zhuohan-7's picture
Upload folder using huggingface_hub
565f995 verified
raw
history blame
5.76 kB
import streamlit as st
from app.draw_diagram import *
def dashboard():
with st.container():
st.title("AudioBench")
st.markdown("""
[gh]: https://github.com/AudioLLMs/AudioBench
[![GitHub watchers](https://img.shields.io/github/watchers/AudioLLMs/AudioBench?style=social)][gh]
[![GitHub Repo stars](https://img.shields.io/github/stars/AudioLLMs/AudioBench?style=social)][gh]
""")
audio_url = "https://arxiv.org/abs/2406.16020"
st.divider()
st.markdown("#### [AudioBench](%s)" % audio_url)
st.markdown("##### :dizzy: A comprehensive evaluation benchmark designed for general instruction-following audiolanguage models")
st.markdown('''
''')
with st.container():
left_co, center_co, right_co = st.columns([0.5,1, 0.5])
with center_co:
st.image("./style/audio_overview.png",
caption="Overview of the datasets in AudioBench.",
use_column_width = True)
st.markdown('''
''')
st.markdown("###### :dart: Our Benchmark includes: ")
cols = st.columns(10)
cols[1].metric(label="Tasks", value="8", delta="Tasks", delta_color="off")
cols[2].metric(label="Datasets", value="26", delta="Datasets", delta_color="off")
cols[3].metric(label="Test On", value="4", delta="Models", delta_color="off")
# st.markdown("###### :dart: Supported Models and Datasets: ")
# sup = pd.DataFrame(
# {"Dataset": "LibriSpeech-Clean",
# "Category": st.selectbox('category', ['Speech Understanding']),
# "Task": st.selectbox('task', ['Automatic Speech Recognition']),
# "Metrics": st.selectbox('metrics', ['WER']),
# "Status":True}
# )
# st.data_editor(sup, num_rows="dynamic")
st.divider()
with st.container():
st.markdown("##### Citations")
st.markdown('''
:round_pushpin: AudioBench Paper \n
@article{wang2024audiobench,
title={AudioBench: A Universal Benchmark for Audio Large Language Models},
author={Wang, Bin and Zou, Xunlong and Lin, Geyu and Sun, Shuo and Liu, Zhuohan and Zhang, Wenyu and Liu, Zhengyuan and Aw, AiTi and Chen, Nancy F},
journal={arXiv preprint arXiv:2406.16020},
year={2024}
}
''')
def speech_understanding():
st.title("Speech Understanding")
filters_levelone = ['ASR', 'SQA', 'SI']
sort_leveltwo = []
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Select Category', filters_levelone)
with middle:
if filter_1 == filters_levelone[0]:
sort_leveltwo = ['LibriSpeech-Test-Clean', 'LibriSpeech-Test-Other', 'Common-Voice-15-En-Test', 'Peoples-Speech-Test',
'GigaSpeech-Test', 'Tedlium3-Test','Tedlium3-Longform-Test', 'Earning-21-Test', 'Earning-22-Test']
elif filter_1 == filters_levelone[1]:
sort_leveltwo = ['CN-College-Listen-Test', 'SLUE-P2-SQA5-Test', 'DREAM-TTS-Test', 'Public-SG-SpeechQA-Test']
elif filter_1 == filters_levelone[2]:
sort_leveltwo = ['OpenHermes-Audio-Test', 'ALPACA-Audio-Test']
sort = st.selectbox("Sort Dataset", sort_leveltwo)
with right:
sorted = st.selectbox('by', ['Ascending', 'Descending'])
if filter_1 or sort or sorted:
draw('su',filter_1, sort, sorted)
else:
draw('su', 'ASR', 'LibriSpeech-Test-Clean', 'Descending')
def audio_scene_understanding():
st.title("Audio Scence Understanding")
filters_levelone = ['AQA', 'AC']
sort_leveltwo = []
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Select Category', filters_levelone)
with middle:
if filter_1 == filters_levelone[0]:
sort_leveltwo = ['Clotho-AQA-Test', 'WavCaps-QA-Test', 'AudioCaps-QA-Test']
elif filter_1 == filters_levelone[1]:
sort_leveltwo = ['WavCaps-Test', 'AudioCaps-Test']
sort = st.selectbox("Sort Dataset", sort_leveltwo)
with right:
sorted = st.selectbox('by', ['Ascending', 'Descending'])
if filter_1 or sort or sorted:
draw('asu',filter_1, sort, sorted)
else:
draw('asu', 'AQA', 'Clotho-AQA-Test', 'Descending')
def voice_understanding():
st.title("Voice Understanding")
filters_levelone = ['ER', 'AR', 'GR']
sort_leveltwo = []
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Select Category', filters_levelone)
with middle:
if filter_1 == filters_levelone[0]:
sort_leveltwo = ['IEMOCAP-Emotion-Test', 'MELD-Sentiment-Test', 'MELD-Emotion-Test']
elif filter_1 == filters_levelone[1]:
sort_leveltwo = ['VoxCeleb1-Accent-Test']
elif filter_1 == filters_levelone[2]:
sort_leveltwo = ['VoxCeleb1-Gender-Test', 'IEMOCAP-Gender-Test']
sort = st.selectbox("Sort Dataset", sort_leveltwo)
with right:
sorted = st.selectbox('by', ['Ascending', 'Descending'])
if filter_1 or sort or sorted:
draw('vu',filter_1, sort, sorted)
else:
draw('vu', 'ER', 'IEMOCAP-Emotion-Test', 'Descending')