Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""We can use Gradio to build the UI and then make it compatible for the Hugging face."""
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import cv2
|
| 4 |
+
import numpy as np
|
| 5 |
+
import imutils
|
| 6 |
+
from PIL import Image
|
| 7 |
+
|
| 8 |
+
cv2.ocl.setUseOpenCL(False)
|
| 9 |
+
|
| 10 |
+
# Sharpening function
|
| 11 |
+
def image_sharpening(image):
|
| 12 |
+
kernel_sharpening = np.array([[-1, -1, -1],
|
| 13 |
+
[-1, 9, -1],
|
| 14 |
+
[-1, -1, -1]])
|
| 15 |
+
sharpened = cv2.filter2D(image, -1, kernel_sharpening)
|
| 16 |
+
return sharpened
|
| 17 |
+
|
| 18 |
+
# Remove black borders function
|
| 19 |
+
def remove_black_region(result):
|
| 20 |
+
gray = cv2.cvtColor(result, cv2.COLOR_BGR2GRAY)
|
| 21 |
+
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY)[1]
|
| 22 |
+
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 23 |
+
cnts = imutils.grab_contours(cnts)
|
| 24 |
+
c = max(cnts, key=cv2.contourArea)
|
| 25 |
+
(x, y, w, h) = cv2.boundingRect(c)
|
| 26 |
+
crop = result[y:y + h, x:x + w]
|
| 27 |
+
return crop
|
| 28 |
+
|
| 29 |
+
# Key point detection and descriptor function
|
| 30 |
+
def detectAndDescribe(image, method='orb'):
|
| 31 |
+
if method == 'sift':
|
| 32 |
+
descriptor = cv2.SIFT_create()
|
| 33 |
+
elif method == 'brisk':
|
| 34 |
+
descriptor = cv2.BRISK_create()
|
| 35 |
+
elif method == 'orb':
|
| 36 |
+
descriptor = cv2.ORB_create()
|
| 37 |
+
(kps, features) = descriptor.detectAndCompute(image, None)
|
| 38 |
+
return kps, features
|
| 39 |
+
|
| 40 |
+
# Matcher creation
|
| 41 |
+
def createMatcher(method, crossCheck):
|
| 42 |
+
if method in ['sift', 'surf']:
|
| 43 |
+
bf = cv2.BFMatcher(cv2.NORM_L2, crossCheck=crossCheck)
|
| 44 |
+
else:
|
| 45 |
+
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=crossCheck)
|
| 46 |
+
return bf
|
| 47 |
+
|
| 48 |
+
# Matching key points
|
| 49 |
+
def matchKeyPointsKNN(featuresA, featuresB, ratio, method):
|
| 50 |
+
bf = createMatcher(method, crossCheck=False)
|
| 51 |
+
rawMatches = bf.knnMatch(featuresA, featuresB, 2)
|
| 52 |
+
matches = []
|
| 53 |
+
for m, n in rawMatches:
|
| 54 |
+
if m.distance < n.distance * ratio:
|
| 55 |
+
matches.append(m)
|
| 56 |
+
return matches
|
| 57 |
+
|
| 58 |
+
# Homography calculation
|
| 59 |
+
def getHomography(kpsA, kpsB, featuresA, featuresB, matches, reprojThresh=4.0):
|
| 60 |
+
kpsA = np.float32([kp.pt for kp in kpsA])
|
| 61 |
+
kpsB = np.float32([kp.pt for kp in kpsB])
|
| 62 |
+
if len(matches) > 4:
|
| 63 |
+
ptsA = np.float32([kpsA[m.queryIdx] for m in matches])
|
| 64 |
+
ptsB = np.float32([kpsB[m.trainIdx] for m in matches])
|
| 65 |
+
(H, status) = cv2.findHomography(ptsA, ptsB, cv2.RANSAC, reprojThresh)
|
| 66 |
+
return matches, H, status
|
| 67 |
+
else:
|
| 68 |
+
return None
|
| 69 |
+
|
| 70 |
+
# Stitching function for two images
|
| 71 |
+
def stitch_two_images(queryImg, trainImg, feature_extractor):
|
| 72 |
+
queryImg_gray = cv2.cvtColor(queryImg, cv2.COLOR_BGR2GRAY)
|
| 73 |
+
trainImg_gray = cv2.cvtColor(trainImg, cv2.COLOR_BGR2GRAY)
|
| 74 |
+
kpsA, featuresA = detectAndDescribe(trainImg_gray, method=feature_extractor)
|
| 75 |
+
kpsB, featuresB = detectAndDescribe(queryImg_gray, method=feature_extractor)
|
| 76 |
+
matches = matchKeyPointsKNN(featuresA, featuresB, ratio=0.75, method=feature_extractor)
|
| 77 |
+
M = getHomography(kpsA, kpsB, featuresA, featuresB, matches, reprojThresh=5)
|
| 78 |
+
if M is None:
|
| 79 |
+
return None
|
| 80 |
+
(matches, H, status) = M
|
| 81 |
+
width = trainImg.shape[1] + queryImg.shape[1]
|
| 82 |
+
height = trainImg.shape[0] + queryImg.shape[0]
|
| 83 |
+
result = cv2.warpPerspective(trainImg, H, (width, height))
|
| 84 |
+
result[0:queryImg.shape[0], 0:queryImg.shape[1]] = queryImg
|
| 85 |
+
crop_image = remove_black_region(result)
|
| 86 |
+
return crop_image
|
| 87 |
+
|
| 88 |
+
# Calculate target brightness
|
| 89 |
+
def calculate_target_brightness(images):
|
| 90 |
+
brightness_values = [np.mean(image.astype(np.float32)) for image in images]
|
| 91 |
+
return np.mean(brightness_values)
|
| 92 |
+
|
| 93 |
+
# Brightness adjustment
|
| 94 |
+
def global_brightness_adjustment(images, target_brightness):
|
| 95 |
+
adjusted_images = []
|
| 96 |
+
for image in images:
|
| 97 |
+
image_float = image.astype(np.float32)
|
| 98 |
+
avg_brightness = np.mean(image_float)
|
| 99 |
+
brightness_shift = target_brightness - avg_brightness
|
| 100 |
+
adjusted_image = image_float + brightness_shift
|
| 101 |
+
adjusted_image = np.clip(adjusted_image, 0, 255).astype(np.uint8)
|
| 102 |
+
adjusted_images.append(adjusted_image)
|
| 103 |
+
return adjusted_images
|
| 104 |
+
|
| 105 |
+
# Main Stitching function
|
| 106 |
+
def stitch_images(uploaded_files, feature_extractor):
|
| 107 |
+
images = [cv2.cvtColor(np.array(Image.open(file)), cv2.COLOR_RGB2BGR) for file in uploaded_files]
|
| 108 |
+
if len(images) == 0:
|
| 109 |
+
return None
|
| 110 |
+
# feature_extractor = 'orb'
|
| 111 |
+
target_brightness = calculate_target_brightness(images)
|
| 112 |
+
adjusted_images = global_brightness_adjustment(images, target_brightness)
|
| 113 |
+
stitched_image = adjusted_images[0]
|
| 114 |
+
for i in range(1, len(adjusted_images)):
|
| 115 |
+
queryImg = stitched_image
|
| 116 |
+
trainImg = adjusted_images[i]
|
| 117 |
+
stitched_image = stitch_two_images(queryImg, trainImg, feature_extractor)
|
| 118 |
+
return cv2.cvtColor(stitched_image, cv2.COLOR_BGR2RGB)
|
| 119 |
+
|
| 120 |
+
# Gradio interface with feature extractor selector
|
| 121 |
+
with gr.Blocks() as demo:
|
| 122 |
+
gr.Markdown("## Image Stitching App with Feature Extractor Selection")
|
| 123 |
+
image_input = gr.Files(label="Upload Images", type="filepath")
|
| 124 |
+
extractor_input = gr.Dropdown(choices=["orb", "sift", "brisk"], label="Feature Extractor", value="orb")
|
| 125 |
+
image_output = gr.Image(type="numpy", label="Stitched Image")
|
| 126 |
+
process_button = gr.Button("Process Image")
|
| 127 |
+
process_button.click(stitch_images, inputs=[image_input, extractor_input], outputs=image_output)
|
| 128 |
+
|
| 129 |
+
# Launch the Gradio app
|
| 130 |
+
demo.launch()
|