Mahiruoshi's picture
Upload 122 files
879cbd2
raw
history blame
10.5 kB
# flake8: noqa: E402
import sys, os
import logging
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
logging.basicConfig(
level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
)
logger = logging.getLogger(__name__)
import datetime
import numpy as np
import torch
import argparse
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
import gradio as gr
import webbrowser
import re
net_g = None
BandList = {
"PoppinParty":["香澄","有咲","たえ","りみ","沙綾"],
"Afterglow":["蘭","モカ","ひまり","巴","つぐみ"],
"HelloHappyWorld":["こころ","ミッシェル","薫","花音","はぐみ"],
"PastelPalettes":["彩","日菜","千聖","イヴ","麻弥"],
"Roselia":["友希那","紗夜","リサ","燐子","あこ"],
"RaiseASuilen":["レイヤ","ロック","ますき","チュチュ","パレオ"],
"Morfonica":["ましろ","瑠唯","つくし","七深","透子"],
"MyGo":["燈","愛音","そよ","立希","楽奈"],
"AveMujica(初华和喵梦没法用)":["祥子","睦","海鈴","初華","にゃむ"],
}
if sys.platform == "darwin" and torch.backends.mps.is_available():
device = "mps"
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
else:
device = "cuda"
def is_japanese(string):
for ch in string:
if ord(ch) > 0x3040 and ord(ch) < 0x30FF:
return True
return False
def extrac(text):
text = re.sub("<[^>]*>","",text)
result_list = re.split(r'\n', text)
final_list = []
for i in result_list:
i = i.replace('\n','').replace(' ','')
#Current length of single sentence: 20
if len(i)>1:
if len(i) > 20:
try:
cur_list = re.split(r'。|!', i)
for i in cur_list:
if len(i)>1:
final_list.append(i+'。')
except:
pass
else:
final_list.append(i)
'''
final_list.append(i)
'''
final_list = [x for x in final_list if x != '']
print(final_list)
return final_list
def get_text(text, language_str, hps):
norm_text, phone, tone, word2ph = clean_text(text, language_str)
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
if hps.data.add_blank:
phone = commons.intersperse(phone, 0)
tone = commons.intersperse(tone, 0)
language = commons.intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert = get_bert(norm_text, word2ph, language_str, device)
del word2ph
assert bert.shape[-1] == len(phone), phone
if language_str == "ZH":
bert = bert
ja_bert = torch.zeros(768, len(phone))
elif language_str == "JA":
ja_bert = bert
bert = torch.zeros(1024, len(phone))
else:
bert = torch.zeros(1024, len(phone))
ja_bert = torch.zeros(768, len(phone))
assert bert.shape[-1] == len(
phone
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
phone = torch.LongTensor(phone)
tone = torch.LongTensor(tone)
language = torch.LongTensor(language)
return bert, ja_bert, phone, tone, language
def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language):
global net_g
bert, ja_bert, phones, tones, lang_ids = get_text(text, language, hps)
with torch.no_grad():
x_tst = phones.to(device).unsqueeze(0)
tones = tones.to(device).unsqueeze(0)
lang_ids = lang_ids.to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
ja_bert = ja_bert.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
del phones
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
audio = (
net_g.infer(
x_tst,
x_tst_lengths,
speakers,
tones,
lang_ids,
bert,
ja_bert,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
)[0][0, 0]
.data.cpu()
.float()
.numpy()
)
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
return audio
def tts_fn(
text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,LongSentence
):
if not LongSentence:
with torch.no_grad():
audio = infer(
text,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
sid=speaker,
language= "JP" if is_japanese(text) else "ZH",
)
torch.cuda.empty_cache()
return (hps.data.sampling_rate, audio)
else:
audiopath = 'voice.wav'
a = ['【','[','(','(']
b = ['】',']',')',')']
for i in a:
text = text.replace(i,'<')
for i in b:
text = text.replace(i,'>')
final_list = extrac(text.replace('“','').replace('”',''))
audio_fin = []
for sentence in final_list:
with torch.no_grad():
audio = infer(
sentence,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
sid=speaker,
language= "JP" if is_japanese(text) else "ZH",
)
print(sentence)
audio_fin.append(audio)
return (hps.data.sampling_rate, np.concatenate(audio_fin))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-m", "--model", default="./logs/BangDream/G_6000.pth", help="path of your model"
)
parser.add_argument(
"-c",
"--config",
default="./logs/BangDream/config.json",
help="path of your config file",
)
parser.add_argument(
"--share", default=True, help="make link public", action="store_true"
)
parser.add_argument(
"-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log"
)
args = parser.parse_args()
if args.debug:
logger.info("Enable DEBUG-LEVEL log")
logging.basicConfig(level=logging.DEBUG)
hps = utils.get_hparams_from_file(args.config)
device = (
"cuda:0"
if torch.cuda.is_available()
else (
"mps"
if sys.platform == "darwin" and torch.backends.mps.is_available()
else "cpu"
)
)
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model,
).to(device)
_ = net_g.eval()
_ = utils.load_checkpoint(args.model, net_g, None, skip_optimizer=True)
speaker_ids = hps.data.spk2id
speakers = list(speaker_ids.keys())
languages = ["ZH", "JP"]
with gr.Blocks() as app:
for band in BandList:
with gr.TabItem(band):
for name in BandList[band]:
with gr.TabItem(name):
with gr.Row():
with gr.Column():
with gr.Row():
gr.Markdown(
'<div align="center">'
f'<img style="width:auto;height:400px;" src="file/image/{name}.png">'
'</div>'
)
LongSentence = gr.Checkbox(value=True, label="Generate LongSentence")
with gr.Column():
text = gr.TextArea(
label="Text",
placeholder="Input Text Here",
value="有个人躺在地上,哀嚎。\n有个人睡着了。\n睡在盒子里。\n我要把它打开。\n看看他的梦,是什么。",
)
btn = gr.Button("Generate!", variant="primary")
audio_output = gr.Audio(label="Output Audio")
with gr.Accordion(label="Setting", open=False):
sdp_ratio = gr.Slider(
minimum=0, maximum=1, value=0.2, step=0.01, label="SDP Ratio"
)
noise_scale = gr.Slider(
minimum=0.1, maximum=2, value=0.6, step=0.01, label="Noise Scale"
)
noise_scale_w = gr.Slider(
minimum=0.1, maximum=2, value=0.8, step=0.01, label="Noise Scale W"
)
length_scale = gr.Slider(
minimum=0.1, maximum=2, value=1, step=0.01, label="Length Scale"
)
speaker = gr.Dropdown(
choices=speakers, value=name, label="Speaker"
)
btn.click(
tts_fn,
inputs=[
text,
speaker,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
LongSentence,
],
outputs=[ audio_output],
)
app.launch()