File size: 10,544 Bytes
879cbd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# flake8: noqa: E402

import sys, os
import logging

logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)

logging.basicConfig(
    level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
)

logger = logging.getLogger(__name__)
import datetime
import numpy as np
import torch
import argparse
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
import gradio as gr
import webbrowser
import re

net_g = None
BandList = {
     "PoppinParty":["香澄","有咲","たえ","りみ","沙綾"],
     "Afterglow":["蘭","モカ","ひまり","巴","つぐみ"],
     "HelloHappyWorld":["こころ","ミッシェル","薫","花音","はぐみ"],
     "PastelPalettes":["彩","日菜","千聖","イヴ","麻弥"],
     "Roselia":["友希那","紗夜","リサ","燐子","あこ"],
     "RaiseASuilen":["レイヤ","ロック","ますき","チュチュ","パレオ"],
     "Morfonica":["ましろ","瑠唯","つくし","七深","透子"],
     "MyGo":["燈","愛音","そよ","立希","楽奈"],
     "AveMujica(初华和喵梦没法用)":["祥子","睦","海鈴","初華","にゃむ"],
}

if sys.platform == "darwin" and torch.backends.mps.is_available():
    device = "mps"
    os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
else:
    device = "cuda"

def is_japanese(string):
        for ch in string:
            if ord(ch) > 0x3040 and ord(ch) < 0x30FF:
                return True
        return False

def extrac(text):
    text = re.sub("<[^>]*>","",text)
    result_list = re.split(r'\n', text)
    final_list = []
    for i in result_list:
        i = i.replace('\n','').replace(' ','')
        #Current length of single sentence: 20 
        if len(i)>1:
            if len(i) > 20:
                try:
                    cur_list = re.split(r'。|!', i)
                    for i in cur_list:
                        if len(i)>1:
                            final_list.append(i+'。')
                except:
                    pass
            else:
                final_list.append(i)
            '''
        final_list.append(i)
        '''
    final_list = [x for x in final_list if x != '']
    print(final_list)
    return final_list

def get_text(text, language_str, hps):
    norm_text, phone, tone, word2ph = clean_text(text, language_str)
    phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)

    if hps.data.add_blank:
        phone = commons.intersperse(phone, 0)
        tone = commons.intersperse(tone, 0)
        language = commons.intersperse(language, 0)
        for i in range(len(word2ph)):
            word2ph[i] = word2ph[i] * 2
        word2ph[0] += 1
    bert = get_bert(norm_text, word2ph, language_str, device)
    del word2ph
    assert bert.shape[-1] == len(phone), phone

    if language_str == "ZH":
        bert = bert
        ja_bert = torch.zeros(768, len(phone))
    elif language_str == "JA":
        ja_bert = bert
        bert = torch.zeros(1024, len(phone))
    else:
        bert = torch.zeros(1024, len(phone))
        ja_bert = torch.zeros(768, len(phone))

    assert bert.shape[-1] == len(
        phone
    ), f"Bert seq len {bert.shape[-1]} != {len(phone)}"

    phone = torch.LongTensor(phone)
    tone = torch.LongTensor(tone)
    language = torch.LongTensor(language)
    return bert, ja_bert, phone, tone, language


def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language):
    global net_g
    bert, ja_bert, phones, tones, lang_ids = get_text(text, language, hps)
    with torch.no_grad():
        x_tst = phones.to(device).unsqueeze(0)
        tones = tones.to(device).unsqueeze(0)
        lang_ids = lang_ids.to(device).unsqueeze(0)
        bert = bert.to(device).unsqueeze(0)
        ja_bert = ja_bert.to(device).unsqueeze(0)
        x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
        del phones
        speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
        audio = (
            net_g.infer(
                x_tst,
                x_tst_lengths,
                speakers,
                tones,
                lang_ids,
                bert,
                ja_bert,
                sdp_ratio=sdp_ratio,
                noise_scale=noise_scale,
                noise_scale_w=noise_scale_w,
                length_scale=length_scale,
            )[0][0, 0]
            .data.cpu()
            .float()
            .numpy()
        )
        del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
        return audio


def tts_fn(
    text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,LongSentence
):
    if not LongSentence:
        with torch.no_grad():
            audio = infer(
                text,
                sdp_ratio=sdp_ratio,
                noise_scale=noise_scale,
                noise_scale_w=noise_scale_w,
                length_scale=length_scale,
                sid=speaker,
                language= "JP" if is_japanese(text) else "ZH",
            )
            torch.cuda.empty_cache()
        return (hps.data.sampling_rate, audio)
    else:
        audiopath = 'voice.wav'
        a = ['【','[','(','(']
        b = ['】',']',')',')']
        for i in a:
            text = text.replace(i,'<')
        for i in b:
            text = text.replace(i,'>')
        final_list = extrac(text.replace('“','').replace('”',''))
        audio_fin = []
        for sentence in final_list:
            with torch.no_grad():
                audio = infer(
                    sentence,
                    sdp_ratio=sdp_ratio,
                    noise_scale=noise_scale,
                    noise_scale_w=noise_scale_w,
                    length_scale=length_scale,
                    sid=speaker,
                    language= "JP" if is_japanese(text) else "ZH",
                )
                print(sentence)
            audio_fin.append(audio)
        return (hps.data.sampling_rate, np.concatenate(audio_fin))


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "-m", "--model", default="./logs/BangDream/G_6000.pth", help="path of your model"
    )
    parser.add_argument(
        "-c",
        "--config",
        default="./logs/BangDream/config.json",
        help="path of your config file",
    )
    parser.add_argument(
        "--share", default=True, help="make link public", action="store_true"
    )
    parser.add_argument(
        "-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log"
    )

    args = parser.parse_args()
    if args.debug:
        logger.info("Enable DEBUG-LEVEL log")
        logging.basicConfig(level=logging.DEBUG)
    hps = utils.get_hparams_from_file(args.config)

    device = (
        "cuda:0"
        if torch.cuda.is_available()
        else (
            "mps"
            if sys.platform == "darwin" and torch.backends.mps.is_available()
            else "cpu"
        )
    )
    net_g = SynthesizerTrn(
        len(symbols),
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        n_speakers=hps.data.n_speakers,
        **hps.model,
    ).to(device)
    _ = net_g.eval()

    _ = utils.load_checkpoint(args.model, net_g, None, skip_optimizer=True)

    speaker_ids = hps.data.spk2id
    speakers = list(speaker_ids.keys())
    languages = ["ZH", "JP"]
    with gr.Blocks() as app:
        for band in BandList:
            with gr.TabItem(band):
                for name in BandList[band]:
                    with gr.TabItem(name):
                        with gr.Row():
                            with gr.Column():
                                with gr.Row():
                                    gr.Markdown(
                                        '<div align="center">'
                                        f'<img style="width:auto;height:400px;" src="file/image/{name}.png">' 
                                        '</div>'
                                    )
                                LongSentence = gr.Checkbox(value=True, label="Generate LongSentence")
                            with gr.Column():
                                text = gr.TextArea(
                                    label="Text",
                                    placeholder="Input Text Here",
                                    value="有个人躺在地上,哀嚎。\n有个人睡着了。\n睡在盒子里。\n我要把它打开。\n看看他的梦,是什么。",
                                )                                
                                btn = gr.Button("Generate!", variant="primary")
                                audio_output = gr.Audio(label="Output Audio")
                                with gr.Accordion(label="Setting", open=False):
                                    sdp_ratio = gr.Slider(
                                    minimum=0, maximum=1, value=0.2, step=0.01, label="SDP Ratio"
                                    )
                                    noise_scale = gr.Slider(
                                        minimum=0.1, maximum=2, value=0.6, step=0.01, label="Noise Scale"
                                    )
                                    noise_scale_w = gr.Slider(
                                        minimum=0.1, maximum=2, value=0.8, step=0.01, label="Noise Scale W"
                                    )
                                    length_scale = gr.Slider(
                                        minimum=0.1, maximum=2, value=1, step=0.01, label="Length Scale"
                                    )
                                    speaker = gr.Dropdown(
                                        choices=speakers, value=name, label="Speaker"
                                    )
                    btn.click(
                        tts_fn,
                        inputs=[
                            text,
                            speaker,
                            sdp_ratio,
                            noise_scale,
                            noise_scale_w,
                            length_scale,
                            LongSentence,
                        ],
                        outputs=[ audio_output],
                    )

    app.launch()