Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files- app/__init__.py +0 -0
- app/draw_diagram.py +157 -0
- app/pages.py +160 -0
app/__init__.py
ADDED
File without changes
|
app/draw_diagram.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from streamlit_echarts import st_echarts
|
5 |
+
# from streamlit_echarts import JsCode
|
6 |
+
from streamlit_javascript import st_javascript
|
7 |
+
# from PIL import Image
|
8 |
+
|
9 |
+
links_dic = {"random": "https://seaeval.github.io/",
|
10 |
+
"meta_llama_3_8b": "https://huggingface.co/meta-llama/Meta-Llama-3-8B",
|
11 |
+
"mistral_7b_instruct_v0_2": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2",
|
12 |
+
"sailor_0_5b": "https://huggingface.co/sail/Sailor-0.5B",
|
13 |
+
"sailor_1_8b": "https://huggingface.co/sail/Sailor-1.8B",
|
14 |
+
"sailor_4b": "https://huggingface.co/sail/Sailor-4B",
|
15 |
+
"sailor_7b": "https://huggingface.co/sail/Sailor-7B",
|
16 |
+
"sailor_0_5b_chat": "https://huggingface.co/sail/Sailor-0.5B-Chat",
|
17 |
+
"sailor_1_8b_chat": "https://huggingface.co/sail/Sailor-1.8B-Chat",
|
18 |
+
"sailor_4b_chat": "https://huggingface.co/sail/Sailor-4B-Chat",
|
19 |
+
"sailor_7b_chat": "https://huggingface.co/sail/Sailor-7B-Chat",
|
20 |
+
"sea_mistral_highest_acc_inst_7b": "https://seaeval.github.io/",
|
21 |
+
"meta_llama_3_8b_instruct": "https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct",
|
22 |
+
"flan_t5_base": "https://huggingface.co/google/flan-t5-base",
|
23 |
+
"flan_t5_large": "https://huggingface.co/google/flan-t5-large",
|
24 |
+
"flan_t5_xl": "https://huggingface.co/google/flan-t5-xl",
|
25 |
+
"flan_t5_xxl": "https://huggingface.co/google/flan-t5-xxl",
|
26 |
+
"flan_ul2": "https://huggingface.co/google/flan-t5-ul2",
|
27 |
+
"flan_t5_small": "https://huggingface.co/google/flan-t5-small",
|
28 |
+
"mt0_xxl": "https://huggingface.co/bigscience/mt0-xxl",
|
29 |
+
"seallm_7b_v2": "https://huggingface.co/SeaLLMs/SeaLLM-7B-v2",
|
30 |
+
"gpt_35_turbo_1106": "https://openai.com/blog/chatgpt",
|
31 |
+
"meta_llama_3_70b": "https://huggingface.co/meta-llama/Meta-Llama-3-70B",
|
32 |
+
"meta_llama_3_70b_instruct": "https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct",
|
33 |
+
"sea_lion_3b": "https://huggingface.co/aisingapore/sea-lion-3b",
|
34 |
+
"sea_lion_7b": "https://huggingface.co/aisingapore/sea-lion-7b",
|
35 |
+
"qwen1_5_110b": "https://huggingface.co/Qwen/Qwen1.5-110B",
|
36 |
+
"qwen1_5_110b_chat": "https://huggingface.co/Qwen/Qwen1.5-110B-Chat",
|
37 |
+
"llama_2_7b_chat": "https://huggingface.co/meta-llama/Llama-2-7b-chat-hf",
|
38 |
+
"gpt4_1106_preview": "https://openai.com/blog/chatgpt",
|
39 |
+
"gemma_2b": "https://huggingface.co/google/gemma-2b",
|
40 |
+
"gemma_7b": "https://huggingface.co/google/gemma-7b",
|
41 |
+
"gemma_2b_it": "https://huggingface.co/google/gemma-2b-it",
|
42 |
+
"gemma_7b_it": "https://huggingface.co/google/gemma-7b-it",
|
43 |
+
"qwen_1_5_7b": "https://huggingface.co/Qwen/Qwen1.5-7B",
|
44 |
+
"qwen_1_5_7b_chat": "https://huggingface.co/Qwen/Qwen1.5-7B-Chat",
|
45 |
+
"sea_lion_7b_instruct": "https://huggingface.co/aisingapore/sea-lion-7b-instruct",
|
46 |
+
"sea_lion_7b_instruct_research": "https://huggingface.co/aisingapore/sea-lion-7b-instruct-research",
|
47 |
+
"LLaMA_3_Merlion_8B": "https://seaeval.github.io/",
|
48 |
+
"LLaMA_3_Merlion_8B_v1_1": "https://seaeval.github.io/"}
|
49 |
+
|
50 |
+
links_dic = {k.lower().replace('_', '-') : v for k, v in links_dic.items()}
|
51 |
+
|
52 |
+
# huggingface_image = Image.open('style/huggingface.jpg')
|
53 |
+
|
54 |
+
def nav_to(value):
|
55 |
+
try:
|
56 |
+
url = links_dic[str(value).lower()]
|
57 |
+
js = f'window.open("{url}", "_blank").then(r => window.parent.location.href);'
|
58 |
+
st_javascript(js)
|
59 |
+
except:
|
60 |
+
pass
|
61 |
+
|
62 |
+
def draw(folder_name,category_name, dataset_name, sorted):
|
63 |
+
|
64 |
+
folder = f"./results/{folder_name}/"
|
65 |
+
|
66 |
+
display_names = {
|
67 |
+
'ASR': 'Automatic Speech Recognition',
|
68 |
+
'SQA': 'Speech Question Answering',
|
69 |
+
'SI': 'Speech Instruction',
|
70 |
+
'AC': 'Audio Captioning',
|
71 |
+
'ASQA': 'Audio Scene Question Answering',
|
72 |
+
'AR': 'Accent Recognition',
|
73 |
+
'GR': 'Gender Recognition',
|
74 |
+
'ER': 'Emotion Recognition'
|
75 |
+
}
|
76 |
+
|
77 |
+
data_path = f'{folder}/{category_name.lower()}.csv'
|
78 |
+
chart_data = pd.read_csv(data_path).round(2).dropna(axis=0)
|
79 |
+
|
80 |
+
if len(chart_data) == 0:
|
81 |
+
return
|
82 |
+
|
83 |
+
|
84 |
+
if sorted == 'Ascending':
|
85 |
+
ascend = True
|
86 |
+
else:
|
87 |
+
ascend = False
|
88 |
+
|
89 |
+
sort_by = dataset_name.replace('-', '_').lower()
|
90 |
+
|
91 |
+
chart_data = chart_data.sort_values(by=[sort_by], ascending=ascend)
|
92 |
+
|
93 |
+
min_value = round(chart_data.iloc[:, 1::].min().min() - 0.1, 1)
|
94 |
+
max_value = round(chart_data.iloc[:, 1::].max().max() + 0.1, 1)
|
95 |
+
|
96 |
+
columns = list(chart_data.columns)[1:]
|
97 |
+
series = []
|
98 |
+
for col in columns:
|
99 |
+
series.append(
|
100 |
+
{
|
101 |
+
"name": f"{col.replace('_', '-')}",
|
102 |
+
"type": "line",
|
103 |
+
"data": chart_data[f'{col}'].tolist(),
|
104 |
+
}
|
105 |
+
)
|
106 |
+
|
107 |
+
|
108 |
+
options = {
|
109 |
+
"title": {"text": f"{display_names[category_name]}"},
|
110 |
+
"tooltip": {
|
111 |
+
"trigger": "axis",
|
112 |
+
"axisPointer": {"type": "cross", "label": {"backgroundColor": "#6a7985"}},
|
113 |
+
"triggerOn": 'mousemove',
|
114 |
+
},
|
115 |
+
"legend": {"data": ['Overall Accuracy']},
|
116 |
+
"toolbox": {"feature": {"saveAsImage": {}}},
|
117 |
+
"grid": {"left": "3%", "right": "4%", "bottom": "3%", "containLabel": True},
|
118 |
+
"xAxis": [
|
119 |
+
{
|
120 |
+
"type": "category",
|
121 |
+
"boundaryGap": False,
|
122 |
+
"triggerEvent": True,
|
123 |
+
"data": chart_data['Model'].tolist(),
|
124 |
+
}
|
125 |
+
],
|
126 |
+
"yAxis": [{"type": "value",
|
127 |
+
"min": min_value,
|
128 |
+
"max": max_value,
|
129 |
+
# "splitNumber": 10
|
130 |
+
}],
|
131 |
+
"series": series,
|
132 |
+
}
|
133 |
+
|
134 |
+
events = {
|
135 |
+
"click": "function(params) { return params.value }"
|
136 |
+
}
|
137 |
+
|
138 |
+
value = st_echarts(options=options, events=events, height="500px")
|
139 |
+
|
140 |
+
if value != None:
|
141 |
+
# print(value)
|
142 |
+
nav_to(value)
|
143 |
+
|
144 |
+
# if value != None:
|
145 |
+
# highlight_table_line(value)
|
146 |
+
|
147 |
+
### create table
|
148 |
+
st.divider()
|
149 |
+
# chart_data['Link'] = chart_data['Model'].map(links_dic)
|
150 |
+
st.dataframe(chart_data,
|
151 |
+
# column_config = {
|
152 |
+
# "Link": st.column_config.LinkColumn(
|
153 |
+
# display_text= st.image(huggingface_image)
|
154 |
+
# ),
|
155 |
+
# },
|
156 |
+
hide_index = True,
|
157 |
+
use_container_width=True)
|
app/pages.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from app.draw_diagram import *
|
3 |
+
|
4 |
+
def dashboard():
|
5 |
+
|
6 |
+
with st.container():
|
7 |
+
st.title("AudioBench")
|
8 |
+
|
9 |
+
st.markdown("""
|
10 |
+
[gh]: https://github.com/AudioLLMs/AudioBench
|
11 |
+
[![GitHub watchers](https://img.shields.io/github/watchers/AudioLLMs/AudioBench?style=social)][gh]
|
12 |
+
[![GitHub Repo stars](https://img.shields.io/github/stars/AudioLLMs/AudioBench?style=social)][gh]
|
13 |
+
""")
|
14 |
+
|
15 |
+
audio_url = "https://arxiv.org/abs/2406.16020"
|
16 |
+
|
17 |
+
st.divider()
|
18 |
+
st.markdown("#### [AudioBench](%s)" % audio_url)
|
19 |
+
st.markdown("##### :dizzy: A comprehensive evaluation benchmark designed for general instruction-following audiolanguage models")
|
20 |
+
st.markdown('''
|
21 |
+
|
22 |
+
|
23 |
+
''')
|
24 |
+
|
25 |
+
with st.container():
|
26 |
+
left_co, center_co, right_co = st.columns([0.5,1, 0.5])
|
27 |
+
with center_co:
|
28 |
+
st.image("./style/audio_overview.png",
|
29 |
+
caption="Overview of the datasets in AudioBench.",
|
30 |
+
use_column_width = True)
|
31 |
+
|
32 |
+
st.markdown('''
|
33 |
+
|
34 |
+
|
35 |
+
''')
|
36 |
+
|
37 |
+
st.markdown("###### :dart: Our Benchmark includes: ")
|
38 |
+
cols = st.columns(10)
|
39 |
+
cols[1].metric(label="Tasks", value="8", delta="Tasks", delta_color="off")
|
40 |
+
cols[2].metric(label="Datasets", value="26", delta="Datasets", delta_color="off")
|
41 |
+
cols[3].metric(label="Test On", value="4", delta="Models", delta_color="off")
|
42 |
+
|
43 |
+
# st.markdown("###### :dart: Supported Models and Datasets: ")
|
44 |
+
|
45 |
+
# sup = pd.DataFrame(
|
46 |
+
# {"Dataset": "LibriSpeech-Clean",
|
47 |
+
# "Category": st.selectbox('category', ['Speech Understanding']),
|
48 |
+
# "Task": st.selectbox('task', ['Automatic Speech Recognition']),
|
49 |
+
# "Metrics": st.selectbox('metrics', ['WER']),
|
50 |
+
# "Status":True}
|
51 |
+
# )
|
52 |
+
|
53 |
+
# st.data_editor(sup, num_rows="dynamic")
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
st.divider()
|
58 |
+
with st.container():
|
59 |
+
st.markdown("##### Citations")
|
60 |
+
|
61 |
+
st.markdown('''
|
62 |
+
:round_pushpin: AudioBench Paper \n
|
63 |
+
@article{wang2024audiobench,
|
64 |
+
title={AudioBench: A Universal Benchmark for Audio Large Language Models},
|
65 |
+
author={Wang, Bin and Zou, Xunlong and Lin, Geyu and Sun, Shuo and Liu, Zhuohan and Zhang, Wenyu and Liu, Zhengyuan and Aw, AiTi and Chen, Nancy F},
|
66 |
+
journal={arXiv preprint arXiv:2406.16020},
|
67 |
+
year={2024}
|
68 |
+
}
|
69 |
+
''')
|
70 |
+
|
71 |
+
def speech_understanding():
|
72 |
+
st.title("Speech Understanding")
|
73 |
+
|
74 |
+
filters_levelone = ['ASR', 'SQA', 'SI']
|
75 |
+
sort_leveltwo = []
|
76 |
+
|
77 |
+
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
78 |
+
|
79 |
+
with left:
|
80 |
+
filter_1 = st.selectbox('Select Category', filters_levelone)
|
81 |
+
|
82 |
+
with middle:
|
83 |
+
if filter_1 == filters_levelone[0]:
|
84 |
+
sort_leveltwo = ['LibriSpeech-Test-Clean', 'LibriSpeech-Test-Other', 'Common-Voice-15-En-Test', 'Peoples-Speech-Test',
|
85 |
+
'GigaSpeech-Test', 'Tedlium3-Test','Tedlium3-Longform-Test', 'Earning-21-Test', 'Earning-22-Test']
|
86 |
+
elif filter_1 == filters_levelone[1]:
|
87 |
+
sort_leveltwo = ['CN-College-Listen-Test', 'SLUE-P2-SQA5-Test', 'DREAM-TTS-Test', 'Public-SG-SpeechQA-Test']
|
88 |
+
|
89 |
+
elif filter_1 == filters_levelone[2]:
|
90 |
+
sort_leveltwo = ['OpenHermes-Audio-Test', 'ALPACA-Audio-Test']
|
91 |
+
|
92 |
+
sort = st.selectbox("Sort Dataset", sort_leveltwo)
|
93 |
+
|
94 |
+
with right:
|
95 |
+
sorted = st.selectbox('by', ['Ascending', 'Descending'])
|
96 |
+
|
97 |
+
if filter_1 or sort or sorted:
|
98 |
+
draw('su',filter_1, sort, sorted)
|
99 |
+
else:
|
100 |
+
draw('su', 'ASR', 'LibriSpeech-Test-Clean', 'Descending')
|
101 |
+
|
102 |
+
|
103 |
+
def audio_scene_understanding():
|
104 |
+
st.title("Audio Scence Understanding")
|
105 |
+
|
106 |
+
filters_levelone = ['AQA', 'AC']
|
107 |
+
sort_leveltwo = []
|
108 |
+
|
109 |
+
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
110 |
+
|
111 |
+
with left:
|
112 |
+
filter_1 = st.selectbox('Select Category', filters_levelone)
|
113 |
+
|
114 |
+
with middle:
|
115 |
+
if filter_1 == filters_levelone[0]:
|
116 |
+
sort_leveltwo = ['Clotho-AQA-Test', 'WavCaps-QA-Test', 'AudioCaps-QA-Test']
|
117 |
+
elif filter_1 == filters_levelone[1]:
|
118 |
+
sort_leveltwo = ['WavCaps-Test', 'AudioCaps-Test']
|
119 |
+
|
120 |
+
sort = st.selectbox("Sort Dataset", sort_leveltwo)
|
121 |
+
|
122 |
+
with right:
|
123 |
+
sorted = st.selectbox('by', ['Ascending', 'Descending'])
|
124 |
+
|
125 |
+
if filter_1 or sort or sorted:
|
126 |
+
draw('asu',filter_1, sort, sorted)
|
127 |
+
else:
|
128 |
+
draw('asu', 'AQA', 'Clotho-AQA-Test', 'Descending')
|
129 |
+
|
130 |
+
|
131 |
+
def voice_understanding():
|
132 |
+
st.title("Voice Understanding")
|
133 |
+
|
134 |
+
filters_levelone = ['ER', 'AR', 'GR']
|
135 |
+
sort_leveltwo = []
|
136 |
+
|
137 |
+
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
138 |
+
|
139 |
+
with left:
|
140 |
+
filter_1 = st.selectbox('Select Category', filters_levelone)
|
141 |
+
|
142 |
+
with middle:
|
143 |
+
if filter_1 == filters_levelone[0]:
|
144 |
+
sort_leveltwo = ['IEMOCAP-Emotion-Test', 'MELD-Sentiment-Test', 'MELD-Emotion-Test']
|
145 |
+
|
146 |
+
elif filter_1 == filters_levelone[1]:
|
147 |
+
sort_leveltwo = ['VoxCeleb1-Accent-Test']
|
148 |
+
|
149 |
+
elif filter_1 == filters_levelone[2]:
|
150 |
+
sort_leveltwo = ['VoxCeleb1-Gender-Test', 'IEMOCAP-Gender-Test']
|
151 |
+
|
152 |
+
sort = st.selectbox("Sort Dataset", sort_leveltwo)
|
153 |
+
|
154 |
+
with right:
|
155 |
+
sorted = st.selectbox('by', ['Ascending', 'Descending'])
|
156 |
+
|
157 |
+
if filter_1 or sort or sorted:
|
158 |
+
draw('vu',filter_1, sort, sorted)
|
159 |
+
else:
|
160 |
+
draw('vu', 'ER', 'IEMOCAP-Emotion-Test', 'Descending')
|