amupd's picture
SpeechT5 upload
62e9ca6
raw
history blame
20.2 kB
# --------------------------------------------------------
# The YiTrans End-to-End Speech Translation System for IWSLT 2022 Offline Shared Task (https://arxiv.org/abs/2206.05777)
# Github source: https://github.com/microsoft/SpeechT5/tree/main/YiTrans
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Based on fairseq code bases
# https://github.com/facebookresearch/fairseq
# --------------------------------------------------------
import logging
import contextlib
from argparse import Namespace
from typing import Any, Optional
import torch
import torch.nn as nn
import pickle
from dataclasses import dataclass, field
from fairseq import checkpoint_utils, tasks, utils
from fairseq.dataclass import FairseqDataclass
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.models import BaseFairseqModel, FairseqEncoder, register_model
from fairseq.models.hubert.hubert_asr import HubertCtcConfig
from fairseq.tasks import FairseqTask
from omegaconf import II, MISSING
from yitrans_iwslt22.modules import MultimodalTransformerDecoder
logger = logging.getLogger(__name__)
@dataclass
class HubertAsrConfig(HubertCtcConfig):
# for decoder
decoder_layerdrop: float = field(
default=0.1,
metadata={"help": "probability of dropping a decoder layer in hubert"},
)
add_decoder: bool = field(
default=False,
metadata={"help": "whether to add decoder for CE Loss on code"},
)
reuse_text_emb: bool = field(
default=False,
metadata={"help": "reuse text token embeddings instead of initialize randomly"},
)
freeze_decoder_updates: int = field(
default=0,
metadata={"help": "dont finetune hubert for this many updates"},
)
share_decoder_input_output_embed: bool = field(
default=False,
metadata={"help": "share decoder input and output embeddings"},
)
share_enc_dec_embeddings: bool = field(
default=False,
metadata={"help": "share embeddings of (text encoder, text decoder)"},
)
share_s2t_t2t_embeddings: bool = field(
default=False,
metadata={"help": "share embeddings of (speech2text(code), text2text)"},
)
share_ctc_decoder_embed: bool = field(
default=False,
metadata={"help": "share ctc and decoder embedding (only when share_decoder_input_output_embed is true)"},
)
enc_grad_mult: float = field(
default=1.0,
metadata={"help": "reset feature grad mult in hubert to this (only for st2t)"},
)
retain_dict_path: Optional[str] = field(
default=None,
metadata={"help": "delete embeddings according to this path"},
)
load_step2_model_from: Optional[str] = field(
default=None,
metadata={
"help": "load step2 model from"
},
)
load_pretrained_mbart_from: Optional[str] = field(
default=None,
metadata={
"help": "model to take text encoder decoder weights from (for initialization)"
},
)
load_pretrained_w2v_from: Optional[str] = field(
default=None,
metadata={
"help": "model to take speech encoder weights from (for initialization)"
},
)
use_rel_pos_enc: bool = field(
default=True,
metadata={"help": "whether to use relative positional encoding"},
)
encoder_layers: int = field(
default=12,
metadata={"help": "encoder_layers"},
)
add_text_encoder: bool = field(
default=True,
metadata={"help": "add_text_encoder"},
)
add_adaptor: bool = field(
default=True,
metadata={"help": "add_adaptor"},
)
adaptor_stride: int = field(
default=2,
metadata={"help": "adaptor stride"},
)
@register_model("yitrans_asr", dataclass=HubertAsrConfig)
class YitransASR(BaseFairseqModel):
def __init__(self, cfg: HubertAsrConfig, w2v_encoder: BaseFairseqModel):
super().__init__()
self.cfg = cfg
self.w2v_encoder = w2v_encoder
### in case we need load hubert_step2 model
if cfg.load_step2_model_from:
logger.info(f"Loading hubert_step2 pretrained model for finetuning: {cfg.load_step2_model_from}")
hubert_step2_states = self.w2v_encoder.w2v_model.load_checkpoint(cfg.load_step2_model_from)["model"]
if cfg.retain_dict_path is not None:
assert self.w2v_encoder.w2v_model.add_text_modality, "Mustc have text modality if retain dict path"
logger.info("Cut embedding to a smaller size according to retain dict")
with open(cfg.retain_dict_path, "rb") as fp:
overlap_idxs = pickle.load(fp)
hubert_step2_states['w2v_encoder.w2v_model.decoder.output_projection.0.weight'] = hubert_step2_states['w2v_encoder.w2v_model.decoder.output_projection.0.weight'][overlap_idxs]
hubert_step2_states["w2v_encoder.w2v_model.decoder.embed_tokens_list.0.weight"] = hubert_step2_states["w2v_encoder.w2v_model.decoder.embed_tokens_list.0.weight"][overlap_idxs]
hubert_step2_states["w2v_encoder.proj.weight"] = hubert_step2_states["w2v_encoder.proj.weight"][overlap_idxs]
try:
self.load_state_dict(hubert_step2_states, strict=True)
except Exception as e:
logger.warn(e)
self.load_state_dict(hubert_step2_states, strict=False)
def upgrade_state_dict_named(self, state_dict, name):
super().upgrade_state_dict_named(state_dict, name)
return state_dict
@classmethod
def build_model(cls, cfg: HubertAsrConfig, task: FairseqTask):
"""Build a new model instance."""
w2v_encoder = HubertEncoder(cfg, task.target_dictionary)
return cls(cfg, w2v_encoder)
def get_normalized_probs(self, net_output, log_probs, sample=None):
"""Get normalized probabilities (or log probs) from a net's output."""
if "encoder_out" not in net_output:
return self.w2v_encoder.get_normalized_probs_decoder(net_output, log_probs, sample)
if "encoder_out_for_ctc" in net_output:
logits = net_output["encoder_out_for_ctc"]
else:
logits = net_output["encoder_out"]
if isinstance(logits, list):
logits = logits[0]
if log_probs:
return utils.log_softmax(logits.float(), dim=-1)
else:
return utils.softmax(logits.float(), dim=-1)
def get_logits(self, net_output):
logits = net_output["encoder_out"]
padding = net_output["encoder_padding_mask"]
if padding is not None and padding.any():
padding = padding.T
logits[padding][..., 0] = 0
logits[padding][..., 1:] = float("-inf")
return logits
def forward(self, **kwargs):
x = self.w2v_encoder(**kwargs)
return x
@property
def encoder(self):
return self.w2v_encoder
def reorder_encoder_out(self, encoder_out, new_order):
return self.encoder.reorder_encoder_out(encoder_out, new_order)
@property
def decoder(self):
return self.w2v_encoder.w2v_model.decoder
class HubertEncoder(FairseqEncoder):
def __init__(self, cfg: HubertAsrConfig, tgt_dict=None):
self.apply_mask = cfg.apply_mask
logger.info(f"self.apply_mask: {self.apply_mask}")
arg_overrides = {
"dropout": cfg.dropout,
"activation_dropout": cfg.activation_dropout,
"dropout_input": cfg.dropout_input,
"attention_dropout": cfg.attention_dropout,
"mask_length": cfg.mask_length,
"mask_prob": cfg.mask_prob,
"mask_selection": cfg.mask_selection,
"mask_other": cfg.mask_other,
"no_mask_overlap": cfg.no_mask_overlap,
"mask_channel_length": cfg.mask_channel_length,
"mask_channel_prob": cfg.mask_channel_prob,
"mask_channel_selection": cfg.mask_channel_selection,
"mask_channel_other": cfg.mask_channel_other,
"no_mask_channel_overlap": cfg.no_mask_channel_overlap,
"encoder_layerdrop": cfg.layerdrop,
"decoder_layerdrop": cfg.decoder_layerdrop,
"feature_grad_mult": cfg.feature_grad_mult,
"decoder_dict_size": len(tgt_dict) if cfg.add_decoder else -1,
"share_decoder_input_output_embed": cfg.share_decoder_input_output_embed,
"load_pretrained_w2v_from": cfg.load_pretrained_w2v_from,
"load_pretrained_mbart_from": cfg.load_pretrained_mbart_from,
"adaptor_stride": cfg.adaptor_stride,
}
if cfg.no_pretrained_weights:
arg_overrides["use_rel_pos_enc"] = cfg.use_rel_pos_enc
arg_overrides["encoder_layers"] = cfg.encoder_layers
arg_overrides["add_text_encoder"] = cfg.add_text_encoder
arg_overrides["share_enc_dec_embeddings"] = cfg.share_enc_dec_embeddings
arg_overrides["share_s2t_t2t_embeddings"] = cfg.share_s2t_t2t_embeddings
arg_overrides["add_adaptor"] = cfg.add_adaptor
if cfg.w2v_args is None:
state = checkpoint_utils.load_checkpoint_to_cpu(cfg.w2v_path, arg_overrides)
w2v_args = state.get("cfg", None)
if w2v_args is None:
w2v_args = convert_namespace_to_omegaconf(state["args"])
cfg.w2v_args = w2v_args
else:
state = None
w2v_args = cfg.w2v_args
if isinstance(w2v_args, Namespace):
cfg.w2v_args = w2v_args = convert_namespace_to_omegaconf(w2v_args)
## in speech_text_joint_to_text, data is loaded by soundfile, which returns without normalization
if cfg.normalize != w2v_args.task.normalize:
logger.warn(
"Fine-tuning works best when data normalization is the same. "
"Please check that --normalize is set or unset for "
"both pre-training and here"
)
w2v_args.task.data = cfg.data
if hasattr(w2v_args.task, "text_cfg"):
w2v_args.task.text_cfg.data_config = None
w2v_args.task.add_decoder = cfg.add_decoder
task = tasks.setup_task(w2v_args.task)
if state is not None and "task_state" in state:
# This will load the stored "dictionaries" object
task.load_state_dict(state["task_state"])
model = task.build_model(w2v_args.model)
### delete the embed_tokens and output_projection of decoder
if state is not None and not cfg.no_pretrained_weights:
if cfg.retain_dict_path is not None:
assert model.add_text_modality, "Mustc have text modality if retain dict path"
logger.info("Cut embedding to a smaller size according to ratin dict")
with open(cfg.retain_dict_path, "rb") as fp:
overlap_idxs = pickle.load(fp)
state['model']['decoder.output_projection.1.weight'] = state['model']['decoder.output_projection.1.weight'][overlap_idxs]
state["model"]["decoder.embed_tokens_list.1.weight"] = state["model"]["decoder.embed_tokens_list.1.weight"][overlap_idxs]
if cfg.reuse_text_emb:
assert model.add_text_modality, "Mustc have text modality if reuse text embed"
logger.info("Loading text-text pretrained token-embedding for speech-text finetuning...")
state["model"]["decoder.embed_tokens_list.0.weight"] = state["model"]["decoder.embed_tokens_list.1.weight"]
del state["model"]["decoder.embed_tokens_list.1.weight"]
state["model"]["decoder.output_projection.0.weight"] = state["model"]["decoder.output_projection.1.weight"]
del state["model"]["decoder.output_projection.1.weight"]
try:
model.load_state_dict(state["model"], strict=True)
except Exception as e:
logger.warn(e)
model.load_state_dict(state["model"], strict=False)
else:
for pname in list(state["model"].keys()):
if pname.startswith("decoder.embed_tokens") or pname.startswith("decoder.output_projection"):
del state["model"][pname]
# set strict=False because we omit some modules
model.load_state_dict(state["model"], strict=False)
### in case we need load mbart embedding into asr embedding
if cfg.no_pretrained_weights and cfg.load_pretrained_mbart_from and cfg.reuse_text_emb:
logger.info("Loading mbart pretrained token-embedding for speech-text finetuning...")
mbart_dec_states = model.decoder.state_dict()
loading_states = {}
if cfg.retain_dict_path is not None:
logger.info("Cut embedding to a smaller size according to ratin dict")
with open(cfg.retain_dict_path, "rb") as fp:
overlap_idxs = pickle.load(fp)
loading_states["output_projection.0.weight"] = mbart_dec_states['output_projection.1.weight'][overlap_idxs]
loading_states["embed_tokens_list.0.weight"] = mbart_dec_states['embed_tokens_list.1.weight'][overlap_idxs]
else:
loading_states["output_projection.0.weight"] = mbart_dec_states['output_projection.1.weight']
loading_states["embed_tokens_list.0.weight"] = mbart_dec_states['embed_tokens_list.1.weight']
model.decoder.load_state_dict(loading_states, strict=False)
model.remove_pretraining_modules()
super().__init__(task.source_dictionary)
d = w2v_args.model.encoder_embed_dim
self.w2v_model = model
self.final_dropout = nn.Dropout(cfg.final_dropout)
self.freeze_finetune_updates = cfg.freeze_finetune_updates
self.freeze_decoder_updates = cfg.freeze_decoder_updates
self.num_updates = 0
if cfg.share_ctc_decoder_embed:
assert cfg.add_decoder and cfg.share_decoder_input_output_embed, "Must share decoder input and output embed before share ctc and decoder embed"
if isinstance(self.w2v_model.decoder, MultimodalTransformerDecoder):
self.proj = nn.Linear(
self.w2v_model.decoder.embed_tokens_list[0].weight.shape[1],
self.w2v_model.decoder.embed_tokens_list[0].weight.shape[0],
bias=False,
)
self.proj.weight = self.w2v_model.decoder.embed_tokens_list[0].weight
else:
self.proj = nn.Linear(
self.w2v_model.decoder.embed_tokens.weight.shape[1],
self.w2v_model.decoder.embed_tokens.weight.shape[0],
bias=False,
)
self.proj.weight = self.w2v_model.decoder.embed_tokens.weight
elif tgt_dict is not None:
self.proj = Linear(d, len(tgt_dict))
elif getattr(cfg, "decoder_embed_dim", d) != d:
self.proj = Linear(d, cfg.decoder_embed_dim)
else:
self.proj = None
def set_num_updates(self, num_updates):
"""Set the number of parameters updates."""
super().set_num_updates(num_updates)
self.num_updates = num_updates
def forward(self, source, padding_mask, prev_output_tokens=None, tbc=True, **kwargs):
ft = self.freeze_finetune_updates <= self.num_updates
w2v_args = {
"source": source,
"padding_mask": padding_mask,
"mask": self.apply_mask and self.training,
"prev_output_tokens": prev_output_tokens,
"ft": ft,
}
if self.freeze_decoder_updates <= self.num_updates:
self.w2v_model.add_decoder = True
else:
self.w2v_model.add_decoder = False
x, padding_mask, decoder_out = self.w2v_model.extract_features(**w2v_args)
if tbc:
# B x T x C -> T x B x C
x = x.transpose(0, 1)
x = self.final_dropout(x)
if self.proj:
x = self.proj(x)
return {
"encoder_out": x, # T x B x C
"encoder_padding_mask": padding_mask, # B x T
"padding_mask": padding_mask,
"decoder_out": decoder_out,
}
def get_normalized_probs_decoder(self, net_output, log_probs, sample=None):
# net_output['encoder_out'] is a (B, T, D) tensor
return self.w2v_model.get_normalized_probs(net_output, log_probs, sample)
def reorder_encoder_out(self, encoder_out, new_order):
if encoder_out["encoder_out"] is not None:
if isinstance(encoder_out["encoder_out"], list):
encoder_out["encoder_out"] = (
[] if len(encoder_out["encoder_out"]) == 0
else [x.index_select(1, new_order) for x in encoder_out["encoder_out"]]
)
else:
encoder_out["encoder_out"] = encoder_out[
"encoder_out"
].index_select(1, new_order)
if encoder_out["encoder_padding_mask"] is not None:
if isinstance(encoder_out["encoder_padding_mask"], list):
encoder_out["encoder_padding_mask"] = (
[] if len(encoder_out["encoder_padding_mask"]) == 0
else [x.index_select(0, new_order) for x in encoder_out["encoder_padding_mask"]]
)
else:
encoder_out["encoder_padding_mask"] = encoder_out[
"encoder_padding_mask"
].index_select(0, new_order)
if "decoder_out" in encoder_out and encoder_out["decoder_out"] is not None:
if isinstance(encoder_out["decoder_out"], list):
encoder_out["decoder_out"] = (
[] if len(encoder_out["decoder_out"]) == 0
else [x.index_select(0, new_order) for x in encoder_out["decoder_out"]]
)
else:
encoder_out["decoder_out"] = encoder_out[
"decoder_out"
].index_select(0, new_order)
if "encoder_out_for_ctc" in encoder_out and encoder_out["encoder_out_for_ctc"] is not None:
if isinstance(encoder_out["encoder_out_for_ctc"], list):
encoder_out["encoder_out_for_ctc"] = (
[] if len(encoder_out["encoder_out_for_ctc"]) == 0
else [x.index_select(1, new_order) for x in encoder_out["encoder_out_for_ctc"]]
)
else:
encoder_out["encoder_out_for_ctc"] = encoder_out[
"encoder_out_for_ctc"
].index_select(1, new_order)
return encoder_out
def forward_torchscript(self, net_input):
"""A TorchScript-compatible version of forward.
Encoders which use additional arguments may want to override
this method for TorchScript compatibility.
"""
encoder_out = self.w2v_model.forward_torchscript(net_input)
assert self.proj is not None
encoder_out['encoder_out_for_ctc'] = [self.proj(encoder_out['encoder_out'][0])]
return encoder_out
def max_positions(self):
"""Maximum input length supported by the encoder."""
return None
def upgrade_state_dict_named(self, state_dict, name):
return state_dict
def Embedding(num_embeddings, embedding_dim, padding_idx):
m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5)
nn.init.constant_(m.weight[padding_idx], 0)
return m
def Linear(in_features, out_features, bias=True):
m = nn.Linear(in_features, out_features, bias)
nn.init.xavier_uniform_(m.weight)
if bias:
nn.init.constant_(m.bias, 0.0)
return m