidden_states, '(b n) c h w -> b c n h w', b=bz)
|
201 |
+
return hidden_states
|
202 |
+
|
203 |
+
|
204 |
+
class UpDecoderBlock3D(nn.Module):
|
205 |
+
def __init__(
|
206 |
+
self,
|
207 |
+
in_channels: int,
|
208 |
+
out_channels: int,
|
209 |
+
dropout: float = 0.0,
|
210 |
+
num_layers: int = 1,
|
211 |
+
resnet_eps: float = 1e-6,
|
212 |
+
resnet_time_scale_shift: str = "default", # default, spatial
|
213 |
+
resnet_act_fn: str = "swish",
|
214 |
+
resnet_groups: int = 32,
|
215 |
+
resnet_pre_norm: bool = True,
|
216 |
+
output_scale_factor=1.0,
|
217 |
+
add_upsample=True,
|
218 |
+
add_temp_upsample=False,
|
219 |
+
temb_channels=None,
|
220 |
+
):
|
221 |
+
super().__init__()
|
222 |
+
self.add_upsample = add_upsample
|
223 |
+
|
224 |
+
resnets = []
|
225 |
+
temp_convs = []
|
226 |
+
|
227 |
+
for i in range(num_layers):
|
228 |
+
input_channels = in_channels if i == 0 else out_channels
|
229 |
+
|
230 |
+
resnets.append(
|
231 |
+
ResnetBlock2D(
|
232 |
+
in_channels=input_channels,
|
233 |
+
out_channels=out_channels,
|
234 |
+
temb_channels=temb_channels,
|
235 |
+
eps=resnet_eps,
|
236 |
+
groups=resnet_groups,
|
237 |
+
dropout=dropout,
|
238 |
+
time_embedding_norm=resnet_time_scale_shift,
|
239 |
+
non_linearity=resnet_act_fn,
|
240 |
+
output_scale_factor=output_scale_factor,
|
241 |
+
pre_norm=resnet_pre_norm,
|
242 |
+
)
|
243 |
+
)
|
244 |
+
temp_convs.append(
|
245 |
+
TemporalConvBlock(
|
246 |
+
out_channels,
|
247 |
+
out_channels,
|
248 |
+
dropout=0.1,
|
249 |
+
)
|
250 |
+
)
|
251 |
+
|
252 |
+
self.resnets = nn.ModuleList(resnets)
|
253 |
+
self.temp_convs = nn.ModuleList(temp_convs)
|
254 |
+
|
255 |
+
self.add_temp_upsample = add_temp_upsample
|
256 |
+
if add_temp_upsample:
|
257 |
+
self.temp_conv_up = TemporalConvBlock(
|
258 |
+
out_channels,
|
259 |
+
out_channels,
|
260 |
+
dropout=0.1,
|
261 |
+
up_sample=True,
|
262 |
+
spa_stride=3
|
263 |
+
)
|
264 |
+
|
265 |
+
|
266 |
+
if self.add_upsample:
|
267 |
+
# self.upsamplers = nn.ModuleList([PSUpsample2D(out_channels, use_conv=True, use_pixel_shuffle=True, out_channels=out_channels)])
|
268 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
269 |
+
else:
|
270 |
+
self.upsamplers = None
|
271 |
+
|
272 |
+
def _set_partial_grad(self):
|
273 |
+
for temp_conv in self.temp_convs:
|
274 |
+
temp_conv.requires_grad_(True)
|
275 |
+
if self.add_upsample:
|
276 |
+
self.upsamplers.requires_grad_(True)
|
277 |
+
|
278 |
+
def forward(self, hidden_states):
|
279 |
+
bz = hidden_states.shape[0]
|
280 |
+
|
281 |
+
for resnet, temp_conv in zip(self.resnets, self.temp_convs):
|
282 |
+
hidden_states = rearrange(hidden_states, 'b c n h w -> (b n) c h w')
|
283 |
+
hidden_states = resnet(hidden_states, temb=None)
|
284 |
+
hidden_states = rearrange(hidden_states, '(b n) c h w -> b c n h w', b=bz)
|
285 |
+
hidden_states = temp_conv(hidden_states)
|
286 |
+
if self.add_temp_upsample:
|
287 |
+
hidden_states = self.temp_conv_up(hidden_states)
|
288 |
+
|
289 |
+
if self.upsamplers is not None:
|
290 |
+
hidden_states = rearrange(hidden_states, 'b c n h w -> (b n) c h w')
|
291 |
+
for upsampler in self.upsamplers:
|
292 |
+
hidden_states = upsampler(hidden_states)
|
293 |
+
hidden_states = rearrange(hidden_states, '(b n) c h w -> b c n h w', b=bz)
|
294 |
+
return hidden_states
|
295 |
+
|
296 |
+
|
297 |
+
class UNetMidBlock3DConv(nn.Module):
|
298 |
+
def __init__(
|
299 |
+
self,
|
300 |
+
in_channels: int,
|
301 |
+
temb_channels: int,
|
302 |
+
dropout: float = 0.0,
|
303 |
+
num_layers: int = 1,
|
304 |
+
resnet_eps: float = 1e-6,
|
305 |
+
resnet_time_scale_shift: str = "default", # default, spatial
|
306 |
+
resnet_act_fn: str = "swish",
|
307 |
+
resnet_groups: int = 32,
|
308 |
+
resnet_pre_norm: bool = True,
|
309 |
+
add_attention: bool = True,
|
310 |
+
attention_head_dim=1,
|
311 |
+
output_scale_factor=1.0,
|
312 |
+
):
|
313 |
+
super().__init__()
|
314 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
315 |
+
self.add_attention = add_attention
|
316 |
+
|
317 |
+
# there is always at least one resnet
|
318 |
+
resnets = [
|
319 |
+
ResnetBlock2D(
|
320 |
+
in_channels=in_channels,
|
321 |
+
out_channels=in_channels,
|
322 |
+
temb_channels=temb_channels,
|
323 |
+
eps=resnet_eps,
|
324 |
+
groups=resnet_groups,
|
325 |
+
dropout=dropout,
|
326 |
+
time_embedding_norm=resnet_time_scale_shift,
|
327 |
+
non_linearity=resnet_act_fn,
|
328 |
+
output_scale_factor=output_scale_factor,
|
329 |
+
pre_norm=resnet_pre_norm,
|
330 |
+
)
|
331 |
+
]
|
332 |
+
temp_convs = [
|
333 |
+
TemporalConvBlock(
|
334 |
+
in_channels,
|
335 |
+
in_channels,
|
336 |
+
dropout=0.1,
|
337 |
+
)
|
338 |
+
]
|
339 |
+
attentions = []
|
340 |
+
|
341 |
+
if attention_head_dim is None:
|
342 |
+
attention_head_dim = in_channels
|
343 |
+
|
344 |
+
for _ in range(num_layers):
|
345 |
+
if self.add_attention:
|
346 |
+
attentions.append(
|
347 |
+
Attention(
|
348 |
+
in_channels,
|
349 |
+
heads=in_channels // attention_head_dim,
|
350 |
+
dim_head=attention_head_dim,
|
351 |
+
rescale_output_factor=output_scale_factor,
|
352 |
+
eps=resnet_eps,
|
353 |
+
norm_num_groups=resnet_groups if resnet_time_scale_shift == "default" else None,
|
354 |
+
spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None,
|
355 |
+
residual_connection=True,
|
356 |
+
bias=True,
|
357 |
+
upcast_softmax=True,
|
358 |
+
_from_deprecated_attn_block=True,
|
359 |
+
)
|
360 |
+
)
|
361 |
+
else:
|
362 |
+
attentions.append(None)
|
363 |
+
|
364 |
+
resnets.append(
|
365 |
+
ResnetBlock2D(
|
366 |
+
in_channels=in_channels,
|
367 |
+
out_channels=in_channels,
|
368 |
+
temb_channels=temb_channels,
|
369 |
+
eps=resnet_eps,
|
370 |
+
groups=resnet_groups,
|
371 |
+
dropout=dropout,
|
372 |
+
time_embedding_norm=resnet_time_scale_shift,
|
373 |
+
non_linearity=resnet_act_fn,
|
374 |
+
output_scale_factor=output_scale_factor,
|
375 |
+
pre_norm=resnet_pre_norm,
|
376 |
+
)
|
377 |
+
)
|
378 |
+
|
379 |
+
temp_convs.append(
|
380 |
+
TemporalConvBlock(
|
381 |
+
in_channels,
|
382 |
+
in_channels,
|
383 |
+
dropout=0.1,
|
384 |
+
)
|
385 |
+
)
|
386 |
+
|
387 |
+
self.resnets = nn.ModuleList(resnets)
|
388 |
+
self.temp_convs = nn.ModuleList(temp_convs)
|
389 |
+
self.attentions = nn.ModuleList(attentions)
|
390 |
+
|
391 |
+
def _set_partial_grad(self):
|
392 |
+
for temp_conv in self.temp_convs:
|
393 |
+
temp_conv.requires_grad_(True)
|
394 |
+
|
395 |
+
def forward(
|
396 |
+
self,
|
397 |
+
hidden_states,
|
398 |
+
):
|
399 |
+
bz = hidden_states.shape[0]
|
400 |
+
hidden_states = rearrange(hidden_states, 'b c n h w -> (b n) c h w')
|
401 |
+
|
402 |
+
hidden_states = self.resnets[0](hidden_states, temb=None)
|
403 |
+
hidden_states = rearrange(hidden_states, '(b n) c h w -> b c n h w', b=bz)
|
404 |
+
hidden_states = self.temp_convs[0](hidden_states)
|
405 |
+
hidden_states = rearrange(hidden_states, 'b c n h w -> (b n) c h w')
|
406 |
+
|
407 |
+
for attn, resnet, temp_conv in zip(
|
408 |
+
self.attentions, self.resnets[1:], self.temp_convs[1:]
|
409 |
+
):
|
410 |
+
hidden_states = attn(hidden_states)
|
411 |
+
hidden_states = resnet(hidden_states, temb=None)
|
412 |
+
hidden_states = rearrange(hidden_states, '(b n) c h w -> b c n h w', b=bz)
|
413 |
+
hidden_states = temp_conv(hidden_states)
|
414 |
+
return hidden_states
|
415 |
+
|
allegro/models/vae/vae_allegro.py
ADDED
@@ -0,0 +1,568 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import os
|
3 |
+
from typing import Optional, Tuple, Union
|
4 |
+
from einops import rearrange
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
|
9 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
10 |
+
from diffusers.models.modeling_utils import ModelMixin
|
11 |
+
from diffusers.models.modeling_outputs import AutoencoderKLOutput
|
12 |
+
from diffusers.models.autoencoders.vae import DecoderOutput, DiagonalGaussianDistribution
|
13 |
+
from diffusers.models.attention_processor import SpatialNorm
|
14 |
+
|
15 |
+
from allegro.models.vae.modules import DownEncoderBlock3D, UNetMidBlock3DConv, UpDecoderBlock3D
|
16 |
+
|
17 |
+
|
18 |
+
class Encoder3D(nn.Module):
|
19 |
+
def __init__(
|
20 |
+
self,
|
21 |
+
in_channels=3,
|
22 |
+
out_channels=3,
|
23 |
+
num_blocks=4,
|
24 |
+
blocks_temp_li=[False, False, False, False],
|
25 |
+
block_out_channels=(64,),
|
26 |
+
layers_per_block=2,
|
27 |
+
norm_num_groups=32,
|
28 |
+
act_fn="silu",
|
29 |
+
double_z=True,
|
30 |
+
):
|
31 |
+
super().__init__()
|
32 |
+
self.layers_per_block = layers_per_block
|
33 |
+
self.blocks_temp_li = blocks_temp_li
|
34 |
+
|
35 |
+
self.conv_in = nn.Conv2d(
|
36 |
+
in_channels,
|
37 |
+
block_out_channels[0],
|
38 |
+
kernel_size=3,
|
39 |
+
stride=1,
|
40 |
+
padding=1,
|
41 |
+
)
|
42 |
+
|
43 |
+
self.temp_conv_in = nn.Conv3d(
|
44 |
+
block_out_channels[0],
|
45 |
+
block_out_channels[0],
|
46 |
+
(3,1,1),
|
47 |
+
padding = (1, 0, 0)
|
48 |
+
)
|
49 |
+
|
50 |
+
self.mid_block = None
|
51 |
+
self.down_blocks = nn.ModuleList([])
|
52 |
+
|
53 |
+
# down
|
54 |
+
output_channel = block_out_channels[0]
|
55 |
+
for i in range(num_blocks):
|
56 |
+
input_channel = output_channel
|
57 |
+
output_channel = block_out_channels[i]
|
58 |
+
is_final_block = i == len(block_out_channels) - 1
|
59 |
+
|
60 |
+
down_block = DownEncoderBlock3D(
|
61 |
+
num_layers=self.layers_per_block,
|
62 |
+
in_channels=input_channel,
|
63 |
+
out_channels=output_channel,
|
64 |
+
add_downsample=not is_final_block,
|
65 |
+
add_temp_downsample=blocks_temp_li[i],
|
66 |
+
resnet_eps=1e-6,
|
67 |
+
downsample_padding=0,
|
68 |
+
resnet_act_fn=act_fn,
|
69 |
+
resnet_groups=norm_num_groups,
|
70 |
+
)
|
71 |
+
self.down_blocks.append(down_block)
|
72 |
+
|
73 |
+
# mid
|
74 |
+
self.mid_block = UNetMidBlock3DConv(
|
75 |
+
in_channels=block_out_channels[-1],
|
76 |
+
resnet_eps=1e-6,
|
77 |
+
resnet_act_fn=act_fn,
|
78 |
+
output_scale_factor=1,
|
79 |
+
resnet_time_scale_shift="default",
|
80 |
+
attention_head_dim=block_out_channels[-1],
|
81 |
+
resnet_groups=norm_num_groups,
|
82 |
+
temb_channels=None,
|
83 |
+
)
|
84 |
+
|
85 |
+
# out
|
86 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
|
87 |
+
self.conv_act = nn.SiLU()
|
88 |
+
|
89 |
+
conv_out_channels = 2 * out_channels if double_z else out_channels
|
90 |
+
|
91 |
+
self.temp_conv_out = nn.Conv3d(block_out_channels[-1], block_out_channels[-1], (3,1,1), padding = (1, 0, 0))
|
92 |
+
|
93 |
+
self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1)
|
94 |
+
|
95 |
+
nn.init.zeros_(self.temp_conv_in.weight)
|
96 |
+
nn.init.zeros_(self.temp_conv_in.bias)
|
97 |
+
nn.init.zeros_(self.temp_conv_out.weight)
|
98 |
+
nn.init.zeros_(self.temp_conv_out.bias)
|
99 |
+
|
100 |
+
self.gradient_checkpointing = False
|
101 |
+
|
102 |
+
def forward(self, x):
|
103 |
+
'''
|
104 |
+
x: [b, c, (tb f), h, w]
|
105 |
+
'''
|
106 |
+
bz = x.shape[0]
|
107 |
+
sample = rearrange(x, 'b c n h w -> (b n) c h w')
|
108 |
+
sample = self.conv_in(sample)
|
109 |
+
|
110 |
+
sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz)
|
111 |
+
temp_sample = sample
|
112 |
+
sample = self.temp_conv_in(sample)
|
113 |
+
sample = sample+temp_sample
|
114 |
+
# down
|
115 |
+
for b_id, down_block in enumerate(self.down_blocks):
|
116 |
+
sample = down_block(sample)
|
117 |
+
# middle
|
118 |
+
sample = self.mid_block(sample)
|
119 |
+
|
120 |
+
# post-process
|
121 |
+
sample = rearrange(sample, 'b c n h w -> (b n) c h w')
|
122 |
+
sample = self.conv_norm_out(sample)
|
123 |
+
sample = self.conv_act(sample)
|
124 |
+
sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz)
|
125 |
+
|
126 |
+
temp_sample = sample
|
127 |
+
sample = self.temp_conv_out(sample)
|
128 |
+
sample = sample+temp_sample
|
129 |
+
sample = rearrange(sample, 'b c n h w -> (b n) c h w')
|
130 |
+
|
131 |
+
sample = self.conv_out(sample)
|
132 |
+
sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz)
|
133 |
+
return sample
|
134 |
+
|
135 |
+
class Decoder3D(nn.Module):
|
136 |
+
def __init__(
|
137 |
+
self,
|
138 |
+
in_channels=4,
|
139 |
+
out_channels=3,
|
140 |
+
num_blocks=4,
|
141 |
+
blocks_temp_li=[False, False, False, False],
|
142 |
+
block_out_channels=(64,),
|
143 |
+
layers_per_block=2,
|
144 |
+
norm_num_groups=32,
|
145 |
+
act_fn="silu",
|
146 |
+
norm_type="group", # group, spatial
|
147 |
+
):
|
148 |
+
super().__init__()
|
149 |
+
self.layers_per_block = layers_per_block
|
150 |
+
self.blocks_temp_li = blocks_temp_li
|
151 |
+
|
152 |
+
self.conv_in = nn.Conv2d(
|
153 |
+
in_channels,
|
154 |
+
block_out_channels[-1],
|
155 |
+
kernel_size=3,
|
156 |
+
stride=1,
|
157 |
+
padding=1,
|
158 |
+
)
|
159 |
+
|
160 |
+
self.temp_conv_in = nn.Conv3d(
|
161 |
+
block_out_channels[-1],
|
162 |
+
block_out_channels[-1],
|
163 |
+
(3,1,1),
|
164 |
+
padding = (1, 0, 0)
|
165 |
+
)
|
166 |
+
|
167 |
+
self.mid_block = None
|
168 |
+
self.up_blocks = nn.ModuleList([])
|
169 |
+
|
170 |
+
temb_channels = in_channels if norm_type == "spatial" else None
|
171 |
+
|
172 |
+
# mid
|
173 |
+
self.mid_block = UNetMidBlock3DConv(
|
174 |
+
in_channels=block_out_channels[-1],
|
175 |
+
resnet_eps=1e-6,
|
176 |
+
resnet_act_fn=act_fn,
|
177 |
+
output_scale_factor=1,
|
178 |
+
resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
|
179 |
+
attention_head_dim=block_out_channels[-1],
|
180 |
+
resnet_groups=norm_num_groups,
|
181 |
+
temb_channels=temb_channels,
|
182 |
+
)
|
183 |
+
|
184 |
+
# up
|
185 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
186 |
+
output_channel = reversed_block_out_channels[0]
|
187 |
+
for i in range(num_blocks):
|
188 |
+
prev_output_channel = output_channel
|
189 |
+
output_channel = reversed_block_out_channels[i]
|
190 |
+
|
191 |
+
is_final_block = i == len(block_out_channels) - 1
|
192 |
+
|
193 |
+
up_block = UpDecoderBlock3D(
|
194 |
+
num_layers=self.layers_per_block + 1,
|
195 |
+
in_channels=prev_output_channel,
|
196 |
+
out_channels=output_channel,
|
197 |
+
add_upsample=not is_final_block,
|
198 |
+
add_temp_upsample=blocks_temp_li[i],
|
199 |
+
resnet_eps=1e-6,
|
200 |
+
resnet_act_fn=act_fn,
|
201 |
+
resnet_groups=norm_num_groups,
|
202 |
+
temb_channels=temb_channels,
|
203 |
+
resnet_time_scale_shift=norm_type,
|
204 |
+
)
|
205 |
+
self.up_blocks.append(up_block)
|
206 |
+
prev_output_channel = output_channel
|
207 |
+
|
208 |
+
# out
|
209 |
+
if norm_type == "spatial":
|
210 |
+
self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
|
211 |
+
else:
|
212 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
|
213 |
+
self.conv_act = nn.SiLU()
|
214 |
+
|
215 |
+
self.temp_conv_out = nn.Conv3d(block_out_channels[0], block_out_channels[0], (3,1,1), padding = (1, 0, 0))
|
216 |
+
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
|
217 |
+
|
218 |
+
nn.init.zeros_(self.temp_conv_in.weight)
|
219 |
+
nn.init.zeros_(self.temp_conv_in.bias)
|
220 |
+
nn.init.zeros_(self.temp_conv_out.weight)
|
221 |
+
nn.init.zeros_(self.temp_conv_out.bias)
|
222 |
+
|
223 |
+
self.gradient_checkpointing = False
|
224 |
+
|
225 |
+
def forward(self, z):
|
226 |
+
bz = z.shape[0]
|
227 |
+
sample = rearrange(z, 'b c n h w -> (b n) c h w')
|
228 |
+
sample = self.conv_in(sample)
|
229 |
+
|
230 |
+
sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz)
|
231 |
+
temp_sample = sample
|
232 |
+
sample = self.temp_conv_in(sample)
|
233 |
+
sample = sample+temp_sample
|
234 |
+
|
235 |
+
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
|
236 |
+
# middle
|
237 |
+
sample = self.mid_block(sample)
|
238 |
+
sample = sample.to(upscale_dtype)
|
239 |
+
|
240 |
+
# up
|
241 |
+
for b_id, up_block in enumerate(self.up_blocks):
|
242 |
+
sample = up_block(sample)
|
243 |
+
|
244 |
+
# post-process
|
245 |
+
sample = rearrange(sample, 'b c n h w -> (b n) c h w')
|
246 |
+
sample = self.conv_norm_out(sample)
|
247 |
+
sample = self.conv_act(sample)
|
248 |
+
|
249 |
+
sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz)
|
250 |
+
temp_sample = sample
|
251 |
+
sample = self.temp_conv_out(sample)
|
252 |
+
sample = sample+temp_sample
|
253 |
+
sample = rearrange(sample, 'b c n h w -> (b n) c h w')
|
254 |
+
|
255 |
+
sample = self.conv_out(sample)
|
256 |
+
sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz)
|
257 |
+
return sample
|
258 |
+
|
259 |
+
|
260 |
+
|
261 |
+
class AllegroAutoencoderKL3D(ModelMixin, ConfigMixin):
|
262 |
+
r"""
|
263 |
+
A VAE model with KL loss for encoding images into latents and decoding latent representations into images.
|
264 |
+
|
265 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
266 |
+
for all models (such as downloading or saving).
|
267 |
+
|
268 |
+
Parameters:
|
269 |
+
in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
|
270 |
+
out_channels (int, *optional*, defaults to 3): Number of channels in the output.
|
271 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
|
272 |
+
Tuple of downsample block types.
|
273 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
|
274 |
+
Tuple of upsample block types.
|
275 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
|
276 |
+
Tuple of block output channels.
|
277 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
278 |
+
latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space.
|
279 |
+
sample_size (`int`, *optional*, defaults to `256`): Spatial Tiling Size.
|
280 |
+
tile_overlap (`tuple`, *optional*, defaults to `(120, 80`): Spatial overlapping size while tiling (height, width)
|
281 |
+
chunk_len (`int`, *optional*, defaults to `24`): Temporal Tiling Size.
|
282 |
+
t_over (`int`, *optional*, defaults to `8`): Temporal overlapping size while tiling
|
283 |
+
scaling_factor (`float`, *optional*, defaults to 0.13235):
|
284 |
+
The component-wise standard deviation of the trained latent space computed using the first batch of the
|
285 |
+
training set. This is used to scale the latent space to have unit variance when training the diffusion
|
286 |
+
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
|
287 |
+
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
|
288 |
+
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
|
289 |
+
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
|
290 |
+
force_upcast (`bool`, *optional*, default to `True`):
|
291 |
+
If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
|
292 |
+
can be fine-tuned / trained to a lower range without loosing too much precision in which case
|
293 |
+
`force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
|
294 |
+
blocks_tempdown_li (`List`, *optional*, defaults to `[True, True, False, False]`): Each item indicates whether each TemporalBlock in the Encoder performs temporal downsampling.
|
295 |
+
blocks_tempup_li (`List`, *optional*, defaults to `[False, True, True, False]`): Each item indicates whether each TemporalBlock in the Decoder performs temporal upsampling.
|
296 |
+
load_mode (`str`, *optional*, defaults to `full`): Load mode for the model. Can be one of `full`, `encoder_only`, `decoder_only`. which corresponds to loading the full model state dicts, only the encoder state dicts, or only the decoder state dicts.
|
297 |
+
"""
|
298 |
+
|
299 |
+
_supports_gradient_checkpointing = True
|
300 |
+
|
301 |
+
@register_to_config
|
302 |
+
def __init__(
|
303 |
+
self,
|
304 |
+
in_channels: int = 3,
|
305 |
+
out_channels: int = 3,
|
306 |
+
down_block_num: int = 4,
|
307 |
+
up_block_num: int = 4,
|
308 |
+
block_out_channels: Tuple[int] = (128,256,512,512),
|
309 |
+
layers_per_block: int = 2,
|
310 |
+
act_fn: str = "silu",
|
311 |
+
latent_channels: int = 4,
|
312 |
+
norm_num_groups: int = 32,
|
313 |
+
sample_size: int = 320,
|
314 |
+
tile_overlap: tuple = (120, 80),
|
315 |
+
force_upcast: bool = True,
|
316 |
+
chunk_len: int = 24,
|
317 |
+
t_over: int = 8,
|
318 |
+
scale_factor: float = 0.13235,
|
319 |
+
blocks_tempdown_li=[True, True, False, False],
|
320 |
+
blocks_tempup_li=[False, True, True, False],
|
321 |
+
load_mode = 'full',
|
322 |
+
):
|
323 |
+
super().__init__()
|
324 |
+
|
325 |
+
self.blocks_tempdown_li = blocks_tempdown_li
|
326 |
+
self.blocks_tempup_li = blocks_tempup_li
|
327 |
+
# pass init params to Encoder
|
328 |
+
self.load_mode = load_mode
|
329 |
+
if load_mode in ['full', 'encoder_only']:
|
330 |
+
self.encoder = Encoder3D(
|
331 |
+
in_channels=in_channels,
|
332 |
+
out_channels=latent_channels,
|
333 |
+
num_blocks=down_block_num,
|
334 |
+
blocks_temp_li=blocks_tempdown_li,
|
335 |
+
block_out_channels=block_out_channels,
|
336 |
+
layers_per_block=layers_per_block,
|
337 |
+
act_fn=act_fn,
|
338 |
+
norm_num_groups=norm_num_groups,
|
339 |
+
double_z=True,
|
340 |
+
)
|
341 |
+
self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1)
|
342 |
+
|
343 |
+
if load_mode in ['full', 'decoder_only']:
|
344 |
+
# pass init params to Decoder
|
345 |
+
self.decoder = Decoder3D(
|
346 |
+
in_channels=latent_channels,
|
347 |
+
out_channels=out_channels,
|
348 |
+
num_blocks=up_block_num,
|
349 |
+
blocks_temp_li=blocks_tempup_li,
|
350 |
+
block_out_channels=block_out_channels,
|
351 |
+
layers_per_block=layers_per_block,
|
352 |
+
norm_num_groups=norm_num_groups,
|
353 |
+
act_fn=act_fn,
|
354 |
+
)
|
355 |
+
self.post_quant_conv = nn.Conv2d(latent_channels, latent_channels, 1)
|
356 |
+
|
357 |
+
|
358 |
+
# only relevant if vae tiling is enabled
|
359 |
+
sample_size = (
|
360 |
+
sample_size[0]
|
361 |
+
if isinstance(sample_size, (list, tuple))
|
362 |
+
else sample_size
|
363 |
+
)
|
364 |
+
self.tile_overlap = tile_overlap
|
365 |
+
self.vae_scale_factor=[4, 8, 8]
|
366 |
+
self.scale_factor = scale_factor
|
367 |
+
self.sample_size = sample_size
|
368 |
+
self.chunk_len = chunk_len
|
369 |
+
self.t_over = t_over
|
370 |
+
|
371 |
+
self.latent_chunk_len = self.chunk_len//4
|
372 |
+
self.latent_t_over = self.t_over//4
|
373 |
+
self.kernel = (self.chunk_len, self.sample_size, self.sample_size) #(24, 256, 256)
|
374 |
+
self.stride = (self.chunk_len - self.t_over, self.sample_size-self.tile_overlap[0], self.sample_size-self.tile_overlap[1]) # (16, 112, 192)
|
375 |
+
|
376 |
+
|
377 |
+
def encode(self, input_imgs: torch.Tensor, return_dict: bool = True, local_batch_size=1) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
|
378 |
+
KERNEL = self.kernel
|
379 |
+
STRIDE = self.stride
|
380 |
+
LOCAL_BS = local_batch_size
|
381 |
+
OUT_C = 8
|
382 |
+
|
383 |
+
B, C, N, H, W = input_imgs.shape
|
384 |
+
|
385 |
+
|
386 |
+
out_n = math.floor((N - KERNEL[0]) / STRIDE[0]) + 1
|
387 |
+
out_h = math.floor((H - KERNEL[1]) / STRIDE[1]) + 1
|
388 |
+
out_w = math.floor((W - KERNEL[2]) / STRIDE[2]) + 1
|
389 |
+
|
390 |
+
## cut video into overlapped small cubes and batch forward
|
391 |
+
num = 0
|
392 |
+
|
393 |
+
out_latent = torch.zeros((out_n*out_h*out_w, OUT_C, KERNEL[0]//4, KERNEL[1]//8, KERNEL[2]//8), device=input_imgs.device, dtype=input_imgs.dtype)
|
394 |
+
vae_batch_input = torch.zeros((LOCAL_BS, C, KERNEL[0], KERNEL[1], KERNEL[2]), device=input_imgs.device, dtype=input_imgs.dtype)
|
395 |
+
|
396 |
+
for i in range(out_n):
|
397 |
+
for j in range(out_h):
|
398 |
+
for k in range(out_w):
|
399 |
+
n_start, n_end = i * STRIDE[0], i * STRIDE[0] + KERNEL[0]
|
400 |
+
h_start, h_end = j * STRIDE[1], j * STRIDE[1] + KERNEL[1]
|
401 |
+
w_start, w_end = k * STRIDE[2], k * STRIDE[2] + KERNEL[2]
|
402 |
+
video_cube = input_imgs[:, :, n_start:n_end, h_start:h_end, w_start:w_end]
|
403 |
+
vae_batch_input[num%LOCAL_BS] = video_cube
|
404 |
+
|
405 |
+
if num%LOCAL_BS == LOCAL_BS-1 or num == out_n*out_h*out_w-1:
|
406 |
+
latent = self.encoder(vae_batch_input)
|
407 |
+
|
408 |
+
if num == out_n*out_h*out_w-1 and num%LOCAL_BS != LOCAL_BS-1:
|
409 |
+
out_latent[num-num%LOCAL_BS:] = latent[:num%LOCAL_BS+1]
|
410 |
+
else:
|
411 |
+
out_latent[num-LOCAL_BS+1:num+1] = latent
|
412 |
+
vae_batch_input = torch.zeros((LOCAL_BS, C, KERNEL[0], KERNEL[1], KERNEL[2]), device=input_imgs.device, dtype=input_imgs.dtype)
|
413 |
+
num+=1
|
414 |
+
|
415 |
+
## flatten the batched out latent to videos and supress the overlapped parts
|
416 |
+
B, C, N, H, W = input_imgs.shape
|
417 |
+
|
418 |
+
out_video_cube = torch.zeros((B, OUT_C, N//4, H//8, W//8), device=input_imgs.device, dtype=input_imgs.dtype)
|
419 |
+
OUT_KERNEL = KERNEL[0]//4, KERNEL[1]//8, KERNEL[2]//8
|
420 |
+
OUT_STRIDE = STRIDE[0]//4, STRIDE[1]//8, STRIDE[2]//8
|
421 |
+
OVERLAP = OUT_KERNEL[0]-OUT_STRIDE[0], OUT_KERNEL[1]-OUT_STRIDE[1], OUT_KERNEL[2]-OUT_STRIDE[2]
|
422 |
+
|
423 |
+
for i in range(out_n):
|
424 |
+
n_start, n_end = i * OUT_STRIDE[0], i * OUT_STRIDE[0] + OUT_KERNEL[0]
|
425 |
+
for j in range(out_h):
|
426 |
+
h_start, h_end = j * OUT_STRIDE[1], j * OUT_STRIDE[1] + OUT_KERNEL[1]
|
427 |
+
for k in range(out_w):
|
428 |
+
w_start, w_end = k * OUT_STRIDE[2], k * OUT_STRIDE[2] + OUT_KERNEL[2]
|
429 |
+
latent_mean_blend = prepare_for_blend((i, out_n, OVERLAP[0]), (j, out_h, OVERLAP[1]), (k, out_w, OVERLAP[2]), out_latent[i*out_h*out_w+j*out_w+k].unsqueeze(0))
|
430 |
+
out_video_cube[:, :, n_start:n_end, h_start:h_end, w_start:w_end] += latent_mean_blend
|
431 |
+
|
432 |
+
## final conv
|
433 |
+
out_video_cube = rearrange(out_video_cube, 'b c n h w -> (b n) c h w')
|
434 |
+
out_video_cube = self.quant_conv(out_video_cube)
|
435 |
+
out_video_cube = rearrange(out_video_cube, '(b n) c h w -> b c n h w', b=B)
|
436 |
+
|
437 |
+
posterior = DiagonalGaussianDistribution(out_video_cube)
|
438 |
+
|
439 |
+
if not return_dict:
|
440 |
+
return (posterior,)
|
441 |
+
|
442 |
+
return AutoencoderKLOutput(latent_dist=posterior)
|
443 |
+
|
444 |
+
|
445 |
+
def decode(self, input_latents: torch.Tensor, return_dict: bool = True, local_batch_size=1) -> Union[DecoderOutput, torch.Tensor]:
|
446 |
+
KERNEL = self.kernel
|
447 |
+
STRIDE = self.stride
|
448 |
+
|
449 |
+
LOCAL_BS = local_batch_size
|
450 |
+
OUT_C = 3
|
451 |
+
IN_KERNEL = KERNEL[0]//4, KERNEL[1]//8, KERNEL[2]//8
|
452 |
+
IN_STRIDE = STRIDE[0]//4, STRIDE[1]//8, STRIDE[2]//8
|
453 |
+
|
454 |
+
B, C, N, H, W = input_latents.shape
|
455 |
+
|
456 |
+
## post quant conv (a mapping)
|
457 |
+
input_latents = rearrange(input_latents, 'b c n h w -> (b n) c h w')
|
458 |
+
input_latents = self.post_quant_conv(input_latents)
|
459 |
+
input_latents = rearrange(input_latents, '(b n) c h w -> b c n h w', b=B)
|
460 |
+
|
461 |
+
## out tensor shape
|
462 |
+
out_n = math.floor((N - IN_KERNEL[0]) / IN_STRIDE[0]) + 1
|
463 |
+
out_h = math.floor((H - IN_KERNEL[1]) / IN_STRIDE[1]) + 1
|
464 |
+
out_w = math.floor((W - IN_KERNEL[2]) / IN_STRIDE[2]) + 1
|
465 |
+
|
466 |
+
## cut latent into overlapped small cubes and batch forward
|
467 |
+
num = 0
|
468 |
+
decoded_cube = torch.zeros((out_n*out_h*out_w, OUT_C, KERNEL[0], KERNEL[1], KERNEL[2]), device=input_latents.device, dtype=input_latents.dtype)
|
469 |
+
vae_batch_input = torch.zeros((LOCAL_BS, C, IN_KERNEL[0], IN_KERNEL[1], IN_KERNEL[2]), device=input_latents.device, dtype=input_latents.dtype)
|
470 |
+
for i in range(out_n):
|
471 |
+
for j in range(out_h):
|
472 |
+
for k in range(out_w):
|
473 |
+
n_start, n_end = i * IN_STRIDE[0], i * IN_STRIDE[0] + IN_KERNEL[0]
|
474 |
+
h_start, h_end = j * IN_STRIDE[1], j * IN_STRIDE[1] + IN_KERNEL[1]
|
475 |
+
w_start, w_end = k * IN_STRIDE[2], k * IN_STRIDE[2] + IN_KERNEL[2]
|
476 |
+
latent_cube = input_latents[:, :, n_start:n_end, h_start:h_end, w_start:w_end]
|
477 |
+
vae_batch_input[num%LOCAL_BS] = latent_cube
|
478 |
+
if num%LOCAL_BS == LOCAL_BS-1 or num == out_n*out_h*out_w-1:
|
479 |
+
|
480 |
+
latent = self.decoder(vae_batch_input)
|
481 |
+
|
482 |
+
if num == out_n*out_h*out_w-1 and num%LOCAL_BS != LOCAL_BS-1:
|
483 |
+
decoded_cube[num-num%LOCAL_BS:] = latent[:num%LOCAL_BS+1]
|
484 |
+
else:
|
485 |
+
decoded_cube[num-LOCAL_BS+1:num+1] = latent
|
486 |
+
vae_batch_input = torch.zeros((LOCAL_BS, C, IN_KERNEL[0], IN_KERNEL[1], IN_KERNEL[2]), device=input_latents.device, dtype=input_latents.dtype)
|
487 |
+
num+=1
|
488 |
+
B, C, N, H, W = input_latents.shape
|
489 |
+
|
490 |
+
out_video = torch.zeros((B, OUT_C, N*4, H*8, W*8), device=input_latents.device, dtype=input_latents.dtype)
|
491 |
+
OVERLAP = KERNEL[0]-STRIDE[0], KERNEL[1]-STRIDE[1], KERNEL[2]-STRIDE[2]
|
492 |
+
for i in range(out_n):
|
493 |
+
n_start, n_end = i * STRIDE[0], i * STRIDE[0] + KERNEL[0]
|
494 |
+
for j in range(out_h):
|
495 |
+
h_start, h_end = j * STRIDE[1], j * STRIDE[1] + KERNEL[1]
|
496 |
+
for k in range(out_w):
|
497 |
+
w_start, w_end = k * STRIDE[2], k * STRIDE[2] + KERNEL[2]
|
498 |
+
out_video_blend = prepare_for_blend((i, out_n, OVERLAP[0]), (j, out_h, OVERLAP[1]), (k, out_w, OVERLAP[2]), decoded_cube[i*out_h*out_w+j*out_w+k].unsqueeze(0))
|
499 |
+
out_video[:, :, n_start:n_end, h_start:h_end, w_start:w_end] += out_video_blend
|
500 |
+
|
501 |
+
out_video = rearrange(out_video, 'b c t h w -> b t c h w').contiguous()
|
502 |
+
|
503 |
+
decoded = out_video
|
504 |
+
if not return_dict:
|
505 |
+
return (decoded,)
|
506 |
+
|
507 |
+
return DecoderOutput(sample=decoded)
|
508 |
+
|
509 |
+
def forward(
|
510 |
+
self,
|
511 |
+
sample: torch.Tensor,
|
512 |
+
sample_posterior: bool = False,
|
513 |
+
return_dict: bool = True,
|
514 |
+
generator: Optional[torch.Generator] = None,
|
515 |
+
encoder_local_batch_size: int = 2,
|
516 |
+
decoder_local_batch_size: int = 2,
|
517 |
+
) -> Union[DecoderOutput, torch.Tensor]:
|
518 |
+
r"""
|
519 |
+
Args:
|
520 |
+
sample (`torch.Tensor`): Input sample.
|
521 |
+
sample_posterior (`bool`, *optional*, defaults to `False`):
|
522 |
+
Whether to sample from the posterior.
|
523 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
524 |
+
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
|
525 |
+
generator (`torch.Generator`, *optional*):
|
526 |
+
PyTorch random number generator.
|
527 |
+
encoder_local_batch_size (`int`, *optional*, defaults to 2):
|
528 |
+
Local batch size for the encoder's batch inference.
|
529 |
+
decoder_local_batch_size (`int`, *optional*, defaults to 2):
|
530 |
+
Local batch size for the decoder's batch inference.
|
531 |
+
"""
|
532 |
+
x = sample
|
533 |
+
posterior = self.encode(x, local_batch_size=encoder_local_batch_size).latent_dist
|
534 |
+
if sample_posterior:
|
535 |
+
z = posterior.sample(generator=generator)
|
536 |
+
else:
|
537 |
+
z = posterior.mode()
|
538 |
+
dec = self.decode(z, local_batch_size=decoder_local_batch_size).sample
|
539 |
+
|
540 |
+
if not return_dict:
|
541 |
+
return (dec,)
|
542 |
+
|
543 |
+
return DecoderOutput(sample=dec)
|
544 |
+
|
545 |
+
@classmethod
|
546 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
|
547 |
+
kwargs["torch_type"] = torch.float32
|
548 |
+
return super().from_pretrained(pretrained_model_name_or_path, **kwargs)
|
549 |
+
|
550 |
+
|
551 |
+
def prepare_for_blend(n_param, h_param, w_param, x):
|
552 |
+
n, n_max, overlap_n = n_param
|
553 |
+
h, h_max, overlap_h = h_param
|
554 |
+
w, w_max, overlap_w = w_param
|
555 |
+
if overlap_n > 0:
|
556 |
+
if n > 0: # the head overlap part decays from 0 to 1
|
557 |
+
x[:,:,0:overlap_n,:,:] = x[:,:,0:overlap_n,:,:] * (torch.arange(0, overlap_n).float().to(x.device) / overlap_n).reshape(overlap_n,1,1)
|
558 |
+
if n < n_max-1: # the tail overlap part decays from 1 to 0
|
559 |
+
x[:,:,-overlap_n:,:,:] = x[:,:,-overlap_n:,:,:] * (1 - torch.arange(0, overlap_n).float().to(x.device) / overlap_n).reshape(overlap_n,1,1)
|
560 |
+
if h > 0:
|
561 |
+
x[:,:,:,0:overlap_h,:] = x[:,:,:,0:overlap_h,:] * (torch.arange(0, overlap_h).float().to(x.device) / overlap_h).reshape(overlap_h,1)
|
562 |
+
if h < h_max-1:
|
563 |
+
x[:,:,:,-overlap_h:,:] = x[:,:,:,-overlap_h:,:] * (1 - torch.arange(0, overlap_h).float().to(x.device) / overlap_h).reshape(overlap_h,1)
|
564 |
+
if w > 0:
|
565 |
+
x[:,:,:,:,0:overlap_w] = x[:,:,:,:,0:overlap_w] * (torch.arange(0, overlap_w).float().to(x.device) / overlap_w)
|
566 |
+
if w < w_max-1:
|
567 |
+
x[:,:,:,:,-overlap_w:] = x[:,:,:,:,-overlap_w:] * (1 - torch.arange(0, overlap_w).float().to(x.device) / overlap_w)
|
568 |
+
return x
|
allegro/pipelines/pipeline_allegro.py
ADDED
@@ -0,0 +1,822 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from Open-Sora-Plan
|
2 |
+
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
# --------------------------------------------------------
|
6 |
+
# References:
|
7 |
+
# Open-Sora-Plan: https://github.com/PKU-YuanGroup/Open-Sora-Plan
|
8 |
+
# --------------------------------------------------------
|
9 |
+
|
10 |
+
import html
|
11 |
+
import inspect
|
12 |
+
import math
|
13 |
+
import re
|
14 |
+
import urllib.parse as ul
|
15 |
+
from typing import Callable, List, Optional, Tuple, Union
|
16 |
+
from einops import rearrange
|
17 |
+
import ftfy
|
18 |
+
import torch
|
19 |
+
from dataclasses import dataclass
|
20 |
+
import tqdm
|
21 |
+
from bs4 import BeautifulSoup
|
22 |
+
|
23 |
+
from diffusers import DiffusionPipeline
|
24 |
+
from diffusers.schedulers import EulerAncestralDiscreteScheduler
|
25 |
+
from diffusers.utils import (
|
26 |
+
BACKENDS_MAPPING,
|
27 |
+
is_bs4_available,
|
28 |
+
is_ftfy_available,
|
29 |
+
logging,
|
30 |
+
replace_example_docstring,
|
31 |
+
BaseOutput
|
32 |
+
)
|
33 |
+
from diffusers.utils.torch_utils import randn_tensor
|
34 |
+
from transformers import T5EncoderModel, T5Tokenizer
|
35 |
+
|
36 |
+
logger = logging.get_logger(__name__)
|
37 |
+
|
38 |
+
from allegro.models.transformers.transformer_3d_allegro import AllegroTransformer3DModel
|
39 |
+
from allegro.models.vae.vae_allegro import AllegroAutoencoderKL3D
|
40 |
+
|
41 |
+
@dataclass
|
42 |
+
class AllegroPipelineOutput(BaseOutput):
|
43 |
+
r"""
|
44 |
+
Output class for Allegro pipelines.
|
45 |
+
|
46 |
+
Args:
|
47 |
+
video (`torch.Tensor`):
|
48 |
+
Torch tensor with shape `(batch_size, num_frames, channels, height, width)`.
|
49 |
+
"""
|
50 |
+
video: torch.Tensor
|
51 |
+
|
52 |
+
|
53 |
+
EXAMPLE_DOC_STRING = """
|
54 |
+
Examples:
|
55 |
+
```py
|
56 |
+
>>> import torch
|
57 |
+
|
58 |
+
>>> # You can replace the your_path_to_model with your own path.
|
59 |
+
>>> pipe = AllegroPipeline.from_pretrained(your_path_to_model, torch_dtype=torch.float16, trust_remote_code=True)
|
60 |
+
|
61 |
+
>>> prompt = "A small cactus with a happy face in the Sahara desert."
|
62 |
+
>>> image = pipe(prompt).video[0]
|
63 |
+
```
|
64 |
+
"""
|
65 |
+
|
66 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
67 |
+
def retrieve_timesteps(
|
68 |
+
scheduler,
|
69 |
+
num_inference_steps: Optional[int] = None,
|
70 |
+
device: Optional[Union[str, torch.device]] = None,
|
71 |
+
timesteps: Optional[List[int]] = None,
|
72 |
+
**kwargs,
|
73 |
+
):
|
74 |
+
"""
|
75 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
76 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
77 |
+
|
78 |
+
Args:
|
79 |
+
scheduler (`SchedulerMixin`):
|
80 |
+
The scheduler to get timesteps from.
|
81 |
+
num_inference_steps (`int`):
|
82 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
83 |
+
must be `None`.
|
84 |
+
device (`str` or `torch.device`, *optional*):
|
85 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
86 |
+
timesteps (`List[int]`, *optional*):
|
87 |
+
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
88 |
+
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
|
89 |
+
must be `None`.
|
90 |
+
|
91 |
+
Returns:
|
92 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
93 |
+
second element is the number of inference steps.
|
94 |
+
"""
|
95 |
+
if timesteps is not None:
|
96 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
97 |
+
if not accepts_timesteps:
|
98 |
+
raise ValueError(
|
99 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
100 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
101 |
+
)
|
102 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
103 |
+
timesteps = scheduler.timesteps
|
104 |
+
num_inference_steps = len(timesteps)
|
105 |
+
else:
|
106 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
107 |
+
timesteps = scheduler.timesteps
|
108 |
+
return timesteps, num_inference_steps
|
109 |
+
|
110 |
+
|
111 |
+
class AllegroPipeline(DiffusionPipeline):
|
112 |
+
r"""
|
113 |
+
Pipeline for text-to-image generation using Allegro.
|
114 |
+
|
115 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
116 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
117 |
+
|
118 |
+
Args:
|
119 |
+
vae ([`AllegroAutoEncoderKL3D`]):
|
120 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
121 |
+
text_encoder ([`T5EncoderModel`]):
|
122 |
+
Frozen text-encoder. PixArt-Alpha uses
|
123 |
+
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
|
124 |
+
[t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
|
125 |
+
tokenizer (`T5Tokenizer`):
|
126 |
+
Tokenizer of class
|
127 |
+
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
|
128 |
+
transformer ([`AllegroTransformer3DModel`]):
|
129 |
+
A text conditioned `AllegroTransformer3DModel` to denoise the encoded image latents.
|
130 |
+
scheduler ([`SchedulerMixin`]):
|
131 |
+
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
132 |
+
"""
|
133 |
+
bad_punct_regex = re.compile(
|
134 |
+
r"[" + "#®•©™&@·º½¾¿¡§~" + "\)" + "\(" + "\]" + "\[" + "\}" + "\{" + "\|" + "\\" + "\/" + "\*" + r"]{1,}"
|
135 |
+
) # noqa
|
136 |
+
|
137 |
+
_optional_components = ["tokenizer", "text_encoder", "vae", "transformer", "scheduler"]
|
138 |
+
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
139 |
+
|
140 |
+
def __init__(
|
141 |
+
self,
|
142 |
+
tokenizer: Optional[T5Tokenizer] = None,
|
143 |
+
text_encoder: Optional[T5EncoderModel] = None,
|
144 |
+
vae: Optional[AllegroAutoencoderKL3D] = None,
|
145 |
+
transformer: Optional[AllegroTransformer3DModel] = None,
|
146 |
+
scheduler: Optional[EulerAncestralDiscreteScheduler] = None,
|
147 |
+
device: torch.device = torch.device("cuda"),
|
148 |
+
dtype: torch.dtype = torch.float16,
|
149 |
+
):
|
150 |
+
super().__init__()
|
151 |
+
|
152 |
+
self.register_modules(
|
153 |
+
tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
|
154 |
+
)
|
155 |
+
|
156 |
+
|
157 |
+
# Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt
|
158 |
+
def encode_prompt(
|
159 |
+
self,
|
160 |
+
prompt: Union[str, List[str]],
|
161 |
+
do_classifier_free_guidance: bool = True,
|
162 |
+
negative_prompt: str = "",
|
163 |
+
num_images_per_prompt: int = 1,
|
164 |
+
device: Optional[torch.device] = None,
|
165 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
166 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
167 |
+
prompt_attention_mask: Optional[torch.FloatTensor] = None,
|
168 |
+
negative_prompt_attention_mask: Optional[torch.FloatTensor] = None,
|
169 |
+
clean_caption: bool = False,
|
170 |
+
max_sequence_length: int = 120,
|
171 |
+
**kwargs,
|
172 |
+
):
|
173 |
+
r"""
|
174 |
+
Encodes the prompt into text encoder hidden states.
|
175 |
+
|
176 |
+
Args:
|
177 |
+
prompt (`str` or `List[str]`, *optional*):
|
178 |
+
prompt to be encoded
|
179 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
180 |
+
The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
|
181 |
+
instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
|
182 |
+
PixArt-Alpha, this should be "".
|
183 |
+
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
|
184 |
+
whether to use classifier free guidance or not
|
185 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
186 |
+
number of images that should be generated per prompt
|
187 |
+
device: (`torch.device`, *optional*):
|
188 |
+
torch device to place the resulting embeddings on
|
189 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
190 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
191 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
192 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
193 |
+
Pre-generated negative text embeddings. For PixArt-Alpha, it's should be the embeddings of the ""
|
194 |
+
string.
|
195 |
+
clean_caption (`bool`, defaults to `False`):
|
196 |
+
If `True`, the function will preprocess and clean the provided caption before encoding.
|
197 |
+
max_sequence_length (`int`, defaults to 120): Maximum sequence length to use for the prompt.
|
198 |
+
"""
|
199 |
+
embeds_initially_provided = prompt_embeds is not None and negative_prompt_embeds is not None
|
200 |
+
|
201 |
+
if device is None:
|
202 |
+
device = self._execution_device
|
203 |
+
|
204 |
+
if prompt is not None and isinstance(prompt, str):
|
205 |
+
batch_size = 1
|
206 |
+
elif prompt is not None and isinstance(prompt, list):
|
207 |
+
batch_size = len(prompt)
|
208 |
+
else:
|
209 |
+
batch_size = prompt_embeds.shape[0]
|
210 |
+
|
211 |
+
# See Section 3.1. of the paper.
|
212 |
+
max_length = max_sequence_length
|
213 |
+
|
214 |
+
if prompt_embeds is None:
|
215 |
+
prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
|
216 |
+
text_inputs = self.tokenizer(
|
217 |
+
prompt,
|
218 |
+
padding="max_length",
|
219 |
+
max_length=max_length,
|
220 |
+
truncation=True,
|
221 |
+
add_special_tokens=True,
|
222 |
+
return_tensors="pt",
|
223 |
+
)
|
224 |
+
text_input_ids = text_inputs.input_ids
|
225 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
226 |
+
|
227 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
228 |
+
text_input_ids, untruncated_ids
|
229 |
+
):
|
230 |
+
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1])
|
231 |
+
logger.warning(
|
232 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
233 |
+
f" {max_length} tokens: {removed_text}"
|
234 |
+
)
|
235 |
+
|
236 |
+
prompt_attention_mask = text_inputs.attention_mask
|
237 |
+
prompt_attention_mask = prompt_attention_mask.to(device)
|
238 |
+
|
239 |
+
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask)
|
240 |
+
prompt_embeds = prompt_embeds[0]
|
241 |
+
|
242 |
+
if self.text_encoder is not None:
|
243 |
+
dtype = self.text_encoder.dtype
|
244 |
+
elif self.transformer is not None:
|
245 |
+
dtype = self.transformer.dtype
|
246 |
+
else:
|
247 |
+
dtype = None
|
248 |
+
|
249 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
250 |
+
|
251 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
252 |
+
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
253 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
254 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
255 |
+
prompt_attention_mask = prompt_attention_mask.view(bs_embed, -1)
|
256 |
+
prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
|
257 |
+
|
258 |
+
# get unconditional embeddings for classifier free guidance
|
259 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
260 |
+
uncond_tokens = [negative_prompt] * batch_size
|
261 |
+
uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption)
|
262 |
+
max_length = prompt_embeds.shape[1]
|
263 |
+
uncond_input = self.tokenizer(
|
264 |
+
uncond_tokens,
|
265 |
+
padding="max_length",
|
266 |
+
max_length=max_length,
|
267 |
+
truncation=True,
|
268 |
+
return_attention_mask=True,
|
269 |
+
add_special_tokens=True,
|
270 |
+
return_tensors="pt",
|
271 |
+
)
|
272 |
+
negative_prompt_attention_mask = uncond_input.attention_mask
|
273 |
+
negative_prompt_attention_mask = negative_prompt_attention_mask.to(device)
|
274 |
+
|
275 |
+
negative_prompt_embeds = self.text_encoder(
|
276 |
+
uncond_input.input_ids.to(device),
|
277 |
+
attention_mask=negative_prompt_attention_mask,
|
278 |
+
)
|
279 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
280 |
+
|
281 |
+
if do_classifier_free_guidance:
|
282 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
283 |
+
seq_len = negative_prompt_embeds.shape[1]
|
284 |
+
|
285 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
|
286 |
+
|
287 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
288 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
289 |
+
|
290 |
+
negative_prompt_attention_mask = negative_prompt_attention_mask.view(bs_embed, -1)
|
291 |
+
negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1)
|
292 |
+
else:
|
293 |
+
negative_prompt_embeds = None
|
294 |
+
negative_prompt_attention_mask = None
|
295 |
+
|
296 |
+
return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask
|
297 |
+
|
298 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
299 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
300 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
301 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
302 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
303 |
+
# and should be between [0, 1]
|
304 |
+
|
305 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
306 |
+
extra_step_kwargs = {}
|
307 |
+
if accepts_eta:
|
308 |
+
extra_step_kwargs["eta"] = eta
|
309 |
+
|
310 |
+
# check if the scheduler accepts generator
|
311 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
312 |
+
if accepts_generator:
|
313 |
+
extra_step_kwargs["generator"] = generator
|
314 |
+
return extra_step_kwargs
|
315 |
+
|
316 |
+
def check_inputs(
|
317 |
+
self,
|
318 |
+
prompt,
|
319 |
+
num_frames,
|
320 |
+
height,
|
321 |
+
width,
|
322 |
+
negative_prompt,
|
323 |
+
callback_steps,
|
324 |
+
prompt_embeds=None,
|
325 |
+
negative_prompt_embeds=None,
|
326 |
+
prompt_attention_mask=None,
|
327 |
+
negative_prompt_attention_mask=None,
|
328 |
+
):
|
329 |
+
|
330 |
+
if num_frames <= 0:
|
331 |
+
raise ValueError(f"`num_frames` have to be positive but is {num_frames}.")
|
332 |
+
if height % 8 != 0 or width % 8 != 0:
|
333 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
334 |
+
|
335 |
+
if (callback_steps is None) or (
|
336 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
337 |
+
):
|
338 |
+
raise ValueError(
|
339 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
340 |
+
f" {type(callback_steps)}."
|
341 |
+
)
|
342 |
+
|
343 |
+
if prompt is not None and prompt_embeds is not None:
|
344 |
+
raise ValueError(
|
345 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
346 |
+
" only forward one of the two."
|
347 |
+
)
|
348 |
+
elif prompt is None and prompt_embeds is None:
|
349 |
+
raise ValueError(
|
350 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
351 |
+
)
|
352 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
353 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
354 |
+
|
355 |
+
if prompt is not None and negative_prompt_embeds is not None:
|
356 |
+
raise ValueError(
|
357 |
+
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
|
358 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
359 |
+
)
|
360 |
+
|
361 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
362 |
+
raise ValueError(
|
363 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
364 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
365 |
+
)
|
366 |
+
|
367 |
+
if prompt_embeds is not None and prompt_attention_mask is None:
|
368 |
+
raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
|
369 |
+
|
370 |
+
if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
|
371 |
+
raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
|
372 |
+
|
373 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
374 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
375 |
+
raise ValueError(
|
376 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
377 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
378 |
+
f" {negative_prompt_embeds.shape}."
|
379 |
+
)
|
380 |
+
if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
|
381 |
+
raise ValueError(
|
382 |
+
"`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
|
383 |
+
f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
|
384 |
+
f" {negative_prompt_attention_mask.shape}."
|
385 |
+
)
|
386 |
+
|
387 |
+
|
388 |
+
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
|
389 |
+
def _text_preprocessing(self, text, clean_caption=False):
|
390 |
+
if clean_caption and not is_bs4_available():
|
391 |
+
logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`"))
|
392 |
+
logger.warning("Setting `clean_caption` to False...")
|
393 |
+
clean_caption = False
|
394 |
+
|
395 |
+
if clean_caption and not is_ftfy_available():
|
396 |
+
logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`"))
|
397 |
+
logger.warning("Setting `clean_caption` to False...")
|
398 |
+
clean_caption = False
|
399 |
+
|
400 |
+
if not isinstance(text, (tuple, list)):
|
401 |
+
text = [text]
|
402 |
+
|
403 |
+
def process(text: str):
|
404 |
+
if clean_caption:
|
405 |
+
text = self._clean_caption(text)
|
406 |
+
text = self._clean_caption(text)
|
407 |
+
else:
|
408 |
+
text = text.lower().strip()
|
409 |
+
return text
|
410 |
+
|
411 |
+
return [process(t) for t in text]
|
412 |
+
|
413 |
+
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption
|
414 |
+
def _clean_caption(self, caption):
|
415 |
+
caption = str(caption)
|
416 |
+
caption = ul.unquote_plus(caption)
|
417 |
+
caption = caption.strip().lower()
|
418 |
+
caption = re.sub("<person>", "person", caption)
|
419 |
+
# urls:
|
420 |
+
caption = re.sub(
|
421 |
+
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))",
|
422 |
+
# noqa
|
423 |
+
"",
|
424 |
+
caption,
|
425 |
+
) # regex for urls
|
426 |
+
caption = re.sub(
|
427 |
+
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))",
|
428 |
+
# noqa
|
429 |
+
"",
|
430 |
+
caption,
|
431 |
+
) # regex for urls
|
432 |
+
# html:
|
433 |
+
caption = BeautifulSoup(caption, features="html.parser").text
|
434 |
+
|
435 |
+
# @<nickname>
|
436 |
+
caption = re.sub(r"@[\w\d]+\b", "", caption)
|
437 |
+
|
438 |
+
# 31C0—31EF CJK Strokes
|
439 |
+
# 31F0—31FF Katakana Phonetic Extensions
|
440 |
+
# 3200—32FF Enclosed CJK Letters and Months
|
441 |
+
# 3300—33FF CJK Compatibility
|
442 |
+
# 3400—4DBF CJK Unified Ideographs Extension A
|
443 |
+
# 4DC0—4DFF Yijing Hexagram Symbols
|
444 |
+
# 4E00—9FFF CJK Unified Ideographs
|
445 |
+
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
|
446 |
+
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
|
447 |
+
caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
|
448 |
+
caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
|
449 |
+
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
|
450 |
+
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
|
451 |
+
# caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
|
452 |
+
#######################################################
|
453 |
+
|
454 |
+
# все виды тире / all types of dash --> "-"
|
455 |
+
caption = re.sub(
|
456 |
+
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+",
|
457 |
+
# noqa
|
458 |
+
"-",
|
459 |
+
caption,
|
460 |
+
)
|
461 |
+
|
462 |
+
# кавычки к одному стандарту
|
463 |
+
caption = re.sub(r"[`´«»“”¨]", '"', caption)
|
464 |
+
caption = re.sub(r"[‘’]", "'", caption)
|
465 |
+
|
466 |
+
# "
|
467 |
+
caption = re.sub(r""?", "", caption)
|
468 |
+
# &
|
469 |
+
caption = re.sub(r"&", "", caption)
|
470 |
+
|
471 |
+
# ip adresses:
|
472 |
+
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
|
473 |
+
|
474 |
+
# article ids:
|
475 |
+
caption = re.sub(r"\d:\d\d\s+$", "", caption)
|
476 |
+
|
477 |
+
# \n
|
478 |
+
caption = re.sub(r"\\n", " ", caption)
|
479 |
+
|
480 |
+
# "#123"
|
481 |
+
caption = re.sub(r"#\d{1,3}\b", "", caption)
|
482 |
+
# "#12345.."
|
483 |
+
caption = re.sub(r"#\d{5,}\b", "", caption)
|
484 |
+
# "123456.."
|
485 |
+
caption = re.sub(r"\b\d{6,}\b", "", caption)
|
486 |
+
# filenames:
|
487 |
+
caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)
|
488 |
+
|
489 |
+
#
|
490 |
+
caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
|
491 |
+
caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
|
492 |
+
|
493 |
+
caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT
|
494 |
+
caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
|
495 |
+
|
496 |
+
# this-is-my-cute-cat / this_is_my_cute_cat
|
497 |
+
regex2 = re.compile(r"(?:\-|\_)")
|
498 |
+
if len(re.findall(regex2, caption)) > 3:
|
499 |
+
caption = re.sub(regex2, " ", caption)
|
500 |
+
|
501 |
+
caption = ftfy.fix_text(caption)
|
502 |
+
caption = html.unescape(html.unescape(caption))
|
503 |
+
|
504 |
+
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
|
505 |
+
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
|
506 |
+
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
|
507 |
+
|
508 |
+
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
|
509 |
+
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
|
510 |
+
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
|
511 |
+
caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
|
512 |
+
caption = re.sub(r"\bpage\s+\d+\b", "", caption)
|
513 |
+
|
514 |
+
caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a...
|
515 |
+
|
516 |
+
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
|
517 |
+
|
518 |
+
caption = re.sub(r"\b\s+\:\s+", r": ", caption)
|
519 |
+
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
|
520 |
+
caption = re.sub(r"\s+", " ", caption)
|
521 |
+
|
522 |
+
caption.strip()
|
523 |
+
|
524 |
+
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
|
525 |
+
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
|
526 |
+
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
|
527 |
+
caption = re.sub(r"^\.\S+$", "", caption)
|
528 |
+
return caption.strip()
|
529 |
+
|
530 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
531 |
+
def prepare_latents(
|
532 |
+
self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None
|
533 |
+
):
|
534 |
+
shape = (
|
535 |
+
batch_size,
|
536 |
+
num_channels_latents,
|
537 |
+
(math.ceil((int(num_frames) - 1) / self.vae.vae_scale_factor[0]) + 1)
|
538 |
+
if int(num_frames) % 2 == 1
|
539 |
+
else math.ceil(int(num_frames) / self.vae.vae_scale_factor[0]),
|
540 |
+
math.ceil(int(height) / self.vae.vae_scale_factor[1]),
|
541 |
+
math.ceil(int(width) / self.vae.vae_scale_factor[2]),
|
542 |
+
)
|
543 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
544 |
+
raise ValueError(
|
545 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
546 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
547 |
+
)
|
548 |
+
|
549 |
+
if latents is None:
|
550 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
551 |
+
else:
|
552 |
+
latents = latents.to(device)
|
553 |
+
|
554 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
555 |
+
latents = latents * self.scheduler.init_noise_sigma
|
556 |
+
|
557 |
+
|
558 |
+
return latents
|
559 |
+
|
560 |
+
@torch.no_grad()
|
561 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
562 |
+
def __call__(
|
563 |
+
self,
|
564 |
+
prompt: Union[str, List[str]] = None,
|
565 |
+
negative_prompt: str = "",
|
566 |
+
num_inference_steps: int = 100,
|
567 |
+
timesteps: List[int] = None,
|
568 |
+
guidance_scale: float = 7.5,
|
569 |
+
num_images_per_prompt: Optional[int] = 1,
|
570 |
+
num_frames: Optional[int] = None,
|
571 |
+
height: Optional[int] = None,
|
572 |
+
width: Optional[int] = None,
|
573 |
+
eta: float = 0.0,
|
574 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
575 |
+
latents: Optional[torch.FloatTensor] = None,
|
576 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
577 |
+
prompt_attention_mask: Optional[torch.FloatTensor] = None,
|
578 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
579 |
+
negative_prompt_attention_mask: Optional[torch.FloatTensor] = None,
|
580 |
+
output_type: Optional[str] = "pil",
|
581 |
+
return_dict: bool = True,
|
582 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
583 |
+
callback_steps: int = 1,
|
584 |
+
clean_caption: bool = True,
|
585 |
+
max_sequence_length: int = 512,
|
586 |
+
verbose: bool = True,
|
587 |
+
) -> Union[AllegroPipelineOutput, Tuple]:
|
588 |
+
"""
|
589 |
+
Function invoked when calling the pipeline for generation.
|
590 |
+
|
591 |
+
Args:
|
592 |
+
prompt (`str` or `List[str]`, *optional*):
|
593 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
594 |
+
instead.
|
595 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
596 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
597 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
598 |
+
less than `1`).
|
599 |
+
num_inference_steps (`int`, *optional*, defaults to 100):
|
600 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
601 |
+
expense of slower inference.
|
602 |
+
timesteps (`List[int]`, *optional*):
|
603 |
+
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
|
604 |
+
timesteps are used. Must be in descending order.
|
605 |
+
guidance_scale (`float`, *optional*, defaults to 7.0):
|
606 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
607 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
608 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
609 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
610 |
+
usually at the expense of lower image quality.
|
611 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
612 |
+
The number of images to generate per prompt.
|
613 |
+
num_frames: (`int`, *optional*, defaults to 88):
|
614 |
+
The number controls the generated video frames.
|
615 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size):
|
616 |
+
The height in pixels of the generated image.
|
617 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size):
|
618 |
+
The width in pixels of the generated image.
|
619 |
+
eta (`float`, *optional*, defaults to 0.0):
|
620 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
621 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
622 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
623 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
624 |
+
to make generation deterministic.
|
625 |
+
latents (`torch.FloatTensor`, *optional*):
|
626 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
627 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
628 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
629 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
630 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
631 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
632 |
+
prompt_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask for text embeddings.
|
633 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
634 |
+
Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not
|
635 |
+
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
|
636 |
+
negative_prompt_attention_mask (`torch.FloatTensor`, *optional*):
|
637 |
+
Pre-generated attention mask for negative text embeddings.
|
638 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
639 |
+
The output format of the generate image. Choose between
|
640 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
641 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
642 |
+
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
|
643 |
+
callback (`Callable`, *optional*):
|
644 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
645 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
646 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
647 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
648 |
+
called at every step.
|
649 |
+
clean_caption (`bool`, *optional*, defaults to `True`):
|
650 |
+
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
|
651 |
+
be installed. If the dependencies are not installed, the embeddings will be created from the raw
|
652 |
+
prompt.
|
653 |
+
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
|
654 |
+
|
655 |
+
Examples:
|
656 |
+
|
657 |
+
Returns:
|
658 |
+
[`~pipelines.ImagePipelineOutput`] or `tuple`:
|
659 |
+
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
|
660 |
+
returned where the first element is a list with the generated images
|
661 |
+
"""
|
662 |
+
# 1. Check inputs. Raise error if not correct
|
663 |
+
num_frames = num_frames or self.transformer.config.sample_size_t * self.vae.vae_scale_factor[0]
|
664 |
+
height = height or self.transformer.config.sample_size[0] * self.vae.vae_scale_factor[1]
|
665 |
+
width = width or self.transformer.config.sample_size[1] * self.vae.vae_scale_factor[2]
|
666 |
+
self.check_inputs(
|
667 |
+
prompt,
|
668 |
+
num_frames,
|
669 |
+
height,
|
670 |
+
width,
|
671 |
+
negative_prompt,
|
672 |
+
callback_steps,
|
673 |
+
prompt_embeds,
|
674 |
+
negative_prompt_embeds,
|
675 |
+
prompt_attention_mask,
|
676 |
+
negative_prompt_attention_mask,
|
677 |
+
)
|
678 |
+
|
679 |
+
# 2. Default height and width to transformer
|
680 |
+
if prompt is not None and isinstance(prompt, str):
|
681 |
+
batch_size = 1
|
682 |
+
elif prompt is not None and isinstance(prompt, list):
|
683 |
+
batch_size = len(prompt)
|
684 |
+
else:
|
685 |
+
batch_size = prompt_embeds.shape[0]
|
686 |
+
|
687 |
+
device = self._execution_device
|
688 |
+
|
689 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
690 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
691 |
+
# corresponds to doing no classifier free guidance.
|
692 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
693 |
+
|
694 |
+
# 3. Encode input prompt
|
695 |
+
(
|
696 |
+
prompt_embeds,
|
697 |
+
prompt_attention_mask,
|
698 |
+
negative_prompt_embeds,
|
699 |
+
negative_prompt_attention_mask,
|
700 |
+
) = self.encode_prompt(
|
701 |
+
prompt,
|
702 |
+
do_classifier_free_guidance,
|
703 |
+
negative_prompt=negative_prompt,
|
704 |
+
num_images_per_prompt=num_images_per_prompt,
|
705 |
+
device=device,
|
706 |
+
prompt_embeds=prompt_embeds,
|
707 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
708 |
+
prompt_attention_mask=prompt_attention_mask,
|
709 |
+
negative_prompt_attention_mask=negative_prompt_attention_mask,
|
710 |
+
clean_caption=clean_caption,
|
711 |
+
max_sequence_length=max_sequence_length,
|
712 |
+
)
|
713 |
+
if do_classifier_free_guidance:
|
714 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
715 |
+
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
|
716 |
+
|
717 |
+
# 4. Prepare timesteps
|
718 |
+
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
719 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
720 |
+
|
721 |
+
# 5. Prepare latents.
|
722 |
+
latent_channels = self.transformer.config.in_channels
|
723 |
+
latents = self.prepare_latents(
|
724 |
+
batch_size * num_images_per_prompt,
|
725 |
+
latent_channels,
|
726 |
+
num_frames,
|
727 |
+
height,
|
728 |
+
width,
|
729 |
+
prompt_embeds.dtype,
|
730 |
+
device,
|
731 |
+
generator,
|
732 |
+
latents,
|
733 |
+
)
|
734 |
+
|
735 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
736 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
737 |
+
|
738 |
+
# 6.1 Prepare micro-conditions.
|
739 |
+
added_cond_kwargs = {"resolution": None, "aspect_ratio": None}
|
740 |
+
|
741 |
+
# 7. Denoising loop
|
742 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
743 |
+
|
744 |
+
progress_wrap = tqdm.tqdm if verbose else (lambda x: x)
|
745 |
+
for i, t in progress_wrap(list(enumerate(timesteps))):
|
746 |
+
|
747 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
748 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
749 |
+
|
750 |
+
current_timestep = t
|
751 |
+
if not torch.is_tensor(current_timestep):
|
752 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
753 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
754 |
+
is_mps = latent_model_input.device.type == "mps"
|
755 |
+
if isinstance(current_timestep, float):
|
756 |
+
dtype = torch.float32 if is_mps else torch.float64
|
757 |
+
else:
|
758 |
+
dtype = torch.int32 if is_mps else torch.int64
|
759 |
+
current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device)
|
760 |
+
elif len(current_timestep.shape) == 0:
|
761 |
+
current_timestep = current_timestep[None].to(latent_model_input.device)
|
762 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
763 |
+
current_timestep = current_timestep.expand(latent_model_input.shape[0])
|
764 |
+
|
765 |
+
if prompt_embeds.ndim == 3:
|
766 |
+
prompt_embeds = prompt_embeds.unsqueeze(1) # b l d -> b 1 l d
|
767 |
+
if prompt_attention_mask.ndim == 2:
|
768 |
+
prompt_attention_mask = prompt_attention_mask.unsqueeze(1) # b l -> b 1 l
|
769 |
+
# prepare attention_mask.
|
770 |
+
# b c t h w -> b t h w
|
771 |
+
attention_mask = torch.ones_like(latent_model_input)[:, 0]
|
772 |
+
# predict noise model_output
|
773 |
+
noise_pred = self.transformer(
|
774 |
+
latent_model_input,
|
775 |
+
attention_mask=attention_mask,
|
776 |
+
encoder_hidden_states=prompt_embeds,
|
777 |
+
encoder_attention_mask=prompt_attention_mask,
|
778 |
+
timestep=current_timestep,
|
779 |
+
added_cond_kwargs=added_cond_kwargs,
|
780 |
+
return_dict=False,
|
781 |
+
)[0]
|
782 |
+
|
783 |
+
# perform guidance
|
784 |
+
if do_classifier_free_guidance:
|
785 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
786 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
787 |
+
|
788 |
+
# learned sigma
|
789 |
+
if self.transformer.config.out_channels // 2 == latent_channels:
|
790 |
+
noise_pred = noise_pred.chunk(2, dim=1)[0]
|
791 |
+
else:
|
792 |
+
noise_pred = noise_pred
|
793 |
+
|
794 |
+
# compute previous image: x_t -> x_t-1
|
795 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
796 |
+
|
797 |
+
# call the callback, if provided
|
798 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
799 |
+
if callback is not None and i % callback_steps == 0:
|
800 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
801 |
+
callback(step_idx, t, latents)
|
802 |
+
|
803 |
+
if not output_type == "latents":
|
804 |
+
video = self.decode_latents(latents)
|
805 |
+
video = video[:, :num_frames, :height, :width]
|
806 |
+
else:
|
807 |
+
video = latents
|
808 |
+
return AllegroPipelineOutput(video=video)
|
809 |
+
|
810 |
+
# Offload all models
|
811 |
+
self.maybe_free_model_hooks()
|
812 |
+
|
813 |
+
if not return_dict:
|
814 |
+
return (video,)
|
815 |
+
|
816 |
+
return AllegroPipelineOutput(video=video)
|
817 |
+
|
818 |
+
def decode_latents(self, latents):
|
819 |
+
video = self.vae.decode(latents.to(self.vae.dtype) / self.vae.scale_factor).sample
|
820 |
+
# b t c h w -> b t h w c
|
821 |
+
video = ((video / 2.0 + 0.5).clamp(0, 1) * 255).to(dtype=torch.uint8).cpu().permute(0, 1, 3, 4, 2).contiguous()
|
822 |
+
return video
|
assets/Allegro_banner.gif
ADDED
assets/banner_white.gif
ADDED
assets/demo_video.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3babd856c116886c00f3e2f8349bba8ef5a58833e0451787ec9080efaf9272d
|
3 |
+
size 1439517
|
assets/rhymes_1.png
ADDED
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate==0.33.0
|
2 |
+
diffusers==0.28.0
|
3 |
+
numpy==1.24.4
|
4 |
+
torch==2.4.1
|
5 |
+
tqdm==4.66.2
|
6 |
+
transformers==4.40.1
|
7 |
+
xformers==0.0.28.post1
|
8 |
+
einops==0.7.0
|
9 |
+
decord==0.6.0
|
10 |
+
sentencepiece==0.1.99
|
11 |
+
imageio
|
12 |
+
imageio-ffmpeg
|
13 |
+
ftfy
|
14 |
+
bs4
|
single_inference.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import imageio
|
3 |
+
import os
|
4 |
+
import argparse
|
5 |
+
from diffusers.schedulers import EulerAncestralDiscreteScheduler
|
6 |
+
from transformers import T5EncoderModel, T5Tokenizer
|
7 |
+
from allegro.pipelines.pipeline_allegro import AllegroPipeline
|
8 |
+
from allegro.models.vae.vae_allegro import AllegroAutoencoderKL3D
|
9 |
+
from allegro.models.transformers.transformer_3d_allegro import AllegroTransformer3DModel
|
10 |
+
|
11 |
+
|
12 |
+
def single_inference(args):
|
13 |
+
dtype=torch.bfloat16
|
14 |
+
|
15 |
+
# vae have better formance in float32
|
16 |
+
vae = AllegroAutoencoderKL3D.from_pretrained(args.vae, torch_dtype=torch.float32).cuda()
|
17 |
+
|
18 |
+
vae.eval()
|
19 |
+
|
20 |
+
text_encoder = T5EncoderModel.from_pretrained(
|
21 |
+
args.text_encoder,
|
22 |
+
torch_dtype=dtype
|
23 |
+
)
|
24 |
+
text_encoder.eval()
|
25 |
+
|
26 |
+
tokenizer = T5Tokenizer.from_pretrained(
|
27 |
+
args.tokenizer,
|
28 |
+
)
|
29 |
+
|
30 |
+
scheduler = EulerAncestralDiscreteScheduler()
|
31 |
+
|
32 |
+
transformer = AllegroTransformer3DModel.from_pretrained(
|
33 |
+
args.dit,
|
34 |
+
torch_dtype=dtype
|
35 |
+
).cuda()
|
36 |
+
transformer.eval()
|
37 |
+
|
38 |
+
allegro_pipeline = AllegroPipeline(
|
39 |
+
vae=vae,
|
40 |
+
text_encoder=text_encoder,
|
41 |
+
tokenizer=tokenizer,
|
42 |
+
scheduler=scheduler,
|
43 |
+
transformer=transformer
|
44 |
+
).to("cuda:0")
|
45 |
+
|
46 |
+
|
47 |
+
positive_prompt = """
|
48 |
+
(masterpiece), (best quality), (ultra-detailed), (unwatermarked),
|
49 |
+
{}
|
50 |
+
emotional, harmonious, vignette, 4k epic detailed, shot on kodak, 35mm photo,
|
51 |
+
sharp focus, high budget, cinemascope, moody, epic, gorgeous
|
52 |
+
"""
|
53 |
+
|
54 |
+
negative_prompt = """
|
55 |
+
nsfw, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality,
|
56 |
+
low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry.
|
57 |
+
"""
|
58 |
+
|
59 |
+
user_prompt = positive_prompt.format(args.user_prompt.lower().strip())
|
60 |
+
|
61 |
+
if args.enable_cpu_offload:
|
62 |
+
allegro_pipeline.enable_sequential_cpu_offload()
|
63 |
+
print("cpu offload enabled")
|
64 |
+
|
65 |
+
out_video = allegro_pipeline(
|
66 |
+
user_prompt,
|
67 |
+
negative_prompt = negative_prompt,
|
68 |
+
num_frames=88,
|
69 |
+
height=720,
|
70 |
+
width=1280,
|
71 |
+
num_inference_steps=args.num_sampling_steps,
|
72 |
+
guidance_scale=args.guidance_scale,
|
73 |
+
max_sequence_length=512,
|
74 |
+
generator = torch.Generator(device="cuda:0").manual_seed(args.seed)
|
75 |
+
).video[0]
|
76 |
+
|
77 |
+
imageio.mimwrite(args.save_path, out_video, fps=15, quality=8) # highest quality is 10, lowest is 0
|
78 |
+
|
79 |
+
|
80 |
+
if __name__ == "__main__":
|
81 |
+
|
82 |
+
parser = argparse.ArgumentParser()
|
83 |
+
parser.add_argument("--user_prompt", type=str, default='')
|
84 |
+
parser.add_argument("--vae", type=str, default='')
|
85 |
+
parser.add_argument("--dit", type=str, default='')
|
86 |
+
parser.add_argument("--text_encoder", type=str, default='')
|
87 |
+
parser.add_argument("--tokenizer", type=str, default='')
|
88 |
+
parser.add_argument("--save_path", type=str, default="./output_videos/test_video.mp4")
|
89 |
+
parser.add_argument("--guidance_scale", type=float, default=7.5)
|
90 |
+
parser.add_argument("--num_sampling_steps", type=int, default=100)
|
91 |
+
parser.add_argument("--seed", type=int, default=42)
|
92 |
+
parser.add_argument("--enable_cpu_offload", action='store_true')
|
93 |
+
|
94 |
+
args = parser.parse_args()
|
95 |
+
|
96 |
+
if os.path.dirname(args.save_path) != '' and (not os.path.exists(os.path.dirname(args.save_path))):
|
97 |
+
os.makedirs(os.path.dirname(args.save_path))
|
98 |
+
|
99 |
+
single_inference(args)
|
vae_inference.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from einops import rearrange
|
2 |
+
import torch
|
3 |
+
import imageio
|
4 |
+
import os
|
5 |
+
import argparse
|
6 |
+
from allegro.models.vae.vae_allegro import AllegroAutoencoderKL3D
|
7 |
+
|
8 |
+
from decord import VideoReader
|
9 |
+
|
10 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
11 |
+
torch.backends.cudnn.allow_tf32 = True
|
12 |
+
|
13 |
+
def vae_inference(args):
|
14 |
+
|
15 |
+
# vae have better formance in float32
|
16 |
+
vae = AllegroAutoencoderKL3D.from_pretrained(args.vae, torch_dtype=torch.float32).cuda()
|
17 |
+
|
18 |
+
vae.eval()
|
19 |
+
|
20 |
+
vr = VideoReader(args.input_video)
|
21 |
+
|
22 |
+
frames = vr.get_batch(range(len(vr))).asnumpy()
|
23 |
+
frames = torch.from_numpy(frames).float() / 255.0
|
24 |
+
frames = frames * 2.0 - 1.0
|
25 |
+
frames = rearrange(frames, 'f h w c -> 1 c f h w')
|
26 |
+
frames = frames[:,:,:88]
|
27 |
+
|
28 |
+
frames = frames.cuda().to(torch.float32)
|
29 |
+
with torch.no_grad():
|
30 |
+
out_video = vae(frames, encoder_local_batch_size=args.local_batch_size, decoder_local_batch_size=args.local_batch_size).sample
|
31 |
+
out_video = ((out_video / 2.0 + 0.5).clamp(0, 1) * 255).to(dtype=torch.uint8).cpu().permute(0, 1, 3, 4, 2).contiguous()
|
32 |
+
|
33 |
+
imageio.mimwrite(f"{args.save_path}/test_vae.mp4", out_video[0], fps=15, quality=8) # highest quality is 10, lowest is 0
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
if __name__ == "__main__":
|
38 |
+
|
39 |
+
parser = argparse.ArgumentParser()
|
40 |
+
parser.add_argument("--vae", type=str, default='')
|
41 |
+
parser.add_argument("--input_video", type=str, default="resources/demo_video.mp4")
|
42 |
+
parser.add_argument("--save_path", type=str, default="./output_videos")
|
43 |
+
parser.add_argument("--local_batch_size", type=int, default=2)
|
44 |
+
|
45 |
+
|
46 |
+
args = parser.parse_args()
|
47 |
+
if not os.path.exists(args.save_path):
|
48 |
+
os.makedirs(args.save_path)
|
49 |
+
|
50 |
+
vae_inference(args)
|