Spaces:
Running
Running
File size: 3,514 Bytes
565f995 3bbd847 565f995 abc1e1a 565f995 abc1e1a 565f995 abc1e1a 565f995 8c06b18 565f995 abc1e1a 565f995 abc1e1a 565f995 8c06b18 b2caef0 565f995 8cbeb07 565f995 abc1e1a 565f995 8cbeb07 565f995 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
import streamlit as st
import pandas as pd
import numpy as np
from streamlit_echarts import st_echarts
# from streamlit_echarts import JsCode
from streamlit_javascript import st_javascript
# from PIL import Image
links_dic = {}
links_dic = {k.lower().replace('_', '-') : v for k, v in links_dic.items()}
# huggingface_image = Image.open('style/huggingface.jpg')
def nav_to(value):
try:
url = links_dic[str(value).lower()]
js = f'window.open("{url}", "_blank").then(r => window.parent.location.href);'
st_javascript(js)
except:
pass
def draw(folder_name, category_name, dataset_name, metrics):
folder = f"./results/{metrics}/"
display_names = {
'SU': 'Speech Understanding',
'ASU': 'Audio Scene Understanding',
'VU': 'Voice Understanding'
}
data_path = f'{folder}/{category_name.lower()}.csv'
chart_data = pd.read_csv(data_path).round(2)
# if sorted == 'Ascending':
# ascend = True
# else:
# ascend = False
dataset_name = dataset_name.replace('-', '_').lower()
chart_data = chart_data[['Model', dataset_name]]
chart_data = chart_data.sort_values(by=[dataset_name], ascending=True).dropna(axis=0)
if len(chart_data) == 0:
return
min_value = round(chart_data.iloc[:, 1::].min().min() - 0.1, 1)
max_value = round(chart_data.iloc[:, 1::].max().max() + 0.1, 1)
# columns = list(chart_data.columns)[1:]
# for col in columns:
# series.append(
# {
# "name": f"{col.replace('_', '-')}",
# "type": "line",
# "data": chart_data[f'{col}'].tolist(),
# }
# )
options = {
"title": {"text": f"{display_names[folder_name.upper()]}"},
"tooltip": {
"trigger": "axis",
"axisPointer": {"type": "cross", "label": {"backgroundColor": "#6a7985"}},
"triggerOn": 'mousemove',
},
"legend": {"data": ['Overall Accuracy']},
"toolbox": {"feature": {"saveAsImage": {}}},
"grid": {"left": "3%", "right": "4%", "bottom": "3%", "containLabel": True},
"xAxis": [
{
"type": "category",
"boundaryGap": False,
"triggerEvent": True,
"data": chart_data['Model'].tolist(),
}
],
"yAxis": [{"type": "value",
"min": min_value,
"max": max_value,
# "splitNumber": 10
}],
"series": [{
"name": f"{dataset_name.replace('_', '-')}",
"type": "line",
"data": chart_data[f'{dataset_name}'].tolist(),
}],
}
events = {
"click": "function(params) { return params.value }"
}
value = st_echarts(options=options, events=events, height="500px")
if value != None:
# print(value)
nav_to(value)
# if value != None:
# highlight_table_line(value)
### create table
st.divider()
# chart_data['Link'] = chart_data['Model'].map(links_dic)
st.dataframe(chart_data,
# column_config = {
# "Link": st.column_config.LinkColumn(
# display_text= st.image(huggingface_image)
# ),
# },
hide_index = True,
use_container_width=True)
|