File size: 3,514 Bytes
565f995
 
 
 
 
 
 
 
3bbd847
565f995
 
 
 
 
 
 
 
 
 
 
 
 
abc1e1a
565f995
abc1e1a
565f995
 
abc1e1a
 
 
565f995
 
 
8c06b18
565f995
abc1e1a
 
 
 
565f995
abc1e1a
 
565f995
8c06b18
b2caef0
 
 
565f995
 
 
 
8cbeb07
 
 
 
 
 
 
 
 
565f995
 
 
abc1e1a
565f995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cbeb07
 
 
 
 
565f995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import streamlit as st
import pandas as pd
import numpy as np
from streamlit_echarts import st_echarts
# from streamlit_echarts import JsCode
from streamlit_javascript import st_javascript
# from PIL import Image 

links_dic = {}

links_dic = {k.lower().replace('_', '-') : v for k, v in links_dic.items()}

# huggingface_image = Image.open('style/huggingface.jpg')

def nav_to(value):
    try:
        url = links_dic[str(value).lower()]
        js = f'window.open("{url}", "_blank").then(r => window.parent.location.href);'
        st_javascript(js)
    except:
        pass

def draw(folder_name, category_name, dataset_name, metrics):
    
    folder = f"./results/{metrics}/"

    display_names = {
        'SU': 'Speech Understanding',
        'ASU': 'Audio Scene Understanding',
        'VU': 'Voice Understanding'
    }
    
    data_path = f'{folder}/{category_name.lower()}.csv'
    chart_data = pd.read_csv(data_path).round(2)

    # if sorted == 'Ascending':
    #     ascend = True 
    # else:
    #     ascend = False

    dataset_name = dataset_name.replace('-', '_').lower()
    chart_data = chart_data[['Model', dataset_name]]
    
    chart_data = chart_data.sort_values(by=[dataset_name], ascending=True).dropna(axis=0)

    if len(chart_data) == 0:
        return
    
    min_value = round(chart_data.iloc[:, 1::].min().min() - 0.1, 1) 
    max_value = round(chart_data.iloc[:, 1::].max().max() + 0.1, 1) 

    # columns = list(chart_data.columns)[1:]
    # for col in columns:
        # series.append(
        #     {
        #         "name": f"{col.replace('_', '-')}",
        #         "type": "line",
        #         "data": chart_data[f'{col}'].tolist(),
        #     }
        #     )
        

    options = {
        "title": {"text": f"{display_names[folder_name.upper()]}"},
        "tooltip": {
            "trigger": "axis",
            "axisPointer": {"type": "cross", "label": {"backgroundColor": "#6a7985"}},
            "triggerOn": 'mousemove',
        },
        "legend": {"data": ['Overall Accuracy']},
        "toolbox": {"feature": {"saveAsImage": {}}},
        "grid": {"left": "3%", "right": "4%", "bottom": "3%", "containLabel": True},
        "xAxis": [
            {
                "type": "category",
                "boundaryGap": False,
                "triggerEvent": True,
                "data": chart_data['Model'].tolist(),
            }
        ],
        "yAxis": [{"type": "value", 
                    "min": min_value,
                    "max": max_value, 
                    # "splitNumber": 10
                    }],
        "series": [{
                "name": f"{dataset_name.replace('_', '-')}",
                "type": "line",
                "data": chart_data[f'{dataset_name}'].tolist(),
            }],
    }
    
    events = {
        "click": "function(params) { return params.value }"
    }

    value = st_echarts(options=options, events=events, height="500px")
    
    if value != None:
        # print(value)
        nav_to(value)

    # if value != None:
    #     highlight_table_line(value)

    ### create table
    st.divider()
    # chart_data['Link'] = chart_data['Model'].map(links_dic)
    st.dataframe(chart_data,
                #  column_config = {
                #      "Link": st.column_config.LinkColumn(
                #          display_text= st.image(huggingface_image)
                #      ),
                #  }, 
                    hide_index = True, 
                    use_container_width=True)