ArslanRobo commited on
Commit
fd2ef8a
·
verified ·
1 Parent(s): ac614bf

Delete Task4_HuggingFace.py

Browse files
Files changed (1) hide show
  1. Task4_HuggingFace.py +0 -130
Task4_HuggingFace.py DELETED
@@ -1,130 +0,0 @@
1
- """We can use Gradio to build the UI and then make it compatible for the Hugging face."""
2
- import gradio as gr
3
- import cv2
4
- import numpy as np
5
- import imutils
6
- from PIL import Image
7
-
8
- cv2.ocl.setUseOpenCL(False)
9
-
10
- # Sharpening function
11
- def image_sharpening(image):
12
- kernel_sharpening = np.array([[-1, -1, -1],
13
- [-1, 9, -1],
14
- [-1, -1, -1]])
15
- sharpened = cv2.filter2D(image, -1, kernel_sharpening)
16
- return sharpened
17
-
18
- # Remove black borders function
19
- def remove_black_region(result):
20
- gray = cv2.cvtColor(result, cv2.COLOR_BGR2GRAY)
21
- thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY)[1]
22
- cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
23
- cnts = imutils.grab_contours(cnts)
24
- c = max(cnts, key=cv2.contourArea)
25
- (x, y, w, h) = cv2.boundingRect(c)
26
- crop = result[y:y + h, x:x + w]
27
- return crop
28
-
29
- # Key point detection and descriptor function
30
- def detectAndDescribe(image, method='orb'):
31
- if method == 'sift':
32
- descriptor = cv2.SIFT_create()
33
- elif method == 'brisk':
34
- descriptor = cv2.BRISK_create()
35
- elif method == 'orb':
36
- descriptor = cv2.ORB_create()
37
- (kps, features) = descriptor.detectAndCompute(image, None)
38
- return kps, features
39
-
40
- # Matcher creation
41
- def createMatcher(method, crossCheck):
42
- if method in ['sift', 'surf']:
43
- bf = cv2.BFMatcher(cv2.NORM_L2, crossCheck=crossCheck)
44
- else:
45
- bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=crossCheck)
46
- return bf
47
-
48
- # Matching key points
49
- def matchKeyPointsKNN(featuresA, featuresB, ratio, method):
50
- bf = createMatcher(method, crossCheck=False)
51
- rawMatches = bf.knnMatch(featuresA, featuresB, 2)
52
- matches = []
53
- for m, n in rawMatches:
54
- if m.distance < n.distance * ratio:
55
- matches.append(m)
56
- return matches
57
-
58
- # Homography calculation
59
- def getHomography(kpsA, kpsB, featuresA, featuresB, matches, reprojThresh=4.0):
60
- kpsA = np.float32([kp.pt for kp in kpsA])
61
- kpsB = np.float32([kp.pt for kp in kpsB])
62
- if len(matches) > 4:
63
- ptsA = np.float32([kpsA[m.queryIdx] for m in matches])
64
- ptsB = np.float32([kpsB[m.trainIdx] for m in matches])
65
- (H, status) = cv2.findHomography(ptsA, ptsB, cv2.RANSAC, reprojThresh)
66
- return matches, H, status
67
- else:
68
- return None
69
-
70
- # Stitching function for two images
71
- def stitch_two_images(queryImg, trainImg, feature_extractor):
72
- queryImg_gray = cv2.cvtColor(queryImg, cv2.COLOR_BGR2GRAY)
73
- trainImg_gray = cv2.cvtColor(trainImg, cv2.COLOR_BGR2GRAY)
74
- kpsA, featuresA = detectAndDescribe(trainImg_gray, method=feature_extractor)
75
- kpsB, featuresB = detectAndDescribe(queryImg_gray, method=feature_extractor)
76
- matches = matchKeyPointsKNN(featuresA, featuresB, ratio=0.75, method=feature_extractor)
77
- M = getHomography(kpsA, kpsB, featuresA, featuresB, matches, reprojThresh=5)
78
- if M is None:
79
- return None
80
- (matches, H, status) = M
81
- width = trainImg.shape[1] + queryImg.shape[1]
82
- height = trainImg.shape[0] + queryImg.shape[0]
83
- result = cv2.warpPerspective(trainImg, H, (width, height))
84
- result[0:queryImg.shape[0], 0:queryImg.shape[1]] = queryImg
85
- crop_image = remove_black_region(result)
86
- return crop_image
87
-
88
- # Calculate target brightness
89
- def calculate_target_brightness(images):
90
- brightness_values = [np.mean(image.astype(np.float32)) for image in images]
91
- return np.mean(brightness_values)
92
-
93
- # Brightness adjustment
94
- def global_brightness_adjustment(images, target_brightness):
95
- adjusted_images = []
96
- for image in images:
97
- image_float = image.astype(np.float32)
98
- avg_brightness = np.mean(image_float)
99
- brightness_shift = target_brightness - avg_brightness
100
- adjusted_image = image_float + brightness_shift
101
- adjusted_image = np.clip(adjusted_image, 0, 255).astype(np.uint8)
102
- adjusted_images.append(adjusted_image)
103
- return adjusted_images
104
-
105
- # Main Stitching function
106
- def stitch_images(uploaded_files, feature_extractor):
107
- images = [cv2.cvtColor(np.array(Image.open(file)), cv2.COLOR_RGB2BGR) for file in uploaded_files]
108
- if len(images) == 0:
109
- return None
110
- # feature_extractor = 'orb'
111
- target_brightness = calculate_target_brightness(images)
112
- adjusted_images = global_brightness_adjustment(images, target_brightness)
113
- stitched_image = adjusted_images[0]
114
- for i in range(1, len(adjusted_images)):
115
- queryImg = stitched_image
116
- trainImg = adjusted_images[i]
117
- stitched_image = stitch_two_images(queryImg, trainImg, feature_extractor)
118
- return cv2.cvtColor(stitched_image, cv2.COLOR_BGR2RGB)
119
-
120
- # Gradio interface with feature extractor selector
121
- with gr.Blocks() as demo:
122
- gr.Markdown("## Image Stitching App with Feature Extractor Selection")
123
- image_input = gr.Files(label="Upload Images", type="filepath")
124
- extractor_input = gr.Dropdown(choices=["orb", "sift", "brisk"], label="Feature Extractor", value="orb")
125
- image_output = gr.Image(type="numpy", label="Stitched Image")
126
- process_button = gr.Button("Process Image")
127
- process_button.click(stitch_images, inputs=[image_input, extractor_input], outputs=image_output)
128
-
129
- # Launch the Gradio app
130
- demo.launch()