Spaces:
Runtime error
Runtime error
# Adapted from Open-Sora-Plan | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# -------------------------------------------------------- | |
# References: | |
# Open-Sora-Plan: https://github.com/PKU-YuanGroup/Open-Sora-Plan | |
# -------------------------------------------------------- | |
import html | |
import inspect | |
import math | |
import re | |
import urllib.parse as ul | |
from typing import Callable, List, Optional, Tuple, Union | |
from einops import rearrange | |
import ftfy | |
import torch | |
from dataclasses import dataclass | |
import tqdm | |
from bs4 import BeautifulSoup | |
from diffusers import DiffusionPipeline | |
from diffusers.schedulers import EulerAncestralDiscreteScheduler | |
from diffusers.utils import ( | |
BACKENDS_MAPPING, | |
is_bs4_available, | |
is_ftfy_available, | |
logging, | |
replace_example_docstring, | |
BaseOutput | |
) | |
from diffusers.utils.torch_utils import randn_tensor | |
from transformers import T5EncoderModel, T5Tokenizer | |
logger = logging.get_logger(__name__) | |
from allegro.models.transformers.transformer_3d_allegro import AllegroTransformer3DModel | |
from allegro.models.vae.vae_allegro import AllegroAutoencoderKL3D | |
class AllegroPipelineOutput(BaseOutput): | |
r""" | |
Output class for Allegro pipelines. | |
Args: | |
video (`torch.Tensor`): | |
Torch tensor with shape `(batch_size, num_frames, channels, height, width)`. | |
""" | |
video: torch.Tensor | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> import torch | |
>>> # You can replace the your_path_to_model with your own path. | |
>>> pipe = AllegroPipeline.from_pretrained(your_path_to_model, torch_dtype=torch.float16, trust_remote_code=True) | |
>>> prompt = "A small cactus with a happy face in the Sahara desert." | |
>>> image = pipe(prompt).video[0] | |
``` | |
""" | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
def retrieve_timesteps( | |
scheduler, | |
num_inference_steps: Optional[int] = None, | |
device: Optional[Union[str, torch.device]] = None, | |
timesteps: Optional[List[int]] = None, | |
**kwargs, | |
): | |
""" | |
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
Args: | |
scheduler (`SchedulerMixin`): | |
The scheduler to get timesteps from. | |
num_inference_steps (`int`): | |
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
must be `None`. | |
device (`str` or `torch.device`, *optional*): | |
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default | |
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps` | |
must be `None`. | |
Returns: | |
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
second element is the number of inference steps. | |
""" | |
if timesteps is not None: | |
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
if not accepts_timesteps: | |
raise ValueError( | |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
f" timestep schedules. Please check whether you are using the correct scheduler." | |
) | |
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
num_inference_steps = len(timesteps) | |
else: | |
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
return timesteps, num_inference_steps | |
class AllegroPipeline(DiffusionPipeline): | |
r""" | |
Pipeline for text-to-image generation using Allegro. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
Args: | |
vae ([`AllegroAutoEncoderKL3D`]): | |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
text_encoder ([`T5EncoderModel`]): | |
Frozen text-encoder. PixArt-Alpha uses | |
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the | |
[t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant. | |
tokenizer (`T5Tokenizer`): | |
Tokenizer of class | |
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer). | |
transformer ([`AllegroTransformer3DModel`]): | |
A text conditioned `AllegroTransformer3DModel` to denoise the encoded image latents. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `transformer` to denoise the encoded image latents. | |
""" | |
bad_punct_regex = re.compile( | |
r"[" + "#®•©™&@·º½¾¿¡§~" + "\)" + "\(" + "\]" + "\[" + "\}" + "\{" + "\|" + "\\" + "\/" + "\*" + r"]{1,}" | |
) # noqa | |
_optional_components = ["tokenizer", "text_encoder", "vae", "transformer", "scheduler"] | |
model_cpu_offload_seq = "text_encoder->transformer->vae" | |
def __init__( | |
self, | |
tokenizer: Optional[T5Tokenizer] = None, | |
text_encoder: Optional[T5EncoderModel] = None, | |
vae: Optional[AllegroAutoencoderKL3D] = None, | |
transformer: Optional[AllegroTransformer3DModel] = None, | |
scheduler: Optional[EulerAncestralDiscreteScheduler] = None, | |
device: torch.device = torch.device("cuda"), | |
dtype: torch.dtype = torch.float16, | |
): | |
super().__init__() | |
self.register_modules( | |
tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler | |
) | |
# Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt | |
def encode_prompt( | |
self, | |
prompt: Union[str, List[str]], | |
do_classifier_free_guidance: bool = True, | |
negative_prompt: str = "", | |
num_images_per_prompt: int = 1, | |
device: Optional[torch.device] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
prompt_attention_mask: Optional[torch.FloatTensor] = None, | |
negative_prompt_attention_mask: Optional[torch.FloatTensor] = None, | |
clean_caption: bool = False, | |
max_sequence_length: int = 120, | |
**kwargs, | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` | |
instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For | |
PixArt-Alpha, this should be "". | |
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): | |
whether to use classifier free guidance or not | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
number of images that should be generated per prompt | |
device: (`torch.device`, *optional*): | |
torch device to place the resulting embeddings on | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. For PixArt-Alpha, it's should be the embeddings of the "" | |
string. | |
clean_caption (`bool`, defaults to `False`): | |
If `True`, the function will preprocess and clean the provided caption before encoding. | |
max_sequence_length (`int`, defaults to 120): Maximum sequence length to use for the prompt. | |
""" | |
embeds_initially_provided = prompt_embeds is not None and negative_prompt_embeds is not None | |
if device is None: | |
device = self._execution_device | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
# See Section 3.1. of the paper. | |
max_length = max_sequence_length | |
if prompt_embeds is None: | |
prompt = self._text_preprocessing(prompt, clean_caption=clean_caption) | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
add_special_tokens=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
text_input_ids, untruncated_ids | |
): | |
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1]) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {max_length} tokens: {removed_text}" | |
) | |
prompt_attention_mask = text_inputs.attention_mask | |
prompt_attention_mask = prompt_attention_mask.to(device) | |
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask) | |
prompt_embeds = prompt_embeds[0] | |
if self.text_encoder is not None: | |
dtype = self.text_encoder.dtype | |
elif self.transformer is not None: | |
dtype = self.transformer.dtype | |
else: | |
dtype = None | |
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
prompt_attention_mask = prompt_attention_mask.view(bs_embed, -1) | |
prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance and negative_prompt_embeds is None: | |
uncond_tokens = [negative_prompt] * batch_size | |
uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption) | |
max_length = prompt_embeds.shape[1] | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_attention_mask=True, | |
add_special_tokens=True, | |
return_tensors="pt", | |
) | |
negative_prompt_attention_mask = uncond_input.attention_mask | |
negative_prompt_attention_mask = negative_prompt_attention_mask.to(device) | |
negative_prompt_embeds = self.text_encoder( | |
uncond_input.input_ids.to(device), | |
attention_mask=negative_prompt_attention_mask, | |
) | |
negative_prompt_embeds = negative_prompt_embeds[0] | |
if do_classifier_free_guidance: | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) | |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
negative_prompt_attention_mask = negative_prompt_attention_mask.view(bs_embed, -1) | |
negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1) | |
else: | |
negative_prompt_embeds = None | |
negative_prompt_attention_mask = None | |
return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def check_inputs( | |
self, | |
prompt, | |
num_frames, | |
height, | |
width, | |
negative_prompt, | |
callback_steps, | |
prompt_embeds=None, | |
negative_prompt_embeds=None, | |
prompt_attention_mask=None, | |
negative_prompt_attention_mask=None, | |
): | |
if num_frames <= 0: | |
raise ValueError(f"`num_frames` have to be positive but is {num_frames}.") | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
if (callback_steps is None) or ( | |
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
if prompt is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt is None and prompt_embeds is None: | |
raise ValueError( | |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
) | |
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
if negative_prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
if prompt_embeds is not None and prompt_attention_mask is None: | |
raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.") | |
if negative_prompt_embeds is not None and negative_prompt_attention_mask is None: | |
raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.") | |
if prompt_embeds is not None and negative_prompt_embeds is not None: | |
if prompt_embeds.shape != negative_prompt_embeds.shape: | |
raise ValueError( | |
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
f" {negative_prompt_embeds.shape}." | |
) | |
if prompt_attention_mask.shape != negative_prompt_attention_mask.shape: | |
raise ValueError( | |
"`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but" | |
f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`" | |
f" {negative_prompt_attention_mask.shape}." | |
) | |
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing | |
def _text_preprocessing(self, text, clean_caption=False): | |
if clean_caption and not is_bs4_available(): | |
logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`")) | |
logger.warning("Setting `clean_caption` to False...") | |
clean_caption = False | |
if clean_caption and not is_ftfy_available(): | |
logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`")) | |
logger.warning("Setting `clean_caption` to False...") | |
clean_caption = False | |
if not isinstance(text, (tuple, list)): | |
text = [text] | |
def process(text: str): | |
if clean_caption: | |
text = self._clean_caption(text) | |
text = self._clean_caption(text) | |
else: | |
text = text.lower().strip() | |
return text | |
return [process(t) for t in text] | |
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption | |
def _clean_caption(self, caption): | |
caption = str(caption) | |
caption = ul.unquote_plus(caption) | |
caption = caption.strip().lower() | |
caption = re.sub("<person>", "person", caption) | |
# urls: | |
caption = re.sub( | |
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", | |
# noqa | |
"", | |
caption, | |
) # regex for urls | |
caption = re.sub( | |
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", | |
# noqa | |
"", | |
caption, | |
) # regex for urls | |
# html: | |
caption = BeautifulSoup(caption, features="html.parser").text | |
# @<nickname> | |
caption = re.sub(r"@[\w\d]+\b", "", caption) | |
# 31C0—31EF CJK Strokes | |
# 31F0—31FF Katakana Phonetic Extensions | |
# 3200—32FF Enclosed CJK Letters and Months | |
# 3300—33FF CJK Compatibility | |
# 3400—4DBF CJK Unified Ideographs Extension A | |
# 4DC0—4DFF Yijing Hexagram Symbols | |
# 4E00—9FFF CJK Unified Ideographs | |
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption) | |
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption) | |
caption = re.sub(r"[\u3200-\u32ff]+", "", caption) | |
caption = re.sub(r"[\u3300-\u33ff]+", "", caption) | |
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption) | |
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption) | |
# caption = re.sub(r"[\u4e00-\u9fff]+", "", caption) | |
####################################################### | |
# все виды тире / all types of dash --> "-" | |
caption = re.sub( | |
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", | |
# noqa | |
"-", | |
caption, | |
) | |
# кавычки к одному стандарту | |
caption = re.sub(r"[`´«»“”¨]", '"', caption) | |
caption = re.sub(r"[‘’]", "'", caption) | |
# " | |
caption = re.sub(r""?", "", caption) | |
# & | |
caption = re.sub(r"&", "", caption) | |
# ip adresses: | |
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption) | |
# article ids: | |
caption = re.sub(r"\d:\d\d\s+$", "", caption) | |
# \n | |
caption = re.sub(r"\\n", " ", caption) | |
# "#123" | |
caption = re.sub(r"#\d{1,3}\b", "", caption) | |
# "#12345.." | |
caption = re.sub(r"#\d{5,}\b", "", caption) | |
# "123456.." | |
caption = re.sub(r"\b\d{6,}\b", "", caption) | |
# filenames: | |
caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption) | |
# | |
caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT""" | |
caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT""" | |
caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT | |
caption = re.sub(r"\s+\.\s+", r" ", caption) # " . " | |
# this-is-my-cute-cat / this_is_my_cute_cat | |
regex2 = re.compile(r"(?:\-|\_)") | |
if len(re.findall(regex2, caption)) > 3: | |
caption = re.sub(regex2, " ", caption) | |
caption = ftfy.fix_text(caption) | |
caption = html.unescape(html.unescape(caption)) | |
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640 | |
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc | |
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231 | |
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption) | |
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption) | |
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption) | |
caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption) | |
caption = re.sub(r"\bpage\s+\d+\b", "", caption) | |
caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a... | |
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption) | |
caption = re.sub(r"\b\s+\:\s+", r": ", caption) | |
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption) | |
caption = re.sub(r"\s+", " ", caption) | |
caption.strip() | |
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption) | |
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption) | |
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption) | |
caption = re.sub(r"^\.\S+$", "", caption) | |
return caption.strip() | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents | |
def prepare_latents( | |
self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None | |
): | |
shape = ( | |
batch_size, | |
num_channels_latents, | |
(math.ceil((int(num_frames) - 1) / self.vae.vae_scale_factor[0]) + 1) | |
if int(num_frames) % 2 == 1 | |
else math.ceil(int(num_frames) / self.vae.vae_scale_factor[0]), | |
math.ceil(int(height) / self.vae.vae_scale_factor[1]), | |
math.ceil(int(width) / self.vae.vae_scale_factor[2]), | |
) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
else: | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
negative_prompt: str = "", | |
num_inference_steps: int = 100, | |
timesteps: List[int] = None, | |
guidance_scale: float = 7.5, | |
num_images_per_prompt: Optional[int] = 1, | |
num_frames: Optional[int] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
prompt_attention_mask: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_attention_mask: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: int = 1, | |
clean_caption: bool = True, | |
max_sequence_length: int = 512, | |
verbose: bool = True, | |
) -> Union[AllegroPipelineOutput, Tuple]: | |
""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
instead. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
num_inference_steps (`int`, *optional*, defaults to 100): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps` | |
timesteps are used. Must be in descending order. | |
guidance_scale (`float`, *optional*, defaults to 7.0): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
num_frames: (`int`, *optional*, defaults to 88): | |
The number controls the generated video frames. | |
height (`int`, *optional*, defaults to self.unet.config.sample_size): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to self.unet.config.sample_size): | |
The width in pixels of the generated image. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
[`schedulers.DDIMScheduler`], will be ignored for others. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
prompt_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask for text embeddings. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not | |
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. | |
negative_prompt_attention_mask (`torch.FloatTensor`, *optional*): | |
Pre-generated attention mask for negative text embeddings. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple. | |
callback (`Callable`, *optional*): | |
A function that will be called every `callback_steps` steps during inference. The function will be | |
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function will be called. If not specified, the callback will be | |
called at every step. | |
clean_caption (`bool`, *optional*, defaults to `True`): | |
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to | |
be installed. If the dependencies are not installed, the embeddings will be created from the raw | |
prompt. | |
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`. | |
Examples: | |
Returns: | |
[`~pipelines.ImagePipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is | |
returned where the first element is a list with the generated images | |
""" | |
# 1. Check inputs. Raise error if not correct | |
num_frames = num_frames or self.transformer.config.sample_size_t * self.vae.vae_scale_factor[0] | |
height = height or self.transformer.config.sample_size[0] * self.vae.vae_scale_factor[1] | |
width = width or self.transformer.config.sample_size[1] * self.vae.vae_scale_factor[2] | |
self.check_inputs( | |
prompt, | |
num_frames, | |
height, | |
width, | |
negative_prompt, | |
callback_steps, | |
prompt_embeds, | |
negative_prompt_embeds, | |
prompt_attention_mask, | |
negative_prompt_attention_mask, | |
) | |
# 2. Default height and width to transformer | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# 3. Encode input prompt | |
( | |
prompt_embeds, | |
prompt_attention_mask, | |
negative_prompt_embeds, | |
negative_prompt_attention_mask, | |
) = self.encode_prompt( | |
prompt, | |
do_classifier_free_guidance, | |
negative_prompt=negative_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
device=device, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
prompt_attention_mask=prompt_attention_mask, | |
negative_prompt_attention_mask=negative_prompt_attention_mask, | |
clean_caption=clean_caption, | |
max_sequence_length=max_sequence_length, | |
) | |
if do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0) | |
# 4. Prepare timesteps | |
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
# 5. Prepare latents. | |
latent_channels = self.transformer.config.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
latent_channels, | |
num_frames, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 6.1 Prepare micro-conditions. | |
added_cond_kwargs = {"resolution": None, "aspect_ratio": None} | |
# 7. Denoising loop | |
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
progress_wrap = tqdm.tqdm if verbose else (lambda x: x) | |
for i, t in progress_wrap(list(enumerate(timesteps))): | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
current_timestep = t | |
if not torch.is_tensor(current_timestep): | |
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
# This would be a good case for the `match` statement (Python 3.10+) | |
is_mps = latent_model_input.device.type == "mps" | |
if isinstance(current_timestep, float): | |
dtype = torch.float32 if is_mps else torch.float64 | |
else: | |
dtype = torch.int32 if is_mps else torch.int64 | |
current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device) | |
elif len(current_timestep.shape) == 0: | |
current_timestep = current_timestep[None].to(latent_model_input.device) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
current_timestep = current_timestep.expand(latent_model_input.shape[0]) | |
if prompt_embeds.ndim == 3: | |
prompt_embeds = prompt_embeds.unsqueeze(1) # b l d -> b 1 l d | |
if prompt_attention_mask.ndim == 2: | |
prompt_attention_mask = prompt_attention_mask.unsqueeze(1) # b l -> b 1 l | |
# prepare attention_mask. | |
# b c t h w -> b t h w | |
attention_mask = torch.ones_like(latent_model_input)[:, 0] | |
# predict noise model_output | |
noise_pred = self.transformer( | |
latent_model_input, | |
attention_mask=attention_mask, | |
encoder_hidden_states=prompt_embeds, | |
encoder_attention_mask=prompt_attention_mask, | |
timestep=current_timestep, | |
added_cond_kwargs=added_cond_kwargs, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# learned sigma | |
if self.transformer.config.out_channels // 2 == latent_channels: | |
noise_pred = noise_pred.chunk(2, dim=1)[0] | |
else: | |
noise_pred = noise_pred | |
# compute previous image: x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
if callback is not None and i % callback_steps == 0: | |
step_idx = i // getattr(self.scheduler, "order", 1) | |
callback(step_idx, t, latents) | |
if not output_type == "latents": | |
video = self.decode_latents(latents) | |
video = video[:, :num_frames, :height, :width] | |
else: | |
video = latents | |
return AllegroPipelineOutput(video=video) | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (video,) | |
return AllegroPipelineOutput(video=video) | |
def decode_latents(self, latents): | |
video = self.vae.decode(latents.to(self.vae.dtype) / self.vae.scale_factor).sample | |
# b t c h w -> b t h w c | |
video = ((video / 2.0 + 0.5).clamp(0, 1) * 255).to(dtype=torch.uint8).cpu().permute(0, 1, 3, 4, 2).contiguous() | |
return video | |