Spaces:
Runtime error
Runtime error
# -------------------------------------------------------- | |
# The YiTrans End-to-End Speech Translation System for IWSLT 2022 Offline Shared Task (https://arxiv.org/abs/2206.05777) | |
# Github source: https://github.com/microsoft/SpeechT5/tree/main/YiTrans | |
# Copyright (c) 2022 Microsoft | |
# Licensed under The MIT License [see LICENSE for details] | |
# Based on fairseq code bases | |
# https://github.com/facebookresearch/fairseq | |
# -------------------------------------------------------- | |
import logging | |
import contextlib | |
from argparse import Namespace | |
from typing import Any, Optional | |
import torch | |
import torch.nn as nn | |
import pickle | |
from dataclasses import dataclass, field | |
from fairseq import checkpoint_utils, tasks, utils | |
from fairseq.dataclass import FairseqDataclass | |
from fairseq.dataclass.utils import convert_namespace_to_omegaconf | |
from fairseq.models import BaseFairseqModel, FairseqEncoder, register_model | |
from fairseq.models.hubert.hubert_asr import HubertCtcConfig | |
from fairseq.tasks import FairseqTask | |
from omegaconf import II, MISSING | |
from yitrans_iwslt22.modules import MultimodalTransformerDecoder | |
logger = logging.getLogger(__name__) | |
class HubertAsrConfig(HubertCtcConfig): | |
# for decoder | |
decoder_layerdrop: float = field( | |
default=0.1, | |
metadata={"help": "probability of dropping a decoder layer in hubert"}, | |
) | |
add_decoder: bool = field( | |
default=False, | |
metadata={"help": "whether to add decoder for CE Loss on code"}, | |
) | |
reuse_text_emb: bool = field( | |
default=False, | |
metadata={"help": "reuse text token embeddings instead of initialize randomly"}, | |
) | |
freeze_decoder_updates: int = field( | |
default=0, | |
metadata={"help": "dont finetune hubert for this many updates"}, | |
) | |
share_decoder_input_output_embed: bool = field( | |
default=False, | |
metadata={"help": "share decoder input and output embeddings"}, | |
) | |
share_enc_dec_embeddings: bool = field( | |
default=False, | |
metadata={"help": "share embeddings of (text encoder, text decoder)"}, | |
) | |
share_s2t_t2t_embeddings: bool = field( | |
default=False, | |
metadata={"help": "share embeddings of (speech2text(code), text2text)"}, | |
) | |
share_ctc_decoder_embed: bool = field( | |
default=False, | |
metadata={"help": "share ctc and decoder embedding (only when share_decoder_input_output_embed is true)"}, | |
) | |
enc_grad_mult: float = field( | |
default=1.0, | |
metadata={"help": "reset feature grad mult in hubert to this (only for st2t)"}, | |
) | |
retain_dict_path: Optional[str] = field( | |
default=None, | |
metadata={"help": "delete embeddings according to this path"}, | |
) | |
load_step2_model_from: Optional[str] = field( | |
default=None, | |
metadata={ | |
"help": "load step2 model from" | |
}, | |
) | |
load_pretrained_mbart_from: Optional[str] = field( | |
default=None, | |
metadata={ | |
"help": "model to take text encoder decoder weights from (for initialization)" | |
}, | |
) | |
load_pretrained_w2v_from: Optional[str] = field( | |
default=None, | |
metadata={ | |
"help": "model to take speech encoder weights from (for initialization)" | |
}, | |
) | |
use_rel_pos_enc: bool = field( | |
default=True, | |
metadata={"help": "whether to use relative positional encoding"}, | |
) | |
encoder_layers: int = field( | |
default=12, | |
metadata={"help": "encoder_layers"}, | |
) | |
add_text_encoder: bool = field( | |
default=True, | |
metadata={"help": "add_text_encoder"}, | |
) | |
add_adaptor: bool = field( | |
default=True, | |
metadata={"help": "add_adaptor"}, | |
) | |
adaptor_stride: int = field( | |
default=2, | |
metadata={"help": "adaptor stride"}, | |
) | |
class YitransASR(BaseFairseqModel): | |
def __init__(self, cfg: HubertAsrConfig, w2v_encoder: BaseFairseqModel): | |
super().__init__() | |
self.cfg = cfg | |
self.w2v_encoder = w2v_encoder | |
### in case we need load hubert_step2 model | |
if cfg.load_step2_model_from: | |
logger.info(f"Loading hubert_step2 pretrained model for finetuning: {cfg.load_step2_model_from}") | |
hubert_step2_states = self.w2v_encoder.w2v_model.load_checkpoint(cfg.load_step2_model_from)["model"] | |
if cfg.retain_dict_path is not None: | |
assert self.w2v_encoder.w2v_model.add_text_modality, "Mustc have text modality if retain dict path" | |
logger.info("Cut embedding to a smaller size according to retain dict") | |
with open(cfg.retain_dict_path, "rb") as fp: | |
overlap_idxs = pickle.load(fp) | |
hubert_step2_states['w2v_encoder.w2v_model.decoder.output_projection.0.weight'] = hubert_step2_states['w2v_encoder.w2v_model.decoder.output_projection.0.weight'][overlap_idxs] | |
hubert_step2_states["w2v_encoder.w2v_model.decoder.embed_tokens_list.0.weight"] = hubert_step2_states["w2v_encoder.w2v_model.decoder.embed_tokens_list.0.weight"][overlap_idxs] | |
hubert_step2_states["w2v_encoder.proj.weight"] = hubert_step2_states["w2v_encoder.proj.weight"][overlap_idxs] | |
try: | |
self.load_state_dict(hubert_step2_states, strict=True) | |
except Exception as e: | |
logger.warn(e) | |
self.load_state_dict(hubert_step2_states, strict=False) | |
def upgrade_state_dict_named(self, state_dict, name): | |
super().upgrade_state_dict_named(state_dict, name) | |
return state_dict | |
def build_model(cls, cfg: HubertAsrConfig, task: FairseqTask): | |
"""Build a new model instance.""" | |
w2v_encoder = HubertEncoder(cfg, task.target_dictionary) | |
return cls(cfg, w2v_encoder) | |
def get_normalized_probs(self, net_output, log_probs, sample=None): | |
"""Get normalized probabilities (or log probs) from a net's output.""" | |
if "encoder_out" not in net_output: | |
return self.w2v_encoder.get_normalized_probs_decoder(net_output, log_probs, sample) | |
if "encoder_out_for_ctc" in net_output: | |
logits = net_output["encoder_out_for_ctc"] | |
else: | |
logits = net_output["encoder_out"] | |
if isinstance(logits, list): | |
logits = logits[0] | |
if log_probs: | |
return utils.log_softmax(logits.float(), dim=-1) | |
else: | |
return utils.softmax(logits.float(), dim=-1) | |
def get_logits(self, net_output): | |
logits = net_output["encoder_out"] | |
padding = net_output["encoder_padding_mask"] | |
if padding is not None and padding.any(): | |
padding = padding.T | |
logits[padding][..., 0] = 0 | |
logits[padding][..., 1:] = float("-inf") | |
return logits | |
def forward(self, **kwargs): | |
x = self.w2v_encoder(**kwargs) | |
return x | |
def encoder(self): | |
return self.w2v_encoder | |
def reorder_encoder_out(self, encoder_out, new_order): | |
return self.encoder.reorder_encoder_out(encoder_out, new_order) | |
def decoder(self): | |
return self.w2v_encoder.w2v_model.decoder | |
class HubertEncoder(FairseqEncoder): | |
def __init__(self, cfg: HubertAsrConfig, tgt_dict=None): | |
self.apply_mask = cfg.apply_mask | |
logger.info(f"self.apply_mask: {self.apply_mask}") | |
arg_overrides = { | |
"dropout": cfg.dropout, | |
"activation_dropout": cfg.activation_dropout, | |
"dropout_input": cfg.dropout_input, | |
"attention_dropout": cfg.attention_dropout, | |
"mask_length": cfg.mask_length, | |
"mask_prob": cfg.mask_prob, | |
"mask_selection": cfg.mask_selection, | |
"mask_other": cfg.mask_other, | |
"no_mask_overlap": cfg.no_mask_overlap, | |
"mask_channel_length": cfg.mask_channel_length, | |
"mask_channel_prob": cfg.mask_channel_prob, | |
"mask_channel_selection": cfg.mask_channel_selection, | |
"mask_channel_other": cfg.mask_channel_other, | |
"no_mask_channel_overlap": cfg.no_mask_channel_overlap, | |
"encoder_layerdrop": cfg.layerdrop, | |
"decoder_layerdrop": cfg.decoder_layerdrop, | |
"feature_grad_mult": cfg.feature_grad_mult, | |
"decoder_dict_size": len(tgt_dict) if cfg.add_decoder else -1, | |
"share_decoder_input_output_embed": cfg.share_decoder_input_output_embed, | |
"load_pretrained_w2v_from": cfg.load_pretrained_w2v_from, | |
"load_pretrained_mbart_from": cfg.load_pretrained_mbart_from, | |
"adaptor_stride": cfg.adaptor_stride, | |
} | |
if cfg.no_pretrained_weights: | |
arg_overrides["use_rel_pos_enc"] = cfg.use_rel_pos_enc | |
arg_overrides["encoder_layers"] = cfg.encoder_layers | |
arg_overrides["add_text_encoder"] = cfg.add_text_encoder | |
arg_overrides["share_enc_dec_embeddings"] = cfg.share_enc_dec_embeddings | |
arg_overrides["share_s2t_t2t_embeddings"] = cfg.share_s2t_t2t_embeddings | |
arg_overrides["add_adaptor"] = cfg.add_adaptor | |
if cfg.w2v_args is None: | |
state = checkpoint_utils.load_checkpoint_to_cpu(cfg.w2v_path, arg_overrides) | |
w2v_args = state.get("cfg", None) | |
if w2v_args is None: | |
w2v_args = convert_namespace_to_omegaconf(state["args"]) | |
cfg.w2v_args = w2v_args | |
else: | |
state = None | |
w2v_args = cfg.w2v_args | |
if isinstance(w2v_args, Namespace): | |
cfg.w2v_args = w2v_args = convert_namespace_to_omegaconf(w2v_args) | |
## in speech_text_joint_to_text, data is loaded by soundfile, which returns without normalization | |
if cfg.normalize != w2v_args.task.normalize: | |
logger.warn( | |
"Fine-tuning works best when data normalization is the same. " | |
"Please check that --normalize is set or unset for " | |
"both pre-training and here" | |
) | |
w2v_args.task.data = cfg.data | |
if hasattr(w2v_args.task, "text_cfg"): | |
w2v_args.task.text_cfg.data_config = None | |
w2v_args.task.add_decoder = cfg.add_decoder | |
task = tasks.setup_task(w2v_args.task) | |
if state is not None and "task_state" in state: | |
# This will load the stored "dictionaries" object | |
task.load_state_dict(state["task_state"]) | |
model = task.build_model(w2v_args.model) | |
### delete the embed_tokens and output_projection of decoder | |
if state is not None and not cfg.no_pretrained_weights: | |
if cfg.retain_dict_path is not None: | |
assert model.add_text_modality, "Mustc have text modality if retain dict path" | |
logger.info("Cut embedding to a smaller size according to ratin dict") | |
with open(cfg.retain_dict_path, "rb") as fp: | |
overlap_idxs = pickle.load(fp) | |
state['model']['decoder.output_projection.1.weight'] = state['model']['decoder.output_projection.1.weight'][overlap_idxs] | |
state["model"]["decoder.embed_tokens_list.1.weight"] = state["model"]["decoder.embed_tokens_list.1.weight"][overlap_idxs] | |
if cfg.reuse_text_emb: | |
assert model.add_text_modality, "Mustc have text modality if reuse text embed" | |
logger.info("Loading text-text pretrained token-embedding for speech-text finetuning...") | |
state["model"]["decoder.embed_tokens_list.0.weight"] = state["model"]["decoder.embed_tokens_list.1.weight"] | |
del state["model"]["decoder.embed_tokens_list.1.weight"] | |
state["model"]["decoder.output_projection.0.weight"] = state["model"]["decoder.output_projection.1.weight"] | |
del state["model"]["decoder.output_projection.1.weight"] | |
try: | |
model.load_state_dict(state["model"], strict=True) | |
except Exception as e: | |
logger.warn(e) | |
model.load_state_dict(state["model"], strict=False) | |
else: | |
for pname in list(state["model"].keys()): | |
if pname.startswith("decoder.embed_tokens") or pname.startswith("decoder.output_projection"): | |
del state["model"][pname] | |
# set strict=False because we omit some modules | |
model.load_state_dict(state["model"], strict=False) | |
### in case we need load mbart embedding into asr embedding | |
if cfg.no_pretrained_weights and cfg.load_pretrained_mbart_from and cfg.reuse_text_emb: | |
logger.info("Loading mbart pretrained token-embedding for speech-text finetuning...") | |
mbart_dec_states = model.decoder.state_dict() | |
loading_states = {} | |
if cfg.retain_dict_path is not None: | |
logger.info("Cut embedding to a smaller size according to ratin dict") | |
with open(cfg.retain_dict_path, "rb") as fp: | |
overlap_idxs = pickle.load(fp) | |
loading_states["output_projection.0.weight"] = mbart_dec_states['output_projection.1.weight'][overlap_idxs] | |
loading_states["embed_tokens_list.0.weight"] = mbart_dec_states['embed_tokens_list.1.weight'][overlap_idxs] | |
else: | |
loading_states["output_projection.0.weight"] = mbart_dec_states['output_projection.1.weight'] | |
loading_states["embed_tokens_list.0.weight"] = mbart_dec_states['embed_tokens_list.1.weight'] | |
model.decoder.load_state_dict(loading_states, strict=False) | |
model.remove_pretraining_modules() | |
super().__init__(task.source_dictionary) | |
d = w2v_args.model.encoder_embed_dim | |
self.w2v_model = model | |
self.final_dropout = nn.Dropout(cfg.final_dropout) | |
self.freeze_finetune_updates = cfg.freeze_finetune_updates | |
self.freeze_decoder_updates = cfg.freeze_decoder_updates | |
self.num_updates = 0 | |
if cfg.share_ctc_decoder_embed: | |
assert cfg.add_decoder and cfg.share_decoder_input_output_embed, "Must share decoder input and output embed before share ctc and decoder embed" | |
if isinstance(self.w2v_model.decoder, MultimodalTransformerDecoder): | |
self.proj = nn.Linear( | |
self.w2v_model.decoder.embed_tokens_list[0].weight.shape[1], | |
self.w2v_model.decoder.embed_tokens_list[0].weight.shape[0], | |
bias=False, | |
) | |
self.proj.weight = self.w2v_model.decoder.embed_tokens_list[0].weight | |
else: | |
self.proj = nn.Linear( | |
self.w2v_model.decoder.embed_tokens.weight.shape[1], | |
self.w2v_model.decoder.embed_tokens.weight.shape[0], | |
bias=False, | |
) | |
self.proj.weight = self.w2v_model.decoder.embed_tokens.weight | |
elif tgt_dict is not None: | |
self.proj = Linear(d, len(tgt_dict)) | |
elif getattr(cfg, "decoder_embed_dim", d) != d: | |
self.proj = Linear(d, cfg.decoder_embed_dim) | |
else: | |
self.proj = None | |
def set_num_updates(self, num_updates): | |
"""Set the number of parameters updates.""" | |
super().set_num_updates(num_updates) | |
self.num_updates = num_updates | |
def forward(self, source, padding_mask, prev_output_tokens=None, tbc=True, **kwargs): | |
ft = self.freeze_finetune_updates <= self.num_updates | |
w2v_args = { | |
"source": source, | |
"padding_mask": padding_mask, | |
"mask": self.apply_mask and self.training, | |
"prev_output_tokens": prev_output_tokens, | |
"ft": ft, | |
} | |
if self.freeze_decoder_updates <= self.num_updates: | |
self.w2v_model.add_decoder = True | |
else: | |
self.w2v_model.add_decoder = False | |
x, padding_mask, decoder_out = self.w2v_model.extract_features(**w2v_args) | |
if tbc: | |
# B x T x C -> T x B x C | |
x = x.transpose(0, 1) | |
x = self.final_dropout(x) | |
if self.proj: | |
x = self.proj(x) | |
return { | |
"encoder_out": x, # T x B x C | |
"encoder_padding_mask": padding_mask, # B x T | |
"padding_mask": padding_mask, | |
"decoder_out": decoder_out, | |
} | |
def get_normalized_probs_decoder(self, net_output, log_probs, sample=None): | |
# net_output['encoder_out'] is a (B, T, D) tensor | |
return self.w2v_model.get_normalized_probs(net_output, log_probs, sample) | |
def reorder_encoder_out(self, encoder_out, new_order): | |
if encoder_out["encoder_out"] is not None: | |
if isinstance(encoder_out["encoder_out"], list): | |
encoder_out["encoder_out"] = ( | |
[] if len(encoder_out["encoder_out"]) == 0 | |
else [x.index_select(1, new_order) for x in encoder_out["encoder_out"]] | |
) | |
else: | |
encoder_out["encoder_out"] = encoder_out[ | |
"encoder_out" | |
].index_select(1, new_order) | |
if encoder_out["encoder_padding_mask"] is not None: | |
if isinstance(encoder_out["encoder_padding_mask"], list): | |
encoder_out["encoder_padding_mask"] = ( | |
[] if len(encoder_out["encoder_padding_mask"]) == 0 | |
else [x.index_select(0, new_order) for x in encoder_out["encoder_padding_mask"]] | |
) | |
else: | |
encoder_out["encoder_padding_mask"] = encoder_out[ | |
"encoder_padding_mask" | |
].index_select(0, new_order) | |
if "decoder_out" in encoder_out and encoder_out["decoder_out"] is not None: | |
if isinstance(encoder_out["decoder_out"], list): | |
encoder_out["decoder_out"] = ( | |
[] if len(encoder_out["decoder_out"]) == 0 | |
else [x.index_select(0, new_order) for x in encoder_out["decoder_out"]] | |
) | |
else: | |
encoder_out["decoder_out"] = encoder_out[ | |
"decoder_out" | |
].index_select(0, new_order) | |
if "encoder_out_for_ctc" in encoder_out and encoder_out["encoder_out_for_ctc"] is not None: | |
if isinstance(encoder_out["encoder_out_for_ctc"], list): | |
encoder_out["encoder_out_for_ctc"] = ( | |
[] if len(encoder_out["encoder_out_for_ctc"]) == 0 | |
else [x.index_select(1, new_order) for x in encoder_out["encoder_out_for_ctc"]] | |
) | |
else: | |
encoder_out["encoder_out_for_ctc"] = encoder_out[ | |
"encoder_out_for_ctc" | |
].index_select(1, new_order) | |
return encoder_out | |
def forward_torchscript(self, net_input): | |
"""A TorchScript-compatible version of forward. | |
Encoders which use additional arguments may want to override | |
this method for TorchScript compatibility. | |
""" | |
encoder_out = self.w2v_model.forward_torchscript(net_input) | |
assert self.proj is not None | |
encoder_out['encoder_out_for_ctc'] = [self.proj(encoder_out['encoder_out'][0])] | |
return encoder_out | |
def max_positions(self): | |
"""Maximum input length supported by the encoder.""" | |
return None | |
def upgrade_state_dict_named(self, state_dict, name): | |
return state_dict | |
def Embedding(num_embeddings, embedding_dim, padding_idx): | |
m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) | |
nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5) | |
nn.init.constant_(m.weight[padding_idx], 0) | |
return m | |
def Linear(in_features, out_features, bias=True): | |
m = nn.Linear(in_features, out_features, bias) | |
nn.init.xavier_uniform_(m.weight) | |
if bias: | |
nn.init.constant_(m.bias, 0.0) | |
return m | |